Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media
Abstract
:1. Introduction
2. Water Solutions
2.1. Carboxylic Acids and Their Salts
2.1.1. Iron and Mild Steels
2.1.2. Copper and Its Alloys
2.1.3. Zinc
2.2. Organophosphates
2.2.1. Organic Esters of Phosphoric Acid
2.2.2. Phosphonic Acids and Phosphonates
[Fe½Zn½(H2O)3 µ-NH(CH2PO3H)3]n↓ + 0.5nZn(OH)2↓ + 3nOH− + 4nNa+
[Fe7/8Zn1/8(H2O)3 µ-NH(CH2PO3H)3]n↓ + 0.875nCd(OH)2↓ + 2.25nOH− + 4nNa+
3. Organic and Water-Organic Solutions
3.1. Carboxylic Acids and Their Salts
3.2. Organophosphates
- the anchoring group should firmly bind to the substrate surface, and the reaction should occur as fast as possible;
- the chemical bonds formed upon interaction of the anchoring group with the groups on the surface should be stable under the conditions where the surface-modified material is operated and stored;
- the length of the hydrocarbon chain which determines the compactness of the SAM should be at least 8 carbon atoms;
- the hydrocarbon radical should not contain any substituents or double/triple bonds (especially near the head group) to form a densely packed SAM.
3.2.1. Organic Esters of Phosphoric Acid
3.2.2. Phosphonic Acids and Phosphonates
4. Vapor-Gas Phase
4.1. Volatile Corrosion Inhibitors
4.2. Chamber Corrosion Inhibitors
5. Conclusions
- Protection of metals in humid atmospheres and aqueous solutions with pH 5.0–9.0 can be achieved by formation of thin coatings on their surfaces due to the adsorption of OCIs and by more complex chemical interactions with the metal to be protected. In a discussion on the formation of such coatings from aqueous solutions, the important role of the chemical structure of OCIs was shown for salts of carboxylic, phosphonic and dialkylphosphoric acids as an example. Promising OCIs should be capable of chemisorption and self-assembly on the surfaces of metals (Fe, Cu, Zn). In situ adsorption ellipsometry measurements in combination with XPS and FTIR studies played a major role in their selection. It was found possible to increase the efficiency of metal protection by carboxylate anions not only in formulations with oxidants, but also with other OCIs, sometimes using the layer-by-layer method. Especially interesting is the combination of carboxylates with triazoles known for their efficient protection of Cu and Zn, or trialkoxysilanes due to their conversion to a siloxane mesh that prevents the desorption of OCIs. Polybasic phosphonic complexons and water-soluble alkylphosphonic acids inhibit the corrosion of Fe, Cu, and Zn because of their high complex-forming properties in neutral media due to the formation of thin passive films. Thus, the diphilic structure of monoalkylphosphonic acid molecules (CnPAs) with nc ≤ 12 gives them surface activity and capability of self-assembly in the adsorption layer while maintaining solubility in water. While possessing efficient passivating properties, they are less hydrophobic than alkylcarboxylates and dialkylphosphates with the same alkyl length. The low hydrophobicity of CnPAs anions allows them to be used for the superhydrophobization of the Zn surface in neutral aqueous solutions, which is an advantage in ecological terms. The lower homologues of phosphonates can become efficient OCIs for metals and alloys in combination with oxidizers, triazoles and trialkoxysilanes, including the use of the layer-by-layer method.
- In organic (mainly alcoholic) and aqueous-organic solutions, higher carboxylic acids are used for hydrophobization and superhydrophobization of the metals surface. Although the combination of a polymodal surface roughness with a low surface energy of a hydrophobizing agent is important to obtain stable superhydrophobic coatings, the review pays great attention to various methods of using higher alkyl carboxylic acids (stearic, myristic) as very affordable hydrophobizing agents. The advantage of two-stage hydrophobization of the surface, for example, of AD31 Al alloy, is noted: first, by adsorption of a trialkoxysilane, preferably n-octyltrimethoxysilane, and then stearic acid. Higher CnPAs with nc > 12 that form stable and highly ordered layers on the surface of Fe, Cu, and Zn, can also be used to obtain thin superhydrophobic coatings from organic solvents. Noteworthy is the use of C18PA for imparting anticorrosion, wear-resistant, hydrophobic and other valuable properties of various metals. Thus, a superhydrophobic surface was obtained on an oxidized Cu mesh for self-cleaning and separation of oil and water using C18PA. Successful modification of various surfaces of metals with solutions of CnPAs in organic solvents to impart valuable properties to them allows their application for increasing the corrosion resistance of metals in neutral media. Taking into account the high reactivity and hydrophobicity of higher CnPAs along with ability to form stable SAMs on metals, they can also be used to obtain thin superhydrophobic coatings.
- The specific features of the formation of thin protective coatings from the vapor-gas phase are closely related to the long-known volatile corrosion inhibitors (VCIs) and a relatively new type of protection against atmospheric corrosion of metals, i.e., chamber OCIs. The advantages and drawbacks of VCIs are briefly discussed. To increase the protection of metals in the vapor-gas phase, it is necessary to increase the duration of the protective aftereffect, i.e., the stability of thin protective coatings formed by VCI chemisorption. One of these methods involves the combined use of a VCI with a volatile trialkoxysilane, for example, the use of N-benzylbenzylidenimine with (3-amino-propyl)triethoxysilane to protect steel, Cu, Zn, and an Al alloy. Layer-by-layer deposition of such films provides more efficient protection of metals than VCIs themselves. It has been confirmed by various tests, including 100% humidity conditions with periodic moisture condensation on the samples. Another method, taking into account the slowness of OCI chemisorption on metals, involves increasing the temperature of the medium from which adsorption occurs. It opens up the possibility of using it as a chamber OCI for treating metal surfaces in a chamber containing a compound even with a relatively low volatility under normal conditions. Examples of efficient protection of low-carbon steel, Cu, Al (AA6061) and even Mg alloys (AZ31, MA8) by this method are considered. The implementation of superhydrophobization of a Mg alloy surface by treatment in hot (105 °C) fluorotrimethoxysilane vapor deserves special attention.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symbols | |||
---|---|---|---|
Θc | water contact angle | Cin | concentration of corrosion inhibitor |
Ks | stability constant of complex | standard free energy of adsorption | |
pKa | acidity constant | Rct | charge transfer resistance |
Θ | degree of surface coverage | CPE | constant phase element |
d | film thicknesses | Rp | polarization resistance |
Z | degree of protection | Rf | resistance of the protective layer |
τcor | time to the appearance of the first signs of corrosion | logP | logarithm of the distribution coefficient of the substance in the water–octanol system (for neutral molecules) |
Δ | ellipsometry phase shift angle | logD | logarithm of the distribution coefficient of the substance in the water–octanol system (for anions) |
Ein | initial potential | ia | anodic current density |
Epit | pitting potential | ip | passivation current density |
Eeq | equilibrium potential | tct | temperature of chamber treatment |
Ecor | corrosion potential | p0 | equilibrium saturated vapor pressure |
t | temperature | τct | duration of chamber treatment |
Abbreviations | |||
Basic terms | |||
CI | corrosion inhibitor | SHP | superhydrophobic |
OCI | organic corrosion inhibitor | HPA | hydrophobizing agent |
VCI | volatile corrosion inhibitor | REM | rare earth metal |
CC | conversion coating | LbL | layer-by-layer |
Corrosion inhibitors | |||
SB | sodium benzoate | PA | phosphonic acid |
SAn | sodium anthranilate | HEDP | 1-hydroxyethane-1,1-diphosphonic acid |
SPhAn | sodium phenylanthranilate | ATMP | amino-tris(methylenephosphonic) acid |
SMeF | sodium mefenamate | ADMP | amino-di(methylenephosphonic) acid |
SFF | sodium flufenamate | EDTP | ethylendiamine-N,N,N′,N′-tetrakis(methylenephosphonic) acid |
SPhU | sodium 11-phenylundeconate | HMDTP | hexamethylendiamine-N,N,N′,N′-tetrakis(methylenephosphonic) acid |
MBP | 3-(4′-methylbenzoyl)propionate | PBTC | 2-phosphonobutane-1,2,4-tricarboxylic acid |
HOC16A | hydroxyhexadecanoic acid | HPAA | hydroxyphosphonoacetic acid |
CnA | carboxylic acid | CHADP | 1,1-hydroxycarboxypropane-3-amino-di(methylenephosphonic) acid |
ALC | alkyl monocarboxylate | DTPMP | diethylenetriaminepentamethylene phosphonic acid |
SOl | sodium oleate | m-SNB | sodium m-nitrobenzoate |
SOS | sodium N-oleilsarcosinate | CnPA | alkylphosphonic acid |
DMG | dimegine | C8PA | octylphosphonic acid |
NaC13 | sodium tridecanoate | C18PA | octadecylphosphonic acid |
NaC16 | sodium hexadecanoate | CnPMe | salt of alkylphosphonic acid |
SOTP | sodium S-octyl-3-thiopropionate | C8PNa | sodium octylphosphonate |
SKAP-25 | mixture of sodium salts of alkenylsuccinic acids | C10PNa | sodium decylphosphonate |
SA | stearic acid | C12PNa | sodium dodecylphosphonate |
ISA | isostearic | UPA | undecenyl phosphonic acid |
MA | myristic acid | FC10A | fluorodecylphosphonic acid |
BTA | 1,2,3-benzotriazole | 3-PPA | 3-phosphonopropionic acid |
5-Cl-BTA | 5-chloro-1,2,3-benzotriazole | PhPA | phenylphosphonic acid |
MBT | 2-mercaptobenzothiazole | TAS | trialkoxysilane |
MBI | 2-mercaptobenzimidazole | AEAPTS | [3-(2-aminoethylamino)propyl]-trimethoxysilane |
SDOP | sodium dioctyl phosphate | APTS | (3-amino-propyl)-triethoxysilane |
BEHP | bis(2-ethylhexyl) phosphate | VTMS | vinyltrimethoxysilane |
PAMe(II) | complex of phytic acid with Me(II) | OTES | n-octyltriethoxysilane |
DPhP | diphenyl phosphates | ODA | octadecylamine |
- | - | THF | tetrahydrofuran |
References
- Leygraf, C.; Wallinder, I.O.; Tidblad, J.; Graedel, T. Atmospheric Corrosion, 2nd ed.; John Wiley & Sons, Inc.: New Haven, CT, USA, 2016; p. 152. [Google Scholar]
- Mikhaylov, A.A.; Panchenko, Y.M.; Kuznetsov, Y.I. Atmospheric Corrosion and Protection of Metals (Atmosfernaya Korroziya i Zashchita Metallov); Pershin Publishing House: Tambov, Russia, 2016; p. 554. (In Russian) [Google Scholar]
- Qian, B.; Hou, B.; Zheng, M. The inhibition effect of tannic acid on mild steel corrosion in seawater wet/dry cyclic conditions. Corros. Sci. 2013, 72, 1–9. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I. Organic corrosion inhibitors: Where are we now? A review. Part III. Passivation and the role of the chemical structure of organophosphates. Int. J. Corros. Scale Inhib. 2017, 6, 209–239. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Akhtar, A.S. On Conversion Coating Treatments to Replace Chromating for Al Alloys: Recent Developments and Possible Future Directions. Russ. J. Non-Ferr. Met. 2012, 53, 176–203. [Google Scholar] [CrossRef]
- Cao, F.; Wei, J.; Dong, J.; Ke, W. The corrosion inhibition effect of phytic acid on 20SiMn steel insimulated carbonated concrete pore solution. Corros. Sci. 2015, 100, 365–376. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I. Organic Inhibitors of Corrosion of Metals; Plenum Press: New York, NY, USA; London, UK, 1996; 283p. [Google Scholar]
