Chemical Reactive and Viscous Dissipative Flow of Magneto Nanofluid via Natural Convection by Employing Galerkin Finite Element Technique
Abstract
:1. Introduction
2. Physical and Mathematical Background
3. Solution of the Problem
4. Outcomes and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
acceleration due to gravity | |
dimensional chemical reaction component | |
the ambient concentrations of the fluid | |
velocity elements at and axis | |
magnetic induction | |
mass diffusion | |
specific heat at stabilized pressure | |
Eckert number | |
Prandtl number | |
fluid temperature | |
ambient temperature | |
tendency angle from perpendicular trend | |
expansion of concentration coefficient | |
liquid density | |
kinematic viscosity | |
thermal conductivity | |
thermal expansion coefficient | |
concentrations of the fluid | |
dimensionless concentration |
References
- Ishak, A.; Nazar, R.; Pop, I. Heat transfer over an unsteady stretching surface with prescribed heat flux. Can. J. Phys. 2008, 86, 853–855. [Google Scholar] [CrossRef]
- Palani, G.; Srikanth, U. MHD flow past a Semi-infinite vertical plate with mass transfer. Nonlinear Anal. Model. Control 2009, 14, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Muthucumaraswamy, R.; Ganesan, P. Mass transfer effects on impulsively with variable surface heat flux. Forsch. Ing. 1999, 65, 200–206. [Google Scholar] [CrossRef]
- Elbashbeshy, E.M.A. Heat and Mass transfer along a vertical plate with variable surface tension and concentration in the presence of magnetic field. Int. J. Eng. Sci. 1997, 34, 515–522. [Google Scholar] [CrossRef]
- Das, J.N.; Ray, S.N.; Soundalgekar, V.M. Finite difference analysis of mass transfer effects on flow past an impulsively started infinite vertical plate in dissipative fluid and constant heat flux. Heat Mass Transf. 1995, 30, 155–158. [Google Scholar] [CrossRef]
- Shankar, G.B.; Srilatha, P.; Shekar, M.N.R. Effects of mass suction on MHD boundary layer flow and heat transfer over a porous shrinking sheet with heat source/sink. Int. J. Innov. Tech. Exp. Eng. 2019, 8, 263–266. [Google Scholar]
- Crane, L.J. Flow past a stretching plate. J. Appl. Math. Phys. 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Dandapat, B.S.; Holmedal, L.E.; Andersson, H.I. On the stability of MHD flow of a viscoelastic fluid past a stretching sheet. Acta Mech. 1998, 130, 143–146. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Sandeep, N. Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng. Sci. Tech. 2015, 19, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Elbashbeshy, E.M.A. Heat transfer over an exponentially stretching continuous surface with suction. Arch. Mech. 2001, 53, 643–651. [Google Scholar]
- Magyari, E.; Keller, B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D Appl. Phys. 1999, 32, 577–585. [Google Scholar] [CrossRef]
- Shankar, G.B.; Narender, G.; Kumar, R.E. Stagnation point flow through a porous medium towards stretching surface in the presence of heat generation. Int. J. Eng. Adv. Tech. 2019, 9, 2646–2650. [Google Scholar]
- Shankar, G.B.; Khan, Z.H.; Hamid, M. Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter. Heat Transf. 2021, 50, 6129–6147. [Google Scholar] [CrossRef]
- Shankar, G.B.; Nandeppanavar, M.M. Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface. Partial Differ. Equ. Appl. Math. 2021, 4, 100104. [Google Scholar] [CrossRef]
- Bejawada, S.G.; Reddy, Y.D.; Kumar, K.S.; Kumar, E.R. Numerical solution of natural convection on a vertical stretching surface with suction and blowing. Int. J. Heat Tech. 2021, 39, 1469–1474. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. Unsteady boundary layer flow and heat transfer past a porous stretching sheet in presence of variable viscosity and thermal diffusivity. Int. J. Heat Mass Transf. 2009, 52, 5213–5217. [Google Scholar] [CrossRef]