- Zhang, D.; Wang, L.; Qian, H.; Li, X. Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions. J. Coat. Technol. Res. 2016, 13, 11–29. [Google Scholar] [CrossRef] [Green Version]
- Emelyanenko, K.A.; Emelyanenko, A.M.; Boinovich, L.B. Water and Ice Adhesion to Solid Surfaces: Common and Specific, the Impact of Temperature and Surface Wettability. Coatings 2020, 10, 648. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Muzafarov, A.M.; Emelyanenko, A.M.; Myshkovsky, A.M.; Pashinin, A.S.; Tsivadze, A.Y. Composition for Preparing Superhydrophobic Coating. RU Patent 2009114779A, 27 October 2010. [Google Scholar]
- Gnedenkov, S.V.; Egorkin, V.S.; Sinebryukhov, S.L.; Vyaliy, I.E.; Emelyanenko, A.M.; Boinovich, L.B. Method for Producing Protective Superhydrophobic Coatings on Aluminum Alloys. RU Patent 2567776C1, 10 November 2015. [Google Scholar]
- Bi, P.; Li, H.; Zhao, G.; Ran, M.; Cao, L.; Guo, H.; Xue, Y. Robust super-hydrophobic coating prepared by electrochemical surface engineering for corrosion protection. Coatings 2019, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a super-hydrophobic surface. A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368. [Google Scholar] [CrossRef]
- Ishizaki, T.; Hieda, J.; Saito, N.; Saito, N.; Takai, O. Corrosion resistance and chemical stability of superhydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochim. Acta. 2010, 55, 7094–7101. [Google Scholar] [CrossRef]
- Ishizaki, T.; Okido, M.; Masuda, Y.; Saito, N.; Sakamoto, M. Corrosion resistant performances of alkanoic and phosphonic acids derived self-assembled monolayers on magnesium alloy AZ31 by vapor-phase method. Langmuir 2011, 27, 6009–6017. [Google Scholar] [CrossRef]
- Hozumi, A.; Cheng, D.F.; Yagihashi, M. Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis. J. Colloid Interface Sci. 2011, 353, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Hanch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology; Wiley-Interscience: New York, NY, USA, 1979; p. 339. [Google Scholar]
- Kuznetsov, Y.I. Role of the complexation concept in the present views on the initiation and inhibition of metal pitting. Prot. Met. 2001, 37, 485–490. [Google Scholar]
- Godinez-Alvarez, J.M.; Mora-Mendoza, J.L.; Rodriguez-Betancourt, E.; Zavala-Olivares, G.; Gonzalez, M.A. Inhibition of ferrous metal corrosion by carboxylates. In Reviews on Corrosion Inhibitor Science and Technology; Raman, A., Labine, P., Quraishi, M.A., Eds.; NACE International: Houston, TA, USA, 2004; pp. 18–22. [Google Scholar]
- Kuznetsov, Y.I. Organic corrosion inhibitors: Where are we now? A review. Part I. Adsorption. Int. J. Corros. Scale Inhib. 2015, 4, 284–310. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I. Organic corrosion inhibitors: Where are we now? A review. Part II. Passivation and the role of the chemical structure of carboxylates. Int. J. Corros. Scale Inhib. 2016, 5, 282–318. [Google Scholar] [CrossRef]
- Rammelt, U.; Koehler, S.; Reinhard, G. EIS characterization of the inhibition of mild steel corrosion with carboxylates in neutral aqueous solution. Electrochim. Acta. 2008, 53, 6968–6972. [Google Scholar] [CrossRef]
- Rammelt, U.; Koehler, S.; Reinhard, G. Electrochemical characterisation of the ability of dicarboxylic acid salts to the corrosion inhibition of mild steel in aqueous solutions. Corros. Sci. 2011, 53, 3515–3520. [Google Scholar] [CrossRef]
- Lahem, D.; Poelman, M.; Atmani, F.; Olivier, M.-G. Synergistic improvement of inhibitive activity of dicarboxylates in preventing mild steel corrosion in neutral aqueous solution. Corros. Engin. Sci. Technol. 2012, 47, 463–471. [Google Scholar] [CrossRef]
- Hammet, L.P. Physical Organic Chemistry; McGraw-Hill Book Company G.T.: New York, NY, USA, 1970. [Google Scholar]
- Grigorev, V.P.; Ekilik, V.V. Chemical Structure and Protective Effect of Corrosion Inhibitors; Rostov University Publishing House: Rostov-on-Don, Russia, 1978; 184p. (In Russian) [Google Scholar]
- Ekilik, V.V.; Grigorev, V.P. Solvent Nature and the Protective Effect of Corrosion Inhibitors; Rostov University Publishing House: Rostov-on-Don, Russia, 1984; 191p. (In Russian) [Google Scholar]
- Kuznetsov, Y.I.; Andreev, N.N.; Marshakov, A.I. Physicochemical aspects of metal corrosion inhibtion. Russ. J. Phys. Chem. A 2020, 94, 505–515. [Google Scholar] [CrossRef]
- Damaskin, B.B.; Petrij, O.A.; Batrakov, V.V. Adsorption of Organic Compounds on Electrodes; Plenum Press: New York, NY, USA, 1971; 499p. [Google Scholar]
- Kuznetsov, Y.I.; Andreeva, N.P. Adsorption of organic anions on iron in aqueous solutions: An ellipsometric study. Russ. J. Electrochem. 2006, 42, 1101–1106. [Google Scholar] [CrossRef]
- Bober, Y.G.; Kuznetsov, Y.I.; Andreeva, N.P. Adsorption at iron and passivation effect of anions of substituted phenylanthranilic acids. Prot. Met. 2008, 44, 84–90. [Google Scholar] [CrossRef]
- Agafonkina, M.O.; Andreeva, N.P.; Kuznetsov, Y.I.; Timashev, S.F. Substituted benzotriazoles as inhibitors of copper corrosion in borate buffer solutions. Russ. J. Phys. Chem. A 2017, 91, 1414–1421. [Google Scholar] [CrossRef]
- Kazansky, L.P.; Kuznetsov, Y.I.; Andreeva, N.P.; Bober, Y.G. Self-assembled monolayers of flufenaminate anions on mild steel surface formed in aqueous solution. Appl. Surf. Sci. 2010, 257, 1166–1174. [Google Scholar] [CrossRef]
- Kern, P.; Landolt, D. Adsorption of organic corrosion inhibitors on iron in the active and passive state. A replacement reaction between inhibitor and water studied with the rotating quartz crystal microbalance. Electrochim. Acta 2001, 47, 589–598. [Google Scholar] [CrossRef]
- Mardel, J.I.; Cole, I.S.; White, P.A.; Hughes, A.E.; Markley, T.A.; Harvey, T.G.; Osborne, J.; Sapper, E. Compositions for Inhibiting Corrosion. U.S. Patent 2021095136A1, 1 April 2021. [Google Scholar]
- Nam, N.D.; Somers, A.; Mathesh, M.; Seter, M.; Hinton, B.; Forsyth, M.; Tan, M.Y.J. The behaviour of praseodymium 4-hydroxycinnamate as an inhibitor for carbon dioxide corrosion and oxygen corrosion of steel in NaCl solutions. Corros. Sci. 2014, 80, 128–211. [Google Scholar] [CrossRef]
- Peng, Y.; Hughes, A.E.; Deacon, G.B.; Junk, P.C.; Hinton, B.R.; Forsyth, M.; Mardel, J.I.; Somers, A.E. Study of rare-earth 3-(4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions. Corros. Sci. 2018, 145, 199–211. [Google Scholar] [CrossRef]
- Somers, A.E.; Peng, Y.; Chong, A.L.; Forsyth, M.; MacFarlane, D.R.; Deacon, G.B.; Hughes, A.E.; Hinton, B.R.W.; Mardel, J.I.; Junk, P.C. Advances in the development of rare earth metal and carboxylate compounds as corrosion inhibitors for steel. Corros. Eng. Sci. Technol. 2020, 55, 311–321. [Google Scholar] [CrossRef]
- Erickson, D.L.; Johnson, R.A.; LaBrosse, M.R.; Young, P.R. Corrosion Inhibitor Compositions and Methods. Patent ES 2676059T3, 16 July 2018. [Google Scholar]
- Aramaki, K.; Shimura, T. Self-assembled monolayers of carboxylate ions on passivated iron for preventing passive film breakdown. Corros. Sci. 2004, 46, 313–328. [Google Scholar] [CrossRef]
- Hefter, G.T.; North, N.A.; Tan, S.H. Organic corrosion inhibitors in neutral solutions; Part 1—Inhibition of steel, copper, and aluminum by straight chain carboxylates. Corrosion 1997, 53, 657–667. [Google Scholar] [CrossRef]
- Chan-Rosado, G.; Pech-Canul, M.A. Influence of native oxide film age on the passivation of carbon steel in neutral aqueous solutions with a dicarboxylic acid. Corros. Sci. 2019, 153, 19–31. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Andreeva, N.P.; Agafonkina, M.O.; Solov’eva, A.B. Modification of iron surface by dimegin and adsorption of 1,2,3-benzotriazole. Prot. Met. Phys. Chem. Surf. 2010, 46, 743–747. [Google Scholar] [CrossRef]
- Meyer-Roscher, B.; Siemens, T.; Brockmann, H. Tetraphenylporphyrins as coupling reagents and corrosion inhibitors. Adv. Mater. 1992, 4, 496–498. [Google Scholar] [CrossRef]
- Agarvala, V.S. Corrosion inhibition by macrocyclic compounds: Porphyrins and phthalocyanines. In Reviews on Corrosion Inhibitor Science and Technology; NACE: Houston, TA, USA, 1993; pp. I-5-1–I-5-12. [Google Scholar]
- Gottfried, J.M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. [Google Scholar] [CrossRef]
- Segneanu, A.-E.; Balcu, I.; Vlatanescu, N.; Urmosi, Z.; Amalia Macarie, C. Comparative study of porphyrin systems used as corrosion inhibitors. In Corrosion Resistance; Shih, H., Ed.; InTechOpen: Rijeka, Croatia, 2012; Chapter 8; pp. 175–189. Available online: https://www.intechopen.com/chapters/34486 (accessed on 22 December 2021).
- Grafov, O.Y.; Kazansky, L.P. Review on porphyrins, phthalocyanines and their derivatives as corrosion inhibitors. Int. J. Corros. Scale Inhib. 2020, 9, 812–829. [Google Scholar] [CrossRef]
- Rozenfeld, I.L. Corrosion Inhibitors; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Kuznetsov, Y.I.; Bober, Y.G.; Andreeva, N.P.; Kazansky, L.P. On passivation of iron by anions of sodium mefenaminate, fluphenaminate and their compositions with sodium oleate. In Proceedings of the EUROCORR 2008, Edinburgh, UK, 7–11 September 2008; pp. 1–10. [Google Scholar]
- Starostin, M.; Shter, G.E.; Grader, G.S. Corrosion inhibition of carbon steel in aqueous solution of ammonium nitrate and urea. Mater. Corros. 2014, 65, 626–636. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, N.; Zhang, W.; Huang, X.; Ruan, L.; Wu, L. Inhibition of carbon steel corrosion in phase-change-materials solution by methionine and proline. Corros. Sci. 2016, 111, 675–689. [Google Scholar] [CrossRef]
- Richardson, J.J.; Cui, J.; Björnmalm, M.; Braunger, J.A.; Ejima, H.; Caruso, F. Innovation in layer-by-layer assembly. Chem. Rev. 2016, 116, 14828–14867. [Google Scholar] [CrossRef] [Green Version]
- An, Q.; Huang, T.; Shi, F. Covalent layer-by-layer films: Chemistry, design, and multi-disciplinary applications. Chem. Soc. Rev. 2018, 47, 5061–5098. [Google Scholar] [CrossRef]
- Li, J.; Chen, D.; Zhang, D.; Wang, Y.; Yu, Y.; Gao, L.; Huang, M. Preparation of triazole compounds via click chemistry reaction and formation of the protective self-assembled membrane against copper corrosion. Colloids Surf. A. 2018, 550, 145–154. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Zhang, J.; Gao, L.; Feng, L.; Zhang, D. Click-assembling triazole membrane on copper surface via one-step or two-steps and their corrosion inhibition performance. Appl. Surf. Sci. 2018, 427, 1120–1128. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Yu, Y.; Li, J.; Zhang, D.; Gao, L. The role of cuprous ions on the click-assembled triazole films against copper corrosion. Corros. Sci. 2018, 145, 100–108. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, J.; Shi, C.; Zhang, K.; Li, J.; Gao, L. Anti-corrosion performance of covalent layer-by-layer assembled films via click chemistry reaction on the copper surface. Corros. Sci. 2020, 178, 109063. [Google Scholar] [CrossRef]
- Moore, D.; Arcila, J.A.; Saraf, R.F. Electrochemical deposition of polyelectrolytes is maximum at the potential of zero charge. Langmuir 2020, 36, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.H.; Sheng, N.; Hyono, A.; Ueda, M.; Ohtsuka, T. Effect of benzotriazole (BTA) addition on polypyrrole film formation on copper and its corrosion protection. Prog. Org. Coat. 2014, 77, 339–346. [Google Scholar] [CrossRef]
- Petrović Mihajlović, M.B.; Antonijević, M.M. Copper corrosion inhibitors. Period 2008–2014. A Review. Int. J. Electrochem. Sci. 2015, 10, 1027–1053. [Google Scholar]
- Petrunin, M.; Maksaeva, L.; Gladkikh, N.; Makarychev, Y.; Maleeva, M.; Yurasova, T.; Nazarov, A. Thin benzotriazole films for inhibition of carbon steel corrosion in neutral electrolytes. Coatings 2020, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Phadke Swathi, N.; Alva, V.D.P.; Samshuddin, S. A Review on 1,2,4-triazole derivatives as corrosion inhibitors. J. Bio Tribo Corros. 2017, 3, 42. [Google Scholar] [CrossRef]
- Kazansky, L.P.; Selyaninov, I.A.; Kuznetsov, Y.I. Angle resolved XPS of monomolecular layer of 5-chlorobenzotriazole on oxidized metallic surface. Appl. Surf. Sci. 2012, 259, 385–392. [Google Scholar] [CrossRef]
- Agafonkina, M.O.; Kuznetsov, Y.I.; Andreeva, N.P.; Pronin, Y.E.; Kazanskii, L.P. Formation of protective layers by 5-chlorobenzotriazole and its mixture with sodium fluphenaminate on low carbon steel from aqueous solutions. Prot. Met. Phys. Chem. Surf. 2012, 48, 773–779. [Google Scholar] [CrossRef]
- Abd El Haleem, S.M.; Abd El Wanees, S.; Bahgat Radwan, A. Environmental factors affecting the corrosion behaviour of reinforcing steel. VI. Benzotriazole and its derivatives as corrosion inhibitors of steel. Corros. Sci. 2014, 87, 321–333. [Google Scholar] [CrossRef]
- Abd El Wanees, S.; Bahgat Radwan, A.; Alssharif, M.A.; Abd El Haleem, S.M. Initiation and inhibition of pitting corrosion on reinforcing steel under natural corrosion conditions. Mater. Chem. Phys. 2017, 190, 79–95. [Google Scholar] [CrossRef]
- Aramaki, K.; Shimura, T. Prevention of passive film breakdown by coverage of passivated iron with a carboxylate self-assembled monolayer modified with alkyltriethoxysilanes. In Proceedings of the 10th European Symposium on Corrosion and Scale Inhibitors, Ferrara, Italy, 29 August–2 September 2005; Volume 1, pp. 63–78. [Google Scholar]
- Aramaki, K.; Shimura, T. An ultrathin polymer coating of carboxylate self-assembled monolayer adsorbed on passivated iron to prevent iron corrosion in 0.1 M Na2SO4. Corros. Sci. 2010, 52, 1–6. [Google Scholar] [CrossRef]
- Semiletov, A.M.; Chirkunov, A.A.; Kuznetsov, Y.I.; Andreeva, N.P. Improving steel passivation with aqueous solutions of [3-(2-aminoethylamino)propyl]trimethoxysilane. Russ. J. Phys. Chem. A. 2015, 89, 2271–2277. [Google Scholar] [CrossRef]
- Semiletov, A.M. Protection of aluminium alloys from atmospheric corrosion by thin films of inhibitors. Int. J. Corros. Scale Inhib. 2017, 6, 449–462. [Google Scholar] [CrossRef]
- Sastri, V.S. Corrosion Inhibitors: Principles and Applications; Wiley: New York, NY, USA, 1998; 926p. [Google Scholar]
- Kuznetsov, Y.I.; Kazansky, L.P. Physicochemical aspects by azoles as corrosion inhibitors. Russ. Chem. Rev. 2008, 77, 219–232. [Google Scholar] [CrossRef]
- Khadom, A.A. Protection of steel corrosion reaction by benzotriazoles: A historical background. J. Failure Anal. Prev. 2015, 15, 794–802. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I. Triazoles as a class of multifunctional corrosion inhibitors. A review. Part I. 1,2,3-Benzotriazole and its derivatives. Copper, zinc and their alloys. Int. J. Corros. Scale Inhib. 2018, 7, 271–307. [Google Scholar] [CrossRef]
- Fateh, A.; Aliofkhazraei, M.; Rezvanian, A.R. Review of corrosive environments for copper and its corrosion inhibitors. Arab. J. Chem. 2020, 13, 481–544. [Google Scholar] [CrossRef]
- Abelev, E.; Starosvetsky, D.; Ein-Eli, Y. Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts. Langmuir 2007, 23, 11281–11288. [Google Scholar] [CrossRef]
- Agafonkina, M.O.; Kuznetzov, Y.I.; Andreeva, N.P. Inhibitor properties of carboxylates and their adsorption on copper from aqueous solutions. Russ. J. Phys. Chem. A 2015, 89, 1070–1076. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Kuznetsov, I.A.; Andreeva, N.P. Adsorbtion of sodium tridecanoate on copper from aqueous solutions and copper protection from atmospheric corrosion. Int. J. Corros. Scale Inhib. 2018, 7, 648–656. [Google Scholar] [CrossRef]
- Agafonkina, M.O.; Kuznetsov, I.A.; Andreeva, N.P.; Kuznetsov, Y.I. Copper protection with sodium salts of lower dicarboxylic acids in neutral aqueous solution. Int. J. Corros. Scale Inhib. 2020, 9, 1000–1013. [Google Scholar] [CrossRef]
- Agafonkina, M.O.; Kuznetsov, I.A.; Kuznetsov, Y.I.; Grafov, O.Y.; Andreeva, N.P. Corrosion inhibition of MNZh alloy with sodium salts of lower dicarboxylic acids in neutral aqueous solution. Int. J. Corros. Scale Inhib. 2021, 10, 349–367. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Agafonkina, M.O.; Andreeva, N.P.; Kazansky, L.P. Adsorption of dimegin and inhibition of copper dissolution in aqueous solutions. Corros. Sci. 2015, 100, 535–543. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Kuznetsov, I.A.; Vershok, D.B. Protection of copper against corrosion in neutral media by dicarboxylic acid salts. Int. J. Corros. Scale Inhib. 2019, 8, 1022–1034. [Google Scholar] [CrossRef]
- Grafov, O.Y.; Kazansky, L.P.; Dubinskaya, S.V.; Kuznetsov., Y.I. Adsorption of depocolin and inhibition of copper dissolution in aqueous solutions. Int. J. Corros. Scale Inhib. 2019, 8, 549–559. [Google Scholar] [CrossRef]
- Grafov, O.Y.; Agafonkina, M.O.; Andreeva, N.P.; Kazanskii, L.P.; Kuznetsov, Y.I. Adsorption of depocolin and dimegin on nickel from neutral aqueous solutions. Prot. Met. Phys. Chem. Surf. 2019, 5, 1304–1310. [Google Scholar] [CrossRef]
- Winkler, D.A.; Breedon, M.; Hughes, A.E.; Burden, F.R.; Barnard, A.S.; Harvey, T.G.; Cole, I. Towards chromate-free corrosion inhibitors: Structure–property models for organic alternatives. Green Chem. 2014, 16, 3349–3357. [Google Scholar] [CrossRef] [Green Version]
- Aramaki, K. Effect of organic inhibitors on corrosion of zinc in aerated 0.5 M NaCl solution. Corros. Sci. 2001, 43, 1985–2000. [Google Scholar] [CrossRef]
- Aramaki, K. Preparation of a 16-hydroxyhexadecanoate ion self-assembled monolayer on a zinc electrode coated with hydrated cerium(III) oxide. Corros. Sci. 2006, 48, 4303–4315. [Google Scholar] [CrossRef]
- Aramaki, K. Protection of zinc from corrosion by coverage with a hydrated cerium(III) oxide layer and ultrathin polymer films of a carboxylate self-assembled monolayer modified with alkyltriethoxysilanes. Corros. Sci. 2007, 49, 1963–1980. [Google Scholar] [CrossRef]
- Lebrini, M.; Fontaine, G.; Gengembre, L.; Traisnel, M.; Lerasle, O.; Genet, N. Corrosion protection of galvanized steel and electroplating steel by decanoic acid in aqueous solution: Electrochemical impedance spectroscopy, XPS and ATR-FTIR. Corros. Sci. 2009, 51, 1201–1206. [Google Scholar] [CrossRef]
- Žerjav, G.; Milošev, I. Carboxylic acids as corrosion inhibitors for Cu, Zn and brasses in simulated urban rain. Int. J. Electrochem. Sci. 2014, 9, 2696–2715. [Google Scholar]
- Andreeva, N.P.; Ushakova, Y.V.; Kuznetsov, Y.I.; Agafonkina, M.O.; Kazansky, L.P.; Andreev. Y., I. Adsorption of sodium flufenaminate on zinc from aqueous solution. Prot. Met. Phys. Chem. Surf. 2014, 50, 860–865. [Google Scholar] [CrossRef]
- Agafonkina, M.O.; Semiletov, A.M.; Kuznetsov, Y.I.; Andreeva, N.P.; Chirkunov, A.A. Adsorption of sodium oleyl sarcosinate on zinc and its passivating action in neutral aqueous solution. Prot. Met. Phys. Chem. Surf. 2018, 54, 1284–1291. [Google Scholar] [CrossRef]
- Semiletov, A.M.; Kuznetsov, Y.I.; Chirkunov, A.A. Inhibition of atmospheric corrosion of aluminum alloy AMg6 by trialkoxysilanes and their compositions with carboxylates. Korroz. Mater. Zashchita 2016, 6, 29–36. (In Russian) [Google Scholar]
- Taghavikish, M.; Dutta, N.K.; Roy Choudhury, N.R. Emerging corrosion inhibitors for interfacial coating. Coatings 2017, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Chong, A.L.; Mardel, J.I.; MacFarlane, D.R.; Forsyth, M.; Somers, A.E. Synergistic corrosion inhibition of mild steel in aqueous chloride solutions by an imidazolinium carboxylate salt. ACS Sustain. Chem. Eng. 2016, 4, 1746–1755. [Google Scholar] [CrossRef]
- Morozov, Y.; Calado, L.M.; Shakoor, R.A.; Raj, R.; Kahraman, R.; Taryba, M.G.; Montemor, M.F. Epoxy coatings modified with a new cerium phosphate inhibitor for smart corrosion protection of steel. Corros. Sci. 2019, 159, 108128. [Google Scholar] [CrossRef]
- Calado, L.M.; Taryba, M.G.; Montemor, M.F. Cerium phosphate-based inhibitor for smart corrosion protection of WE43 magnesium alloy. Electrochim. Acta 2021, 365, 137368. [Google Scholar] [CrossRef]
- Attaei, M.; Calado, L.M.; Montemor, M.F. Smart epoxy coating modified with isophorone diisocyanate microcapsules and cerium organophosphate for multilevel corrosion protection of carbon steel. Prog. Org. Coat. 2020, 147, 150864. [Google Scholar] [CrossRef]
- Chirkunov, A.A.; Gorbachev, A.S.; Kuznetsov, Y.I.; Andreeva, N.P. Adsorption of dioctyl phosphate and inhibition of dissolution of low carbon steel in neutral solution. Prot. Met. Phys. Chem. Surf. 2013, 49, 854–858. [Google Scholar] [CrossRef]
- Garcia, S.J.; Markley, T.A.; Mol, J.M.C.; Hughes, A.E. Unravelling the corrosion inhibition mechanisms of bi-functional inhibitors by EIS and SEM-EDS. Corros. Sci. 2013, 69, 346–358. [Google Scholar] [CrossRef]
- Andreeva, N.P.; Kuznetsov, Y.I.; Semiletov, A.M.; Chirkunov, A.A. Formation of passive films on magnesium in alkaline solutions and adsorption of organic acid anions on them. Korroz. Mater. Zashchita 2017, 2, 41–48. (In Russian) [Google Scholar] [CrossRef]
- Kuznetsov, Y.I. Progress in inhibition of metal corrosion and modification of safety nanolayers on metals. Prot. Met. Phys. Chem. Surf. 2011, 47, 821–829. [Google Scholar] [CrossRef]
- Hu, J.; Xiong, Q.; Chen, L.; Zhang, C.; Zhong, X. Corrosion inhibitor in CO2-O2-containing environment: Inhibition effect and mechanisms of bis(2-ehylhexyl) phosphate for the corrosion of carbon steel. Corros. Sci. 2021, 179, 109173. [Google Scholar] [CrossRef]
- Yan, R.; Gao, X.; Lv, D.; Ma, H. A study on the differences in morphology and corrosion resistance performance between two different bis(2-ethylhexyl) phosphate self-assembled thin films prepared on an iron substrate in water and ethanol solvents. RSC Adv. 2016, 6, 55936–55945. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, X.; Lu, H.; Yan, R.; Wang, C.; Ma, H. Spontaneous formation of mono-n-butyl phosphate and mono-n-hexyl phosphate thin films on the iron surface in aqueous solution and their corrosion protection property. RSC Adv. 2015, 5, 54420–54432. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, C.; Lu, H.; Gao, F.; Ma, H. Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions. Electrochim. Acta. 2014, 150, 188–196. [Google Scholar] [CrossRef]
- Cao, F.; Wei, J.; Dong, J.; Ke, W. The corrosion inhibition effect of phytic acid on 20SiMn steel in saturated Ca(OH)2 solution with 1 mol⋅L−1 NaCl. Corros. Eng. Sci. Technol. 2018, 53, 283–292. [Google Scholar] [CrossRef]
- Gao, X.; Li, W.; Yan, R.; Tian, H.; Ma, H. Effect of zinc ion on the microstructure and electrochemical behavior of phytic acid based conversion coatings on Q235 steels. Surf. Coat. Technol. 2017, 325, 248–256. [Google Scholar] [CrossRef]