- Elbashbeshy, E.M.A.; Bazid, M.A.A. Heat transfer over an unsteady stretching surface. Heat Mass Transf. 2004, 41, 1–4. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica 2009, 44, 369–375. [Google Scholar] [CrossRef]
- Abd El-Aziz, M. Radiation effect on the flow and heat transfer over an unsteady stretching sheet. Int. Commun. Heat Mass Transf. 2009, 36, 521–524. [Google Scholar] [CrossRef]
- Shateyi, S.; Motsa, S.S. Thermal radiation effects on heat and mass transfer over an unsteady stretching surface. Math. Probl. Eng. 2009, 2009, 965603. [Google Scholar] [CrossRef] [Green Version]
- Raptis, A. Effects of thermal radiation on the MHD flow past a vertical plate. J. Eng. Therm. Phys. 2017, 26, 53–59. [Google Scholar] [CrossRef]
- Ali, F.; Khan, I.; Shafie, S.; Musthapa, N. Heat and mass transfer with free convection MHD flow past a vertical plate embedded in a porous medium. Math. Probl. Eng. 2013, 2013, 346281. [Google Scholar] [CrossRef]
- Kim, Y.J. Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction. Int. J. Eng. Sci. 2000, 38, 833–845. [Google Scholar] [CrossRef]
- Hayat, T.; Mustafa, M. Influence of thermal radiation on the unsteady mixed convection flow of a Jeffrey fluid over a stretching sheet. Z. Nat. 2010, 65, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.M.; Nazar, R.; Arifin, N.M.; Pop, I. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Appl. Math. Mech. 2011, 32, 409–418. [Google Scholar] [CrossRef]
- Sakiadis, B.C. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 1961, 7, 26–28. [Google Scholar] [CrossRef]
- Mohammadein, A.A.; Gorla, R.S.R. Heat transfer in a micropolar fluid over a stretching sheet with viscous dissipation and internal heat generation. Int. J. Numer. Methods Heat Fluid Flow 2001, 11, 50–58. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 2020, 22, 18. [Google Scholar] [CrossRef] [Green Version]
- Chamkha, A.J.; Khaled, A.A. Hydromagnetic combined heat and mass transfer by natural convection from a permeable surface embedded in a fluid-saturated porous medium. Int. J. Numer. Methods Heat Fluid Flow 2000, 10, 455–477. [Google Scholar] [CrossRef]
- Krishna, M.V.; Ahamad, A.N.; Chamkha, A.J. Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid. Alex. Eng. J. 2021, 60, 845–858. [Google Scholar] [CrossRef]
- Krishna, M.V.; Ahamad, A.N.; Chamkha, A.J. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alex. Eng. J. 2020, 59, 565–577. [Google Scholar] [CrossRef]
- Krishna, M.V.; Chamkha, A.J. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int. Commun. Heat Mass Transf. 2020, 113, 104494. [Google Scholar] [CrossRef]
- Wakif, A.; Chamkha, A.; Animasaun, I.L.; Zaydan, M.; Waqas, H.; Sehaqui, R. Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal Riga plate in the coexistence of wall suction and joule heating effects: A comprehensive numerical investigation. Arab. J. Sci. Eng. 2020, 45, 9423–9438. [Google Scholar] [CrossRef]
- Kumar, K.G.; Reddy, M.G.; Sudharani, M.V.V.N.L.; Shehzad, S.A.; Chamkha, A.J. Cattaneo-Christov heat diffusion phenomenon in Reiner-Philippoff fluid through a transverse magnetic field. Phys. A 2019, 541, 123330. [Google Scholar] [CrossRef]
- Modather, M.; Rashad, A.M.; Chamkha, A.J. An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turk. J. Eng. Env. Sci. 2009, 33, 245–258. [Google Scholar] [CrossRef]
- Takhar, H.S.; Chamkha, A.J.; Nath, G. MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity. Int. J. Eng. Sci. 2002, 40, 1511–1527. [Google Scholar] [CrossRef]
- Chamkha, A.J. Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink. Int. J. Eng. Sci. 2000, 38, 1699–1712. [Google Scholar] [CrossRef]
- Takhar, H.S.; Chamkha, A.J.; Nath, G. Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field. Int. J. Eng. Sci. 1999, 37, 1723–1736. [Google Scholar] [CrossRef]
- Bejawada, S.G. Thermal radiation influences on MHD stagnation point stream over a stretching sheet with slip boundary conditions. Int. J. Thermofluid Sci. Tech. 2020, 7, 070201. [Google Scholar] [CrossRef]