- Yan, R.; Gao, X.; He, W.; Guo, R.; Wu, R.; Zhao, Z.; Ma, H. A simple and convenient method to fabricate new types of phytic acid-metal conversion coatings with excellent anti-corrosion performance on the iron substrate. RSC Adv. 2017, 7, 41152–41162. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Li, W.; Jin, Z.; Gao, X.; Wong, W.; Tian, H.; Han, P.; Song, L.; Jiang, L. Preparation of phytic acid conversion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solution. Corros. Sci. 2018, 139, 275–288. [Google Scholar] [CrossRef]
- Kaghazchi, L.; Naderi, R.; Ramezanzadeh, B. Synergistic mild steel corrosion mitigation in sodium chloride containing solution utilizing various mixtures of phytic acid molecules and Zn2+ ions. J. Mol. Liq. 2021, 323, 114589. [Google Scholar] [CrossRef]
- Forsyth, M.; Seter, M.; Hinton, B.; Deacon, G.; Junk, P. New «Green» corrosion inhibitors based on rare earth compounds. Austr. J. Chem. 2011, 64, 812–819. [Google Scholar] [CrossRef]
- Nam, N.D.; Hien, P.V.; Hoai, N.T.; Thu, V.T.H. A study on the mixed corrosion inhibitor with a dominant cathodic inhibitor for mild steel in aqueous chloride solution. J. Taiwan Inst. Chem. E. 2018, 91, 556–569. [Google Scholar] [CrossRef]
- Notoya, T.; Otieno-Alegot, V.; Schweinsberg, D.P. The corrosion and polarization behaviour of copper in domestic water in the presence of Ca, Mg and Na-salts of phytic acid. Corros. Sci. 1995, 37, 55–65. [Google Scholar] [CrossRef]
- Li, C.; Guo, X.; Shen, S.; Song, P.; Xu, T.; Wen, Y.; Yang., H. Adsorption and corrosion inhibition of phytic acid calcium on the copper surface in 3 wt% NaCl solution. Corros. Sci. 2014, 83, 147–154. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, H.; Xi, L.; Zhang, Y.; Hu, Y.; Zhang, T. Preparation of phytic acid and its characteristics as copper inhibitor. Energy Procedia 2012, 17, 1641–1647. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Guo, X.; Song, P.; Pan, Y.; Wang, H.; Wen, Y.; Yang, H. Phytic acid adsorption on the copper surface: Observation of electrochemistry and Raman spectroscopy. Appl. Surf. Sci. 2013, 276, 167–173. [Google Scholar] [CrossRef]
- Shen, S.; Du, J.; Guo, X.; Wen, Y.; Yang, H. Adsorption behavior of pH-dependent phytic acid micelles at the copper surface observed by Raman and electrochemistry. Appl. Surf. Sci. 2015, 327, 116–121. [Google Scholar] [CrossRef]
- Wei, Y. Galvanized steel sheet passivating agent and preparation method thereof. CN Patent 104451626A, 25 March 2015. [Google Scholar]
- Liu, G.M.; Yang, L.; Du, N. Study of molybdate-phytic acid passivating on galvanized steel. Corros. Eng. Sci. Technol. 2011, 46, 542–546. [Google Scholar] [CrossRef]
- El-Sayed, A.-R.; Harm, U.; Mangold, R.-M.; Furbeth, W. Protection of galvanized steel from corrosion in NaCl solution by coverage with phytic acid SAM modified with same cations and thiols. Corros. Sci. 2012, 55, 339–350. [Google Scholar] [CrossRef]
- Chirkunov, A.A.; Zheludkevich, M.L. Corrosion inhibition of ELEKTRON WE43 magnesium alloy in NaCl solution. Int. J. Corros. Scale Inhib. 2018, 7, 376–389. [Google Scholar] [CrossRef]
- Andreeva, N.P.; Kuznetsov, Y.I.; Semiletov, A.M.; Chirkunov, A.A. The formation of passive films on magnesium in alkaline solutions and adsorption of anions of organic acids on them. Prot. Met. Phys. Chem. Surf. 2018, 54, 1338–1345. [Google Scholar] [CrossRef]
- Pan, C.; Wang, X.; Behnamian, Y.; Wu, Z.; Qin, Z.; Xia, D.; Hu, W. Monododecyl phosphate film on LY12 aluminum alloy: pH-controlled self-assembly and corrosion resistance. J. Electrochem. Soc. 2020, 167, 161510. [Google Scholar] [CrossRef]
- Xia, D.; Pan, C.; Qin, Z.; Fan, B.; Song, S.; Jin, W.; Hu, W. Covalent surface modification of LY12 aluminum alloy surface by self-assembly dodecyl phosphate film towards corrosion protection. Prog. Org. Coat. 2020, 143, 105638. [Google Scholar] [CrossRef]
- Hill, J.-A.; Markley, T.; Forsyth, M.; Howlett, P.C.; Hinton, B.R.W. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate. J. Alloy. Compd. 2011, 509, 1683–1690. [Google Scholar] [CrossRef]
- Semiletov, A.M.; Chirkunov, A.A.; Kuznetsov, Y.I. Protection of D16 alloy against corrosion in neutral aqueous solutions and in an aggressive atmosphere using organic inhibitors. Prot. Met. Phys. Chem. Surf. 2020, 56, 1285–1292. [Google Scholar] [CrossRef]
- Nan, H.Y.; Zhu, L.Q.; Liu, H.C.; Li, W.P. Phytate as efficient and green corrosion inhibitor for NdFeB magnets in aqueous salt solution. Corros. Eng. Sci. Technol. 2015, 50, 589–594. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, G.; Wang, J.; Zhao, S.; Zhao, Y.; Huang, N. Covalent immobilization of phytic acid on Mg by alkaline pre-treatment: Corrosion and degradation behavior in phosphate buffered saline. Corros. Sci. 2013, 75, 280–286. [Google Scholar] [CrossRef]
- Ou, J.; Chen, X. Corrosion resistance of phytic acid/Ce(III) nanocomposite coating with superhydrophobicity on magnesium. J. Alloys Compd. 2019, 787, 145–151. [Google Scholar] [CrossRef]
- Guo, X.; Du, K.; Guo, Q.; Wang, Y.; Wang, R.; Wang, F. Effect of phytic acid on the corrosion inhibition of composite film coated on Mg-Gd-Y alloy. Corros. Sci. 2013, 76, 129–141. [Google Scholar] [CrossRef]
- Saji, V.S. Review of rare-earth-based conversion coatings for magnesium and its alloys. J. Mater. Res. Technol. 2019, 8, 5012–5035. [Google Scholar] [CrossRef]
- Calado, L.M.; Taryba, M.G.; Morozov, Y.; Carmezim, M.J. Novel smart and self-healing cerium phosphate-based corrosion inhibitor for AZ31 magnesium alloy. Corros. Sci. 2020, 170, 108648. [Google Scholar] [CrossRef]
- Demadis, K.D.; Papadaki, M.; Varouchas, D. Metal phosphonate anti-corrosion coatings. In Green Corrosion Chemistry and Engineering: Opportunities and Challenges; Sharma, S.K., Ed.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2012; Chapter 9; pp. 243–296. [Google Scholar] [CrossRef]
- Amjad, Z. (Ed.) The Science and Technology of Industrial Water Treatment; CRC Press: Boca Raton, FL, USA, 2010; p. 530. [Google Scholar] [CrossRef]
- Amjad, Z.; Demadis, K. Mineral Scales and Deposits: Scientific and Technological Perspectives; Elsevier: Waltham, MA, USA, 2015. [Google Scholar]
- Chirkunov, A.A.; Kuznetsov, Y.I. Corrosion inhibitors in cooling water systems. In Mineral Scales and Deposits: Scientific and Technological Perspectives; Amjad, Z., Demadis, K., Eds.; Elsevier: Waltham, MA, USA, 2015; Chapter 4; pp. 85–105. [Google Scholar]
- Xianzong, Y.; Yanbo, C. Formula of Low-Phosphorus Corrosion Inhibitor for Circulating Cooling Water in Iron and Steel Industry. CN Patent 113104996A, 13 July 2021. [Google Scholar]
- Li, Z.; Qin, J.; Qi, H.; Ai, Y.; Wang, X.; Li, Z.; Wu, Z.; Wang, C.; Gu, X.; Gao, W.; et al. Scale and Corrosion Inhibitor Applied to Circulating Cooling Water System of Coal Gasification Chemical Island Equipment. CN Patent 112939241A, 11 June 2021. [Google Scholar]
- Zhao, J.; Zhang, G.; Wang, Y.; Nie, D.; Hong, Y.; Lang, X.; Yan, H.; Yin, X. Scale and Corrosion Inhibitor and Preparation Method and Application Thereof. CN Patent 112661277A, 16 April 2021. [Google Scholar]
- Tsirulnikova, N.V.; Driker, B.N.; Fetisova, T.S.; Kuznetsov, Y.I.; Protazanov, A.A. Organophosphonate Composition for Stabilization Water Treatment in Water Use Systems. RU Patent 2745822C1, 1 April 2021. [Google Scholar]
- Tsirulnikova, N.V.; Bolt, Y.V.; Dernovaya, E.S.; Driker, B.N.; Fetisova, T.S. Creation and study of formulations as inhibitors of metal corrosion and scaling for stabilization water treatment in water utilization systems (A review). Int. J. Corros. Scale Inhib. 2016, 5, 66–86. [Google Scholar] [CrossRef]
- Demadis, K.D.; Stavgianoudaki, N. Structural diversity in metal phosphonate frameworks: Impact on applications. In Metal Phosphonate Chemistry: From Synthesis to Applications, Royal Society of Chemistry; Clearfield, A., Demadis, K., Eds.; Royal Society of Chemistry: London, UK, 2012; Chapter 14; pp. 438–492. [Google Scholar]
- Kavipriya, K.; Rajendran, S.; Sathiyabama, J.; SuriyaPrabha, A. Critical review of corrosion inhibition by phosphonic acids. Eur. Chem. Bull. 2012, 1, 366–374. [Google Scholar]
- Kuznetsov, Y.I. Current state of the theory of metal corrosion inhibition by phosphonates. In Proceedings of the 10th European Symposium on Corrosion and Scale Inhibitors, Ferrara, Italy, 29 August–2 September 2005; Volume 1, pp. 63–78. [Google Scholar]
- Kuznetsov, Y.I. Current state of the theory of metal corrosion inhibition. Prot. Met. 2002, 38, 103–111. [Google Scholar] [CrossRef]
- Moschona, A.; Plesu, N.; Mezei, G.; Thomas, A.G.; Demadis, K.D. Corrosion protection of carbon steel by tetraphosphonates of systematically different molecular size. Corros. Sci. 2018, 145, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Visa, A.; Plesu, N.; Maranescu, B.; Ilia, G.; Borota, A.; Crisan, L. Combined experimental and theoretical insights into the corrosion inhibition activity on carbon steel iron of phosphonic acids. Molecules 2021, 26, 135. [Google Scholar] [CrossRef]
- Migahed, M.A.; Alsabagh, A.M.; Abdou, M.I.; Abdel-Rahman, A.A.-H.; Aboulrous, A.A. Synthesis a novel family of phosphonate surfactants and their evaluation as corrosion inhibitors in formation water. J. Mol. Liq. 2019, 281, 528–541. [Google Scholar] [CrossRef]
- Telegdi, J. N-Substituted amino acids as multifunctional additives used in cooling water. Part II: N-carboxymethyl and phosphonomethyl amino acids. Int. J. Corros. Scale Inhib. 2016, 5, 183–189. [Google Scholar] [CrossRef]
- Nishigori, H.; Kamitono, T. Method for Inhibiting Local Corrosion of Metal in Aqueous System. JP Patent 2019052362A, 4 April 2019. [Google Scholar]
- Chausov, F.F. Protection Method of Steel Equipment against Corrosion in Water Media. RU Patent 2499083, 20 November 2013. [Google Scholar]
- Maranescu, B.; Plesu, N.; Visa, A. Phosphonic acid vs phosphonate metal organic framework influence on mild steel corrosion protection. Appl. Surf. Sci. 2019, 497, 143734. [Google Scholar] [CrossRef]
- Yan, R.; Gao, X.; He, W.; Chen, T.; Ma, H. 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP)-Zn complex thin films for the corrosion protection of cold-rolled steel (CRS). Corros. Sci. 2019, 157, 116–125. [Google Scholar] [CrossRef]
- Yan, R.; He, W.; Zhai, T.; Ma, H. Corrosion protective performance of amino trimethylenephosphonic acid-metal complex layers fabricated on the cold-rolled steel substrate via one-step assembly. Appl. Surf. Sci. 2018, 442, 264–274. [Google Scholar] [CrossRef]
- Zhai, T.; Yan, R.; He, W.; Ma, H. Corrosion protection performance of Mo-incorporated 2-hydroxyphosphonoacetic acid-Zn2+ complex conversion layers on the cold-rolled steel substrate. Surf. Coat. Technol. 2018, 351, 50–59. [Google Scholar] [CrossRef]
- Wang, D.; Yang, J.; Xue, F.; Wang, J.; Hu, W. Experimental and computational study of zinc coordinated 1-hydroxyethylidene-1,1-diphosphonic acid self-assembled film on steel surface. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 126009. [Google Scholar] [CrossRef]
- Poshtiban, F.; Bahlakeh, G.; Ramezanzadeh, B. A detailed computational exploration and experimental surface/electrochemical analyses of mild steel functionalized by zinc-aminotris methylene phosphonic acid complex film. Appl. Surf. Sci. 2019, 495, 143582. [Google Scholar] [CrossRef]
- Prabakaran, M.; Vadivu, K.; Ramesh, S.; Periasamy, V. Corrosion protection of mild steel by a new phosphonate inhibitor system in aqueous solution. Egypt. J. Pet. 2014, 23, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Kavipriya, K.; Sathiyabama, J.; Rajendran, S.; Nagalakshmi, R. The inhibitive effect of diethylenetriaminepentamethylenephosphonic acid on the corrosion of carbon steel in sea water. Eur. Chem. Bull. 2013, 2, 423–429. [Google Scholar]
- Franco, J.P.; Josimar, R. Hydroxyethylidene-1,1-diphosphonic acid (HEDP) as corrosion inhibitor of AISI 304 stainless steel in medium containing chloride and sulfide ions in presence of different metallic cations. Adv. Chem. Eng. Sci. 2020, 10, 225–257. [Google Scholar] [CrossRef]
- Hatchman, K.; Collins, G.; Jones, C. Corrosion Inhibitors. U.S. Patent 2016326424A1, 10 November 2016. [Google Scholar]
- Chausov, F.F.; Somov, N.V.; Zakirova, R.M.; Alalykina, A.A.; Reshetnikov, S.M.; Petrov, V.G.; Aleksandrov, V.A.; Shumilova, M.A. Linear organic–Inorganic heterometallic copolymers [(Fe, Zn)(H2O)3{NH(CH2PO3H)3}]n and [(Fe, Cd)(H2O)3{NH(CH2PO3H)3}]n: The missing link in the mechanism of inhibiting local steel corrosion with phosphonates. Bull. Russ. Acad. Sci. Phys. 2017, 81, 365–367. [Google Scholar] [CrossRef]
- Chausov, F.F.; Kazantseva, I.S.; Reshetnikov, S.M.; Lomova, N.V.; Maratkanova, A.N.; Somov, N.V. Zinc and cadmium nitrilotris(methylenephosphonate)s: A comparative study of different coordination Structures for corrosion inhibition of steels in neutral aqueous media. Chem. Sel. 2020, 5, 13711–13719. [Google Scholar] [CrossRef]
- Chausov, F.F.; Lomova, N.V.; Isupov, N.Y.; Shabanova, I.N.; Reshetnikov, S.M. The effect of chemiadsorbed layers of nitrilotris-methylenephosphonate complexes of lead(II) with bridging and chelate coordination on the electrochemical behavior of a steel 20 surface. thermochemical induction of secondary inhibition. Prot. Met. Phys. Chem. Surf. 2019, 55, 142–147. [Google Scholar] [CrossRef]
- Somov, N.V.; Chausov, F.F.; Zakirova, R.M.; Reshetnikov, S.M.; Shishkin, A.S.; Shumilova, M.A.; Aleksandrov, V.A.; Petrov, V.G. Chelate Complexes of lead(II) with Nitrilotris(methylenephosphonic) acid [Pb{μ5-NH(CH2PO3H)3}] and Na4[Pb2(H2O)2{μ3-N(CH2PO3)3H2}2]·10H2O: Synthesis, structure, and asymmetry of lone 6s pair. Crystallogr. Rep. 2017, 62, 857–867. [Google Scholar] [CrossRef]
- Lomova, N.V.; Chausov, F.F.; Shabanova, I.N. Effect of the Structure of lead(II) nitrilo-tris-methylenephosphonic acid complexes on the formation of a protective layer of corrosion inhibitor on a surface of carbon steel. Bull. Russ. Acad. Sci. Phys. 2018, 82, 884–887. [Google Scholar] [CrossRef]
- Chausov, F.F.; Lomova, N.V.; Somov, N.V.; Reshetnikov, S.M.; Vorob’yov, V.L.; Kazantseva, I.S. Mixed copper-nickel nitrilo-tris-methylenephosphonic acid complexes: Synthesis, structure, and effect on the corrosion-electrochemical behavior of carbon steel. Bull. Russ. Acad. Sci. Phys. 2020, 84, 1119–1122. [Google Scholar] [CrossRef]
- Liu, L.; Cao, T.-T.; Zhang, Q.-W.; Cui, C.-W. Organic phosphorus compounds as inhibitors of corrosion of carbon steel in circulating cooling water: Weight loss method and thermodynamic and quantum chemical studies. Adv. Mater. Sci. Eng. 2018, 2018, 1653484. [Google Scholar] [CrossRef] [Green Version]
- Appa Rao, B.V.; Venkateswara Rao, M.; Srinivasa Rao, S.; Sreedhar, B. Surface Analysis of carbon steel protected from corrosion by a new ternary inhibitor formulation containing phosphonated glycine, Zn2+ and citrate. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Kalyani, D.S.; Rao, S.S.; Kumar, K.C.; Kiran, S.R.; Sreedhar, B.; Rao, B.A. Evaluation of surface/solution interface on carbon steel in contact with a phosphonate-based ternary corrosion inhibitor system. Trans. Indian Inst. Met. 2017, 70, 2497–2508. [Google Scholar] [CrossRef]
- Sarada Kalyani, D.; Srinivasa Rao, S.; Sarath Babu, M.; Appa Rao, B.V.; Sreedhar, B. Electrochemical and surface analytical studies of carbon steel protected from corrosion in a low chloride environment containing a phosphonate-based inhibitor. Res. Chem. Intermed. 2015, 41, 5007–5032. [Google Scholar] [CrossRef]
- Lyublinski, E.Y.; Kuznetsov, Y.I.; Schultz, M.; Vaks, Y. Corrosion protection of tank product side bottoms. Int. J. Corros. Scale Inhib. 2013, 2, 150–161. [Google Scholar] [CrossRef]
- Zinchenko, G.V.; Kuznetsov, Y.I. Effect of oxidants on protection of mild steel by zinc hydroxyethylidenediphosphonate. Prot. Met. 2005, 41, 167–172. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Zinchenko, G.V.; Kazanskii, L.P.; Andreeva, N.P.; Makarychev, Y.B. On the passivation of iron in aqueous solutions of zink 1-hydroxyethan-1,1-diphosphonate. Prot. Met. 2007, 43, 648–655. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Red’kina, G.V.; Chirkunov, A.A. Protection from corrosion and deposits for water-cooling systems in oil processing plants. Chem. Pet. Eng. 2008, 44, 296–301. [Google Scholar] [CrossRef]
- Queffélec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev. 2012, 112, 3777–3807. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Hu, W. Phosphonic Acid-Silane Composite Film on Surface of Carbon Steel and Preparation Method and Application of Phosphonic Acid-Silane Composite Film. CN Patent 112553609A, 26 March 2021. [Google Scholar]
- Grossmann, V.; Klüppel, I.; Köster, C.; Reusmann, G.; Roth, M. Method for Production of a Substrate with a Chromium VI Free and Cobalt-Free Passivation. ES Patent 2732264T3, 21 November 2019. [Google Scholar]
- Berner, M.E.; Guèrin, M.; Frauenrath, H.; Yeo, R.; Bomal, E. Aluminum Alloy Pretreatment with Phosphorus-Containing Organic Acids for Surface Modification. WO Patent 2021252568A1, 16 December 2021. [Google Scholar]
- Chirkunov, A.A.; Chugunov, D.O.; Red’kina, G.V.; Kuznetsov, Y.I. The influence of steel surface modifying with zinc complexes of phosphonic acids on the efficiency of its passivation by organic inhibitors. Russ. J. Electrochem. 2019, 55, 115–121. [Google Scholar] [CrossRef]
- Chugunov, D.O.; Chirkunov, A.A.; Kuznetsov, Y.I. The effect of trialkoxysilanes on the passivation of mild steel surface modified with a zinc–phosphonate solution. Int. J. Corros. Scale Inhib. 2020, 9, 757–770. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Redkina, G.V.; Filippov, I.A.; Chirkunov, A.A. Passivation of Metal Surfaces for Protection against Atmospheric Corrosion. RU Patent 2468125C1, 27 November 2012. [Google Scholar]
- Telegdi, J. Formation of self-assembled anticorrosion films on different metals. Materials 2020, 13, 5089. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I. Organic corrosion inhibitors: Where are we now? A review. Part IV. Passivation and the role of mono- and diphosphonates. Int. J. Corros. Scale Inhib. 2017, 6, 384–427. [Google Scholar] [CrossRef]
- Zhao, R.; Rupper, P.; Gaan, S. Recent development in phosphonic acid-based organic coatings on aluminum. Coatings 2017, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Prabakaran, M.; Venkatesh, M.; Ramesh, S.; Periasamy, V. Corrosion inhibition behavior of propyl phosphonic acid-Zn2+ system for carbon steel in aqueous solution. Appl. Surf. Sci. 2013, 276, 592–603. [Google Scholar] [CrossRef]
- Chirkunov, A.A.; Gorbachev, A.S.; Kuznetsov, Y.I.; Shikhaliev, K.S. Inhibition of anodic dissolution of lowcarbon steel with alkyl phosphonates in borate buffer solution. Prot. Met. Phys. Chem. Surf. 2012, 48, 769–772. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Chirkunov, A.A.; Gorbachev, A.S.; Andreeva, N.P. Passivation of mild steel by sodium octylphosphonate in neutral aqueous solution. Int. J. Corr. Scale Inhib. 2017, 6, 318–332. [Google Scholar] [CrossRef]
- Zang, D.; Pan, T.; Dong, J.; Xun, X. Method of preparing superhydrophobic surface on magnesium alloy substrate. AU Patent 2021101783A4, 3 June 2021. [Google Scholar]
- Paszternák, A.; Stichleutner, S.; Felhősi, I.; Keresztes, Z.; Nagy, F.; Kuzmann, E.; Vértes, A.; Homonnay, Z.; Peto, G.; Kálmán, E. Surface modification of passive iron by alkyl-phosphonic acid layers. Electroch. Acta. 2007, 53, 337–345. [Google Scholar] [CrossRef]
- Paszternák, A.; Felhősi, I.; Pászti, Z.; Kuzmann, E.; Vértes, A.; Kálmán, E.; Nyikos, L. Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers. Electroch. Acta. 2010, 55, 804–812. [Google Scholar] [CrossRef]
- Zartsyn, I.D.; Shchukin, V.B.; Shikhaliev, K.S. Formation of ultrathin protective coatings on lowcarbon steel from borate buffer-dodecylphosphonic acid solution. Prot. Met. Phys. Chem. Surf. 2010, 46, 775–781. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Song, C. Corrosion inhibition of low phosphonic multipolymer water treatment agent of industry circulating on brass in aqueous solution. J. Univ. Sci. Technol. Beijing 2006, 13, 164–168. [Google Scholar] [CrossRef]
- Kozlica, D.K.; Kokalj, A.; Milošev, I. Synergistic effect of 2-mercaptobenzimidazo-le and octylphosphonic acid as corrosion inhibitors for copper and aluminium—An electrochemical, XPS, FTIR and DFT study. Corros. Sci. 2021, 182, 109082. [Google Scholar] [CrossRef]
- Kozlica, D.K.; Ekar, J.; Kovač, J.; Milošev, I. Roles of chloride ions in the formation of corrosion protective films on copper. J. Electrochem. Soc. 2021, 168, 031504. [Google Scholar] [CrossRef]
- Aramaki, K. The inhibition effects of chromate-free, anion inhibitors on corrosion of zinc in aerated 0.5 M NaCl. Corros. Sci. 2001, 43, 591–604. [Google Scholar] [CrossRef]
- Zhang, B.; Kong, T.; Xu, W.; Su, R.; Gao, Y.; Cheng, G. Surface functionalization of zinc oxide by carboxyalkylphosphonic acid self-assembled monolayers. Langmuir 2010, 26, 4514–4522. [Google Scholar] [CrossRef] [PubMed]
- Redkina, G.V.; Sergienko, A.S.; Kuznetsov, Y.I. On the possibility of inhibition of zinc corrosion by phosphonates and formulations on their basis. Int. J. Corros. Scale Inhib. 2019, 8, 689–701. [Google Scholar] [CrossRef]
- Glover, C.F.; Williams, G. Inhibition of localized corrosion of hot dip galvanized steel by phenylphosphonic acid. J. Electrochem. Soc. 2017, 164, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, Y.I.; Redkina, G.V.; Andreeva, N.P. Adsorption from neutral solutions of sodium alkylphosphonates on zinc and its passivation. Russ. J. Phys. Chem. A 2018, 92, 2548–2555. [Google Scholar] [CrossRef]
- Redkina, G.V.; Kuznetsov, Y.I.; Andreeva, N.P.; Arkhipushkin, I.A.; Kazansky, L.P. Features of zinc passivation by sodium dodecylphosphonate in a neutral aqueous solution. Corros. Sci. 2020, 168, 108554. [Google Scholar] [CrossRef]
- Redkina, G.V.; Sergienko, A.S.; Kuznetsov, Y.I. Two-stage passivation of zinc by solutions of sodium dodecylphosphonate and trialkoxysilanes. Russ. J. Phys. Chem. A 2021, 57, 1370–1380. [Google Scholar] [CrossRef]
- Redkina, G.V.; Sergienko, A.S.; Kuznetsov, Y.I. Hydrophobic and anticorrosion properties of thin phosphonate-siloxane films formed on a laser textured zinc surface. Int. J. Corros. Scale Inhib. 2020, 9, 1550–1563. [Google Scholar] [CrossRef]
- Frenier, W.W.; Hill, D.G. Green inhibitors-development application for aqueous systems. In Proceedings of the Volume 3 of Reviews on Corrosion Inhibitor Science Technology, Corrosion-2004 Symposium, New Orleans, LA, USA, 28 March–1 April 2004; pp. 6/1–6/39. [Google Scholar]
- Deyab, M.A. Adsorption and inhibition effect of Ascorbyl palmitate on corrosion of carbon steel in ethanol blended gasoline containing water as a contaminant. Corros. Sci. 2014, 80, 359–365. [Google Scholar] [CrossRef]
- Taheri, P.; Wielant, J.; Hauffman, T.; Flores, J.R.; Hannour, F.; de Wit, J.H.W.; Mol, J.M.C.; Terryn., H. A comparison of the interfacial bonding properties of carboxylic acid functional groups on zinc and iron substrates. Electrochim. Acta 2011, 56, 1904–1911. [Google Scholar] [CrossRef]
- Taheri, P.; Pohl, K.; Grundmeier, G.; Flores, J.R.; Hannour, F.; de Wit, J.H.W.; Mol, M.C.; Terryn, H. Effects of surface treatment and carboxylic acid and anhydride molecular dipole moments on the volta potential values of zinc surfaces. J. Phys. Chem. C 2013, 117, 1712–1721. [Google Scholar] [CrossRef]
- Emel’yanenko, A.M.; Boinovich, L.B. Analysis of wetting as an efficient method for studying the characteristics of coatings and surfaces and the processes that occur on them: A review. Inorg. Mater. 2011, 47, 1667–1675. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Khorsand, S.; Sokhanvar, S.; Kaboli, A. Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability. Arab. J. Chem. 2020, 13, 1763–1802. [Google Scholar] [CrossRef]
- Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog. Org. Coat. 2020, 142, 105557. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Recent advances in the potential applications of bioinspired superhydrophobic materials. J. Mater. Chem. A 2014, 2, 16319–16359. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Abdullah, A.M.; Younan, N.A. Corrosion behavior of superhydrophobic surfaces: A review. Arab. J. Chem. 2015, 8, 749–765. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Zhang, H.; Shao, Y.; Zhang, H.; Zhu, J. Recent progresses of superhydrophobic coatings in different application fields: An overview. Coatings 2021, 11, 116. [Google Scholar] [CrossRef]
- Jeevahan, J.; Chandrasekaran, M.; Britto Joseph, G.; Durairaj, R.B.; Mageshwaran, G. Superhydrophobic surfaces: A review on fundamentals, applications and challenges. J. Coat. Technol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Vazirinasa, E.; Jafari, R.; Momen, G. Application of superhydrophobic coatings as a corrosion barrier: A review. Surf. Coat Technol. 2018, 341, 40–56. [Google Scholar] [CrossRef]
- Wang, N.; Xiong, D.; Deng, Y.; Shi, Y.; Wang, K. Mechanically robust superhydrophobic steel surface with antiicing, UV-durability and corrosion resistance Properties. ACS Appl. Mater. Inter. 2015, 7, 6260–6272. [Google Scholar] [CrossRef]
- Kim, J.-H.; Mirzaei, A.; Hyoun, W.; Kim, S.S. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching. Appl. Surf. Sci. 2018, 439, 598–604. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Semiletov, A.M.; Chirkunov, A.A.; Arkhipushkin, I.A.; Kazansky, L.P.; Andreeva, N.P. Protecting aluminum from atmospheric corrosion via surface hydrophobization with stearic acid and trialkoxysilanes. Russ. J. Phys. Chem. A 2018, 92, 621–629. [Google Scholar] [CrossRef]
- Semiletov, A.M.; Chirkunov, A.A.; Kuznetsov, Y.I. Protection of alloy AD31 from corrosion by adsorption layers of trimethoxysilanes and stearic acid. Mater. Corros. 2020, 71, 77–85. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Zhang, J.; Liu, J.; Han, Z.; Ren, L. Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate. Corros. Sci. 2015, 94, 190–196. [Google Scholar] [CrossRef]
- Figueira, R.B.; Silva, C.J.R.; Pereira, E.V. Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: A review of recent progress. J. Coat. Technol. Res. 2014, 12, 158–161. [Google Scholar] [CrossRef]
- Qing, Y.; Yang, C.; Hu, C.; Zheng, Y.; Liu, C. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance. Appl. Surf. Sci. 2015, 326, 48–54. [Google Scholar] [CrossRef]
- Chang, K.-C.; Lu, H.-I.; Peng, C.-W.; Lai, M.-C.; Hsu, S.-C.; Hsu, M.-H.; Tsai, Y.-K.; Chang, C.-H.; Hung, W.-I.; Wei, Y. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings. ACS Appl. Mater. Inter. 2013, 5, 1460–1467. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Gnedenkov, S.V.; Alpysbaeva, D.A.; Egorkin, V.S.; Emelyanenko, A.M.; Sinebryukhov, S.L.; Zaretskaya, A.K. Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers. Corros. Sci. 2012, 55, 238–245. [Google Scholar] [CrossRef]
- Emelyanenko, A.M.; Shagieva, F.M.; Domantovsky, A.G.; Boinovich, L.B. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion. Appl. Surf. Sci. 2015, 332, 513–517. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, Y.; Jin, J.; Tian, L.; Han, Z.; Ren, L. Facile fabrication of biomimetic superhydrophobic surface with anti-frosting on stainless steel substrate. Appl. Surf. Sci. 2015, 355, 1238–1244. [Google Scholar] [CrossRef]
- Ta, V.D.; Dunn, A.; Wasley, T.J.; Li, J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Esenturk, E.; Connaughton, C.; Shephard, J.D. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Appl. Surf. Sci. 2016, 365, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Giron, A.; Romano, J.M.; Liang, Y.; Dashtbozorg, B.; Dong, H.; Penchev, P.; Dimov, S.S. Combined surface hardening and laser patterning approach for functionalising stainless steel surfaces. Appl. Surf. Sci. 2018, 439, 516–524. [Google Scholar] [CrossRef]
- Shel, E.Y.; Vigdorovich, V.I.; Tsygankova, L.E.; Vigdorowitsch, M.V. Influence of the acidity of the medium and the activity of chloride ions on kinetics of partial electrode reactions on steel with a superhydrophobic surface in chloride media. Int. J. Corros. Scale Inhib. 2018, 7, 528–541. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Jiang, Z.; Li, Y.; Zhang, Z. Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment. Corr. Sci. 2021, 180, 109186. [Google Scholar] [CrossRef]
- Jagdheesh, R.; Diaz, M.; Marimuthu, S.; Ocana, J.L. Robust fabrication of m-patterns with tunable and durable wetting properties: Hydrophilic to ultrahydrophobic via a vacuum process. J. Mater. Chem. A 2017, 5, 7125–7136. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, B.; Qu, M.; Zhang, J.; He, D. Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid. Appl. Surf. Sci. 2008, 254, 2009–2012. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, J.; Chen, B.; Liu, C.; Zhang, M.; Li, C. Fabrication of superhydrophobic textured steel surface for anti-corrosion and tribological properties. Appl. Surf. Sci. 2015, 359, 905–910. [Google Scholar] [CrossRef]
- Polyakov, N.A.; Botryakova, I.G.; Glukhov, V.G.; Red’kina, G.V.; Kuznetsov, Y.I. Formation and anticorrosion properties of superhydrophobic zinc coatings on steel. Chem. Eng. J. 2021, 421, 127775. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, F.; Hu, A.; Li, M. A facile process for preparing superhydrophobic nickel films with stearic acid. Surf. Coat. Technol. 2013, 231, 88–92. [Google Scholar] [CrossRef]
- Xiang, T.; Ding, S.; Li, C.; Zheng, S.; Hu, W.; Wang, J.; Liu, P. Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel. Mater. Des. 2017, 114, 65–72. [Google Scholar] [CrossRef]
- Liu, T.; Lau, K.T.; Chen, S.G.; Cheng, S.; Yin, Y.S. Super-hydrophobic surfaces improve corrosion resistance of Fe3Al-type intermetallic in seawater. Adv. Mat. Res. 2008, 47–50, 173–176. [Google Scholar] [CrossRef]
- Fushs-Godec, R.; Žerjav, G. Corrosion resistance of high-level-hydrophobic layers in combination with Vitamin E—(α-tocopherol) as green inhibitor. Corr. Sci. 2015, 97, 7–16. [Google Scholar] [CrossRef]
- Žerjav, G.; Lanzutti, A.; Andreatta, F.; Fedrizzi, L.; Milošev, I. Characterization of self-assembled layers made with stearic acid, benzotriazole, or 2-mercaptobenzimidazole on surface of copper for corrosion protection in simulated urban rain. Mater. Corros. 2017, 68, 30–41. [Google Scholar] [CrossRef]
- Wang, P.; Qiu, R.; Zhang, D.; Lin, Z.; Hou, B. Fabricated super-hydrophobic film with potentiostatic electrolysis method on copper for corrosion protection. Electrochim. Acta 2010, 56, 517–522. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, D. Simple and convenient method for preparing super-hydrophobic film on surface of metal matrix. CN Patent 101935859A, 5 January 2011. [Google Scholar]
- Yuan, Z.; Wang, X.; Bin, J.; Wang, M.; Peng, C.; Xing, S.; Xiao, J.; Zeng, J.; Chen, H. Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly. Appl. Phys. A 2014, 116, 1613–1620. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Z.; Liang, J.; Wang, Y.; Chen, H. Preparation of superhydrophobic films on copper substrate for corrosion protection. Surf. Coat. Technol. 2014, 244, 487582. [Google Scholar] [CrossRef]
- Jie, H.; Xu, Q.; Wei, L.; Min, Y. Etching and heating treatment combined approach for superhydrophobic surface on brass substrates and the consequent corrosion resistance. Corros. Sci. 2016, 102, 251–258. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Q.; Han, J.; Chen, X.; Min, Y. A novel combination approach for the preparation of superhydrophobic surface on copper and the consequent corrosion resistance. Corros. Sci. 2016, 110, 105–113. [Google Scholar] [CrossRef]
- Dou, W.; Wang, P.; Wu, J.; Gu, T.; Zhang, D. Strong acid resistance from electrochemical deposition of WO3 on superhydrophobic CuO-coated copper surface. Mater. Corros. 2018, 69, 978–984. [Google Scholar] [CrossRef]
- He, G.; Wang, K. The super hydrophobicity of ZnO nanorods fabricated by electrochemical deposition method. Appl. Surf. Sci. 2011, 257, 6590–6594. [Google Scholar] [CrossRef]
- Kok, K.Y.; Ng, I.K.; Saidin, N.U.; Bustamam, F.K.A. Fabrication of ZnO nanostructures with self-cleaning functionality. Adv. Mater. Res. 2012, 364, 100–104. [Google Scholar] [CrossRef]
- Miculescu, F.; Rusen, E.; Mocanu, A.; Diacon, A.; Birjega, R. Hierarchical nanostructures of ZnO obtained in the presence of water soluble polymers. Powder Technol. 2013, 239, 56–58. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Xu, Z.; Wang, C.; Zhao, D. Electrodeposited ultraviolet-durable biomimetic super-hydrophobic surface. Ceram. Int. 2016, 42, 16424–16430. [Google Scholar] [CrossRef]
- Zhang, X.; Si, Y.; Mo, J.; Guo, Z. Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chem. Eng. J. 2017, 313, 1152–1159. [Google Scholar] [CrossRef]
- Chakradhar, R.P.S.; Dinesh Kumar, V. Water-repellent coatings prepared by modification of ZnO nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 94, 352–356. [Google Scholar] [CrossRef]
- Žerjav, G.; Milošev, I. Corrosion protection of brasses and zinc in simulated urban rain. Part I: Individual inhibitors benzotriazole, 2-mercaptobenzimidazole and stearic acid. Mater. Corros. 2015, 66, 1402–1413. [Google Scholar] [CrossRef]
- Žerjav, G.; Milošev, I. Corrosion protection of brasses and zinc in simulated urban rain. Part II: The combination of inhibitors benzotriazole and 2-mercaptobenzimidazole with stearic acid. Mater. Corros. 2016, 67, 92–103. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, D.; Qiu, R.; Hou, B. Super-hydrophobic film prepared on zinc as corrosion barrier. Corros. Sci. 2011, 53, 2080–2086. [Google Scholar] [CrossRef]
- Gao, H.; Lu, S.; Xu, W.; Szunerits, S.; Boukherroub, R. Controllable fabrication of stable superhydrophobic surfaces on iron substrates. RSC Adv. 2015, 5, 40657–40667. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, S.; Xu, W.; Cheng, Y. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates. Appl. Surf. Sci. 2016, 360, 904–914. [Google Scholar] [CrossRef]
- Jain, R.; Pitchumani, R. Fabrication and characterization of zinc-based superhydrophobic coatings. Surf. Coat. Technol. 2018, 337, 223–231. [Google Scholar] [CrossRef]
- Hu, C.; Xie, X.; Zheng, H.; Qing, Y.; Ren, K. Facile fabrication of superhydrophobic zinc coatings with corrosion resistance by electrodeposition process. New J. Chem. 2020, 44, 8890–8901. [Google Scholar] [CrossRef]
- Li, H.; Yu, S. A stable superamphiphobic Zn coating with self-cleaning property on steel surface fabricated via a deposition method. J. Taiwan Inst. Chem. E. 2016, 63, 411–420. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Hu, J.; Liu, E. A robust superhydrophobic Zn coating with ZnO nanosheets on steel substrate and its self-cleaning property. Thin Solid Film. 2018, 666, 100–107. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Han, X. Preparation of a biomimetic superhydrophobic ZnO coating on an X90 pipeline steel surface. New J. Chem. 2015, 39, 4860–4868. [Google Scholar] [CrossRef]
- Chen, C.; Yang, S.; Liu, L.; Xie, H.; Liu, H.; Zhu, L.; Xu, X. A green one-step fabrication of superhydrophobic metallic surfaces of aluminum and zinc. J. Alloy. Compd. 2017, 711, 506–513. [Google Scholar] [CrossRef]
- Li, C.; Ma, R.; Du, A.; Fan, Y.; Zhao, X.; Cao, X. Superhydrophobic film on hot-dip galvanized steel with corrosion resistance and self-cleaning properties. Metals 2018, 8, 687. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Zhou, F.; Yu, B.; Liu, W. Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification. Mater. Sci. Eng. A Struct. Mater. 2007, 452–453, 732–736. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Shao, X.; Han, M. Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal. Chem.—A Eur. J. 2005, 11, 3149–3154. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Z.; Liu, Y.; Qi, C.; Zhang, J. Reducing Friction and wear of a zinc substrate by combining a stearic acid overcoat with a nanostructured zinc oxide underlying film: Perspectives to super-hydrophobicity. Tribol Lett. 2011, 44, 327–333. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, W.; Guo, H.; Zheng, Y.; Dai, X.; Zhao, J.; Zhao, J.; Long, S. Method for preparing super hydrophobic film on surface of zinc substrate. CN Patent 102407220B, 12 February 2014. [Google Scholar]
- Mingalyov, P.G.; Lisichkin, G.V. Chemical modification of oxide surfaces with organophosphorus (V) acids and their esters. Russ. Chem. Rev. 2006, 75, 541–557. [Google Scholar] [CrossRef]
- Pujari, S.P.; Scheres, L.; Marcelis, A.T.M.; Zuilhof, H. Covalent surface modification of oxide surfaces. Angew. Chem. Int. Ed. 2014, 53, 6322–6356. [Google Scholar] [CrossRef] [PubMed]
- Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Mioč, E.K.; Gretić, Z.H.; Ćurković, H.O. Modification of cupronickel alloy surface with octadecylphosphonic acid self-assembled films for improved corrosion resistance. Corros. Sci. 2018, 134, 189–198. [Google Scholar] [CrossRef]
- Milošev, I.; Metikoš-Huković, M.; Petrović, Ž. Influence of preparation methods on the properties of self-assembled films of octadecylphosphonate on Nitinol: XPS and EIS studies. Mater. Sci. Eng. C 2012, 32, 2604–2616. [Google Scholar] [CrossRef]
- Roy, F.; Et Taouil, A.; Lallemand, F.; Melot, J.-M.; Roizard, X.; Heintz, O.; Moutarlier, V.; Hihn, J.-Y. Influence of modification time and high frequency ultrasound irradiation on self-assembling of alkylphosphonic acids on stainless steel: Electrochemical and spectroscopic studies. Ultrason. Sonochem. 2016, 28, 6469–6472. [Google Scholar] [CrossRef]
- Qu, J.; Chen, G.; Wang, H.; Nie, D. Effect of water content on corrosion inhibition behavior of self-assembled TDPA on aluminum alloy surface. Trans. Nonferrous Met. Soc. China. 2013, 23, 3137–3144. [Google Scholar] [CrossRef]
- Lim, M.S.; Smiley, K.J.; Gawalt, E.S. Thermally treated octadecylphosphonic acid thin film grown on SS316L and its stability in aqueous environment. Scanning 2010, 32, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Spori, D.M.; Venkataraman, N.V.; Tosatti, S.G.P.; Durmaz, F.; Spencer, N.D.; Zürcher, S. Influence of alkyl chain length on phosphate self-assembled monolayers. Langmuir 2007, 23, 8053–8060. [Google Scholar] [CrossRef]
- Hotchkiss, P.J.; Malicki, M.; Giordano, A.J.; Armstrong, N.R.; Marder, S.R. Characterization of phosphonic acid binding to zinc oxide. J. Mater. Chem. 2011, 21, 3107–3112. [Google Scholar] [CrossRef]
- Hoque, E.; DeRose, J.A.; Hoffmann, P.; Bhushan, B.; Mathieu, H.J. Alkylperfluorosilane self-assembled monolayers on aluminum: A comparison with alkylphosphonate self-assembled monolayers. J. Phys. Chem. 2007, 111, 3956–3962. [Google Scholar] [CrossRef]
- Tamaki, H.; Abe, S.; Yamagata, S.; Yoshida, Y.; Sato, Y. Self-assembled monolayer formation on a dental orthodontic stainless steel wire surface to suppress metal ion elution. Coatings 2020, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, S.C.; Iyer, K.S.; Luzinov, I.; Fadeev, A.Y. Self-assembled monolayers of organophosphonic acids supported on teeth. Colloids Surf. B 2003, 32, 235–243. [Google Scholar] [CrossRef]
- Cichomski, M.; Burnat, B.; Prowizor, M.; Jedrzejczak, A.; Batory, D.; Piwoński, I.; Kozłowski, W.; Szymanski, W.; Dudek, M. Tribological and corrosive investigations of perfluoro and alkylphosphonic self-assembled monolayers on Ti incorporated carbon coatings. Tribol. Int. 2019, 130, 359–365. [Google Scholar] [CrossRef]
- Zhang, C.X.; Liu, Y.H.; Wen, S.Z. Excellent tribological behavior of hexadecylphosphonic acid films formed on titanium alloy. Sci. China Technol. Sci. 2014, 57, 1816–1823. [Google Scholar] [CrossRef]
- Telegdi, J.; Szabó, T.; Románszki, L.; Pávai, M. The use of nano-/micro-layers, self-healing and slow-release coatings to prevent corrosion and biofouling. In Handbook of Smart Coatings for Materials Protection; Mekhlou, A.S.H., Ed.; Woodhead Pulishing: Cambridge, UK, 2014; pp. 135–182. [Google Scholar]
- Van Alsten, J.G. Self-assembled monolayers on engineering metals: Structure, derivatization, and utility. Langmuir 1999, 15, 7605–7614. [Google Scholar] [CrossRef]
- Abohalkuma, T.; Shawish, F.; Telegdi, J. Phosphonic acid derivatives used in self assembled layers against metal corrosion. Int. J. Corr. Scale Inhib. 2014, 3, 151–159. [Google Scholar] [CrossRef]
- Abohalkuma, T.; Telegdi, J. Corrosion protection of carbon steel by special phosphonic acid nano-layers. Mater. Corros. 2015, 66, 1382–1390. [Google Scholar] [CrossRef]
- Telegdi, J.; Abohalkuma, T. Influence of the nanolayer’ post-treatment on the anticorrosion activity. Int. J. Corros. Scale Inhib. 2018, 7, 352–365. [Google Scholar] [CrossRef]
- Mioč, E.K.; Ćurković, H.O. Corrosion protection by octadecylphosphonic acid in flow conditions. Chem. Biochem. Eng. Q. 2019, 33, 395–403. [Google Scholar] [CrossRef]
- Quiñones, R.; Raman, A.; Luliucci, R.J. Investigation of phosphonic acid surface modifications on zinc oxide nanoparticles under ambient conditions. Thin Solid Film. 2014, 565, 155–164. [Google Scholar] [CrossRef]
- Fontes, G.N.; Malachias, A.; Magalhes-Paniago, R.; Neves, B.R.A. Structural investigations of octadecylphosphonic acid multilayers. Langmuir 2003, 19, 3345–3349. [Google Scholar] [CrossRef]
- Kosian, M.; Smulders, M.M.J.; Zuilhof, H. Structure and long-term stability of alkylphosphonic acid monolayers on SS316L stainless steel. Langmuir 2016, 32, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.A.; Meltzer, C.; Braunschweig, B.; Peukert, W.; Boccaccini, A.R.; Virtanen, S. Functionalization of steel surfaces with organic acids: Influence on wetting and corrosion behavior. Appl. Surf. Sci. 2017, 404, 326–333. [Google Scholar] [CrossRef]
- Mioč, E.K.; Ćurković, H.O. Protective films of stearic and octadecylphosphonic acid formed by spray coating. J. Electrochem. Sci. Eng. 2020, 10, 161–175. [Google Scholar] [CrossRef]
- Fonder, G.; Minet, I.; Volcke, C.; Devillers, S.; Delhalle, J.; Mekhalif, Z. Anchoring of alkylphosphonic derivatives molecules on copper oxide surfaces. Appl. Surf. Sci. 2011, 257, 6300–6307. [Google Scholar] [CrossRef]
- Moine, M.M.; Roizard, X.; Melot, J.-M.; Carpentier, L.; Cornuault, P.-H.; Lallemand, F.; Rauch, J.-M.; Heintz, O.; Lallemand, S. Grafting and characterization of dodecylphosphonic acid on copper: Macro-tribological behavior and surface properties. Surf. Coat. Technol. 2013, 232, 567–574. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Y.; Zhang, Q.; Wang, Z.; Xu, Z.; Liu, C.; Zhang, J. Enhanced tribology durability of a self-assembled monolayer of alkylphosphonic acid on a textured copper substrate. Appl. Surf. Sci. 2012, 259, 147–152. [Google Scholar] [CrossRef]
- Zhao, W.; Göthelid, M.; Hosseinpour, S.; Johansson, M.; Li, G.; Leygraf, C.; Magnus Johnson, C. The nature of self-assembled octadecylphosphonic acid (ODPA) layers on copper substrates. J. Colloid Interface Sci. 2021, 581, 816–825. [Google Scholar] [CrossRef]
- Zhao, W.; Chang, T.; Leygraf, C.; Magnus Johnson, C. Corrosion inhibition of copper with octadecylphosphonic acid (ODPA) in a simulated indoor atmospheric environment. Corros. Sci. 2021, 192, 109777. [Google Scholar] [CrossRef]
- Kruszewski, K.M.; Renk, E.R.; Gawalt, E.S. Self-assembly of organic acid molecules on the metal oxide surface of a cupronickel alloy. Thin Solid Film. 2012, 520, 4326–4331. [Google Scholar] [CrossRef]
- Dai, C.; Liu, N.; Cao, Y.; Chen, Y.; Lua, F.; Feng, L. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter 2014, 10, 8116–8121. [Google Scholar] [CrossRef] [PubMed]
- Nothdurft, P.; Feldbacher, S.; Jakopic, G.; Mühlbacher, I.; Poetz, S.; Kern, W. Surface characterization of copper substrates modified with carboxyl terminated phosphonic acids. Int. J. Adhes. Adhes. 2018, 84, 143–152. [Google Scholar] [CrossRef]
- Bulusu, A.; Paniagua, S.A.; MacLeod, B.A.; Sigdel, A.K.; Berry, J.J.; Olson, D.C.; Marder, S.R.; Graham, S. Efficient modification of metal oxide surfaces with phosphonic acids by spray coating. Langmuir 2013, 29, 3935–3942. [Google Scholar] [CrossRef]
- Ostapenko, A.; Klöffel, T.; Meyer, B.; Witte, G. Formation and stability of phenylphosphonic acid monolayers on ZnO: Comparison of in situ and ex situ SAM preparation. Langmuir 2016, 32, 5029–5037. [Google Scholar] [CrossRef]
- Thissen, P.; Wielant, J.; Köyer, M.; Toews, S.; Grundmeier, G. Formation and stability of organophosphonic acid monolayers on ZnAl alloy coatings. Surf. Coat. Tehnol. 2010, 204, 3578–3584. [Google Scholar] [CrossRef]
- Pohl, K.; Otte, J.; Thissen, P.; Giza, M.; Shuhmacher, B.; Grundmeier, G. Adsorption and stability of self-assembled jrganophosphonic acid monolayers on plasma modified Zn-Mg-Al alloy surface. Surf. Coat. Tehnol. 2013, 218, 99–107. [Google Scholar] [CrossRef]
- Knust, S.; Kuhlmann, A.; Orive, A.G.; Arcos, T.; Grundmeier, G. Influence of dielectric barrier plasma treatment of ZnMgAl alloy-coated steel on the adsorption of organophosphonic acid monolayers. Surf Interface Anal. 2020, 52, 1077–1082. [Google Scholar] [CrossRef]
- Hu, Y.M.; Zhu, Y.; Zhou, W.; Wang, H.; Yi, J.H.; Xin, S.S.; He, W.J.; Shen, T. Dip-coating for dodecylphosphonic acid derivatization on aluminum surfaces: An easy approach to superhydrophobicity. J. Coat. Technol. Res. 2016, 13, 115–121. [Google Scholar] [CrossRef]
- Wang, J.; Gao, R.; Yang, L.; Liu, Q.; Zhang, H.; Liu, J.; Yang, W.; Liu, L. Method for building hydroxyapatite super-hydrophobic film on surface of magnesium alloy. CN Patent 103966578A, 6 August 2014. [Google Scholar]
- Li, M.; Xu, J.; Lu, Q. Creating superhydrophobic surfaces with flowery structures on nickel substrates through a wet-chemical-process. J. Mater. Chem. 2007, 17, 4772–4776. [Google Scholar] [CrossRef]
- Hua, W.; Kar, P.; Roy, P.; Bu, L.; Shoute, L.C.T.; Kumar, P.; Shankar, K. Resistance of superhydrophobic surface-functionalized TiO2 nanotubes to corrosion and intense cavitation. Nanomaterials 2018, 8, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jianrong, L.; Caizhen, F.; Ping, C.; Wenbin, Y.; Jianhua, L.; Hanchun, L.; Xianqiu, H.; Jie, C. Double-Layer Environment Protection Gas-Phase Rust-Proofing Film Membrane and Preparation Method Thereof. CN Patent 101249903A, 27 August 2008. [Google Scholar]
- Kuznetsov, Y.I.; Muradov, A.M.; Andreev, N.N.; Goncharova, O.A. Volatile Corrosion Inhibitor. RU Patent 2604164C1, 10 December 2016. [Google Scholar]
- Kuznetsov, Y.I.; Muradov, A.M.; Andreev, N.N.; Goncharova, O.A. Anticorrosion Material. RU Patent 2015127422A, 11 January 2017. [Google Scholar]
- Kuznetsov, Y.I.; Andreev, N.N.; Goncharova, O.A.; Luchkin, A.Y.; Kostina, E.A. Tabletted Volatile Corrosion Inhibitor. RU Patent 2759710C1, 17 November 2021. [Google Scholar]
- Valdez, B.; Schorr, M.; Cheng, N.; Beltran, E.; Beltran, R. Technological Applications of Volatile Corrosion Inhibitors. Corros. Rev. 2018, 36, 227–238. [Google Scholar] [CrossRef]
- Rozenfeld’, I.L.; Persiantseva, V.P. Inhibitors of Atmospheric Corrosion (Ingibitory Atmosfernoi Korrozii); Nauka: Moscow, Russia, 1985; 277p. (In Russian) [Google Scholar]
- Donovan, P.D. Protection of Metals from Corrosion in Storage and Transit; Halsted Press: Chichester, UK, 1986; p. 228. [Google Scholar]
- Kuznetsov, Y.I. The Role of Irreversible Adsorption in the Protective Action of Volatile Corrosion Inhibitors; CORROSION-98; NACE: San Diego, CA, USA, 1998; Paper No. 242. [Google Scholar]
- Andreev, N.N.; Kuznetsov, Y.I. Physicochemical aspects of the action of volatile corrosion inhibitors. Russ. Chem. Rev. 2005, 74, 685–695. [Google Scholar] [CrossRef]
- Bastidas, D.M.; Cano, E.; Mora, E.M. Volatile corrosion inhibitors: A review. AntiCorros. Meth. Mater. 2005, 52, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Andreev, N.N.; Kuznetsov, Y.I. Progress in the fundamental of volatile inhibitors of atmospheric corrosion of metals. In Reviews on Corrosion Inhibitor Science and Technology; V. 3.; NACE International: Houston, TA, USA, 2004; pp. II-1–II-18. [Google Scholar]
- Fiaud, C. Theory and practice of vapour phase inhibitors. In Working Party Report on Corrosion Inhibitors; The Institute of Materials: London, UK, 1994; pp. 1–12. [Google Scholar]
- Ansari, F.A.; Verma, C.; Siddiqui, Y.S.; Ebenso, E.E.; Quraishi, M.A. Volatile corrosion inhibitors for ferrous and non-ferrous metals and alloys: A review. Int. J. Corros. Scale Inhib. 2018, 7, 126–150. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Mahanwar, P.A. Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: A review. J. Coat. Technol. Res. 2018, 15, 789–807. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I. Triazoles as a class of multifunctional corrosion inhibitors. Overview. Part II. 1,2,3-benzotriazole, its derivatives. iron and steels. Int. J. Corros. Scale Inhib. 2020, 9, 780–811. [Google Scholar] [CrossRef]
- Kazanskii, L.P.; Silyaninov, I.A. XPES of 1,2,3-benzotriazole nanolayers formed o iron surface. Prot. Met. Phys. Chem. Surf. 2010, 46, 797–804. [Google Scholar] [CrossRef]
- Simonovič, A.T.; Tasič, Z.Z.; Radovanovič, M.B.; Petrovič Mihajlovič, M.B.; Antonijevič, M.M. Influence of 5-chlorobenzotriazole on inhibition of copper corrosion in acid rain solution. ACS Omega 2020, 5, 12832–12841. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Andreev, N.N.; Goncharova, O.A.; Agafonkin, A.V. On the protection of metals from corrosion when moisture condensation on them with volatile inhibitors. Korroz. Mater. Zashchita 2009, 10, 29–33. [Google Scholar]
- Rozenfeld’, I.L.; Persiantseva, V.P.; Polteva, M.N.; Terentyev, P.B. Investigation of the mechanism of protection of metals from corrosion by the means of volatile inhibitors. In Proceedings of the Symposium Européen sur les Inhibiteurs de Corrosione, Ferrara, Italy, 28 September–1 October 1960; pp. 329–356. [Google Scholar]
- Agafonkin, A.V.; Kuznetsov, Y.I.; Andreeva, N.P. Formation of protective nanolayers on metals formed by N-benzylbenzylidenimine and (3-aminopropyl)triethoxysilane from gas-vapor phase. Prot. Met. Phys. Chem. Surf. 2011, 47, 866–872. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Andreev, N.N.; Agafonkin, A.V.; Goncharova, O.A. Volatile atmospheric corrosion inhibitor. RU Patent 2457283C1, 27 July 2012. [Google Scholar]
- Goncharova, O.A.; Kuznetsov, Y.I.; Andreev, N.N.; Nad’kina, E.A. Depositing nanolayers of volatile organic compounds on metals for higher resistance to atmospheric corrosion. Prot. Met. Phys. Chem. Surf. 2016, 52, 1140–1147. [Google Scholar] [CrossRef]
- Stratman, M.; Furbeth, W.; Grungmeier, G.; Losch, R.; Reinartz, C.R. Corrosion Mechanism in Theory and Practice; Marcus, P., Oudar, J., Eds.; M. Dekker: New York, NY, USA, 1995; pp. 373–419. [Google Scholar]
- Luchkin, A.Y.; Goncharova, O.A.; Andreev, N.N.; Kuznetsov, Y.I. Steel protection by treatment with octadecylamine, 1,2,3-benzotriazole and mixtures thereof at elevated temperature. Korroz. Mater. Zashchita 2017, 12, 20–26. (In Russian) [Google Scholar]
- Kuznetsov, Y.I.; Andreev, N.N.; Goncharova, O.A.; Luchkin, A.Y.; Kuznetsov, D.S.; Byvsheva, O.S.; Tsvetkova, I.V. Chamber Inhibitor of Corrosion of Ferrous and Non-Ferrous Metals. RU Patent 2759721C1, 17 November 2021. [Google Scholar]
- Goncharova, O.A.; Kuznetsov, Y.I.; Andreev, N.N.; Luchkin, A.Y.; Andreeva, N.P.; Kuznetsov, D.S. A new corrosion inhibitor for zinc chamber treatment. Int. J. Corros. Scale Inhib. 2018, 3, 340–351. [Google Scholar] [CrossRef]
- Goncharova, O.A.; Luchkin, A.Y.; Kuznetsov, Y.I.; Andreev, N.N. Vapor-phase protection of zink from atmospheric corrosion dy low-volatile corrosion inhibitors. Prot. Met. Phys. Chem. Surf. 2019, 55, 1299–1303. [Google Scholar] [CrossRef]
- Goncharova, O.A.; Andreev, N.N.; Luchkin, A.Y.; Kuznetsov, Y.I.; Andreeva, N.P.; Vesely, S.S. Protection of copper by treatment with hot vapors of octadecylamine, 1,2,3-benzotriazole, and their mixtures. Mater. Corros. 2019, 70, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Goncharova, O.A.; Luchkin, A.Y.; Andreev, N.N.; Kuznetsov, Y.I.; Andreeva, N.P. Chamber Protection of Copper from Atmospheric Corrosion by Compounds of the Triazole Class. Prot. Met. Phys. Chem. Surf. 2020, 56, 1276–1284. [Google Scholar] [CrossRef]
- Luchkin, A.Y.; Goncharova, O.A.; Arkhipushkin, I.A.; Andreev, N.N.; Kuznetsov, Y.I. The effect of oxide and adsorption layers formed in 5-Chlorobenzotriazole vapors on the corrosion resistance of copper. J. Taiwan Inst. Chemic. Engin. 2020, 117, 231–241. [Google Scholar] [CrossRef]
- Goncharova, O.A.; Kuznetsov, D.S.; Andreev, N.N.; Kuznetsov, Y.I.; Andreeva, N.P. Chamber inhibitors of corrosion of AMg6 aluminium alloy. Prot. Met. Phys. Chem. Surf. 2020, 56, 1293–1299. [Google Scholar] [CrossRef]
- Andreev, N.N.; Goncharova, O.A.; Kuznetsov, Y.I.; Luchkin, A.Y. Method for protecting metals from atmospheric corrosion. RU Patent 2649354C1, 2 April 2018. [Google Scholar]
- Andreev, N.N.; Goncharova, O.A.; Luchkin, A.Y.; Kuznetsov, D.S.; Betretdinova, O.A. Chamber corrosion inhibitor. RU Patent 2736196C1, 12 November 2020. [Google Scholar]
- Zhang, H.-L.; Zhang, D.-Q.; Gao, L.-X.; Liu, Y.-Y.; Yan, H.-B.; Wei, S.-L.; Ma, T.-F. Vapor phase assembly of benzotriazole and octadecylaminecomplex films on aluminum alloy surface. J. Coat. Technol. Res. 2021, 18, 435–446. [Google Scholar] [CrossRef]
- Goncharova, O.A.; Andreev, N.N.; Kazansky, L.P.; Arkhipushkin, I.A.; Kuznetsov, Y.I.; Andreeva, N.P.; Vesely, S.S. Nanosized anticorrosion coatings formed by high-temperature treatment of magnesium with vapors of 5-chloro-1,2,3-benzotriazole. Prot. Met. Phys. Chem. Surf. 2021, 57, 1319–1327. [Google Scholar]
- Kuznetsov, Y.I.; Andreev, N.N.; Goncharova, O.A.; Luchkin, A.Y. Method of Processing Surfaces of Metals with Multimodal Roughness for Imparting Super-Hydrophobicity and Anticorrosion Properties to Them. RU Patent 2741028C1, 22 January 2021. [Google Scholar]
- Emelyanenko, K.A.; Domantovsky, A.G.; Chulkova, E.V.; Emelyanenko, A.M.; Boinovich, L.B. Thermally induced gradient of properties on a superhydrophobic magnesium alloy surface. Metals 2021, 11, 41. [Google Scholar] [CrossRef]
OCI, Anion Hydrophobicity at pH 7.4 (logD), Electrode Material | Adsorption Characteristics | |
---|---|---|
Reduced Surface, E = −0.65 V | Oxidized Surface,E = 0.20 V | |
SPhAn, 1.32, Equation (8), zone-melted Fe | = 15.6 ± 0.2 kJ/mol a = 1.6 ± 0.2 | = 16.8 ± 0.3 kJ/mol, a = 2.1 ± 0.3 |
SFF, 2.57, Equation (6), zone-melted Fe | = 56.4 ± 0.1 kJ/mol f = 2.0 ± 0.3 | = 49.6 ± 0.1 kJ/mol f = 2.17 ± 0.45 |
“-”-, “-, Equation (8), Fe Armco | = 36.8 ± 1.8 kJ/mol a = 0.3 ± 0.1 | = 20.4 ± 1.0 kJ/mol, a = 1.4 ± 0.1 |
“-”-, “-, Equation (8), St3 steel | = 23.1 ± 0.1 kJ/mol, a = 1.5 ± 0.1 | = 21.1 ± 1.1 kJ/mol, a = 1.0 ± 0.1 |
SMeF, 2.29, Equation (8), zone-melted Fe | =40.50 ± 0.02 kJ/mol, a = 0.3 ± 0.1 | = 27.25 ± 0.04 kJ/mol, a = 1.3 ± 0.1 |
OCI | Time of Appearance of the First Corrosion Damage (Days) without and After Pre-Treatment | ||
---|---|---|---|
without NaCl | 0.1 g/L NaCl | 1.0 g/L NaCl | |
NaC13 | 24 ± 0.5 | 21 ± 0.5 | 14 ± 0.5 |
SKAP-25 | 72 ± 0.5 | 18 ± 0.5 | 6 ± 0.5 |
SOl | >41 | 22 ± 0.5 | 16 ± 0.5 |
Pre-Exposure (12 h) of Electrodes in the Vapour of | Armco Steel | Cu | Zn | |||
---|---|---|---|---|---|---|
Ein, V | Epit, V | Ein, V | Epit, V | Ein, V | Epit, V | |
Without exposure | −0.06 | 0.22 | 0.10 | 0.16 | −0.96 | −0.56 |
APTS | −0.06 | 0.25 | 0.10 | 0.25 | −0.96 | −0.20 |
N-benzylbenzylidenimine | −0.06 | 0.32 | 0.10 | 0.28 | −0.96 | −0.20 |
APTS + N-benzylbenzylidenimine | −0.06 | 0.60 | 0.10 | 1.40 | −0.96 | −0.13 |
Chamber OCI | Protection Time (Day) at tct (in °C) | |||
---|---|---|---|---|
80 | 100 | 120 | 140 | |
without chamber OCI | 5 | 5 | 6 | 10 |
carboxylic acid A | 9 | 11 | 30 | 50 |
oleic acid | 9 | 9 | 18 | 24 |
neodecanoic acid | 10 | 18 | 18 | 33 |
Salt of carboxylic acid A and triethanolamine | 9 | 12 | 27 | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, Y.I.; Redkina, G.V. Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media. Coatings 2022, 12, 149. https://doi.org/10.3390/coatings12020149
Kuznetsov YI, Redkina GV. Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media. Coatings. 2022; 12(2):149. https://doi.org/10.3390/coatings12020149
Chicago/Turabian StyleKuznetsov, Yurii I., and Galina V. Redkina. 2022. "Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media" Coatings 12, no. 2: 149. https://doi.org/10.3390/coatings12020149
APA StyleKuznetsov, Y. I., & Redkina, G. V. (2022). Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media. Coatings, 12(2), 149. https://doi.org/10.3390/coatings12020149