- Shankar, G.B. Heat generation/Absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection. Int. J. Thermofluids 2020, 7–8, 100044. [Google Scholar] [CrossRef]
- Shankar, G.B.; Kumar, P.P.; Malga, B.S. Effect of heat source on an unsteady MHD free convection flow of Casson fluid past a vertical oscillating plate in porous medium using finite element analysis. Partial Differ. Equ. Appl. Math. 2020, 2, 100015. [Google Scholar] [CrossRef]
- Bejawada, S.G.; Yanala, D.R. Finite element Soret Dufour effects on an unsteady MHD heat and mass transfer flow past an accelerated inclined vertical plate. Heat Transf. 2021, 50, 8553–8578. [Google Scholar] [CrossRef]
- Shankar, G.B.; Srilatha, P.; Bindu, P.; Krishna, Y.H. Radiation effect on MHD boundary layer flow due to an exponentially stretching sheet. Adv. Math. Sci. J. 2020, 9, 10755–10761. [Google Scholar] [CrossRef]
- Srinivasulu, T.; Shankar, G.B. Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Stud. Therm. Eng. 2021, 23, 100819. [Google Scholar] [CrossRef]
- Jamshed, W.; Eid, M.R.; Nisar, K.S.; Nasir, N.A.A.M.; Edacherian, A.; Saleel, C.A.; Vijayakumar, V. A numerical frame work of magnetically driven Powell-Eyring nanofluid using single phase model. Sci. Rep. 2021, 11, 16500. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, F.; Baleanu, D.; Jamshed, W.; Nisar, K.S.; Eid, M.R.; Safdar, R.; Ismail, K.A. Flow and heat transport phenomenon for dynamics of Jeffrey nanofluid past stretchable sheet subject to Lorentz force and dissipation effects. Sci. Rep. 2021, 11, 22924. [Google Scholar] [CrossRef]
- Ramzan, M.; Gul, H.; Mursaleen, M.; Nisar, K.S.; Jamshed, W.; Muhammad, T. Von Karman rotating nanofluid flow with modified Fourier law and variable characteristics in liquid and gas scenarios. Sci. Rep. 2021, 11, 16442. [Google Scholar] [CrossRef]
- Ahmed, N.; Sarmah, H.K. Thermal radiation effect on a transient MHD flow with mass transfer past an impulsively fixed infinite vertical plate. Int. J. Appl. Math. Mech. 2009, 5, 87–98. [Google Scholar]
- Safdar, R.; Jawad, M.; Hussain, S.; Imran, M.; Akgul, A.; Jamshed, W. Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of Buongiorno’s model. Chin. J. Phys. 2021. [Google Scholar] [CrossRef]
- Koulali, A.; Abderrahmane, A.; Jamshed, W.; Hussain, S.M.; Nisar, K.S.; Abdel-Aty, A.H.; Yahia, I.S.; Eid, M.R. Comparative study on effects of thermal gradient direction on heat exchange between a pure fluid and a nanofluid: Employing finite volume method. Coatings 2021, 11, 1481. [Google Scholar] [CrossRef]
- Redouane, F.; Jamshed, W.; Devi, S.U.; Prakash, M.; Nisar, K.S.; Nasir, N.A.A.M.; Khashan, M.M.; Yahia, I.S.; Eid, M.R. Galerkin finite element study for mixed convection (TiO2-SiO2/Water) hybrid-nanofluidic flow in a triangular aperture heated beneath. Sci. Rep. 2021, 11, 22905. [Google Scholar] [CrossRef] [PubMed]
- Goud, B.S.; Reddy, Y.D.; Rao, V.S. Thermal radiation and Joule heating effects on a magnetohydrodynamic Casson nanofluid flow in the presence of chemical reaction through a non-linear inclined porous stretching sheet. J. Nav. Archit. Mar. Eng. 2020, 17, 143–164. [Google Scholar] [CrossRef]
Ref. [48] | Present | |
---|---|---|
0.22 | 0.552791 | 0.5528 |
0.6 | 0.874039 | 0.8741 |
0.78 | 0.996557 | 0.9966 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejawada, S.G.; Jamshed, W.; Safdar, R.; Reddy, Y.D.; M. Alanazi, M.; Zahran, H.Y.; Eid, M.R. Chemical Reactive and Viscous Dissipative Flow of Magneto Nanofluid via Natural Convection by Employing Galerkin Finite Element Technique. Coatings 2022, 12, 151. https://doi.org/10.3390/coatings12020151
Bejawada SG, Jamshed W, Safdar R, Reddy YD, M. Alanazi M, Zahran HY, Eid MR. Chemical Reactive and Viscous Dissipative Flow of Magneto Nanofluid via Natural Convection by Employing Galerkin Finite Element Technique. Coatings. 2022; 12(2):151. https://doi.org/10.3390/coatings12020151
Chicago/Turabian StyleBejawada, Shankar Goud, Wasim Jamshed, Rabia Safdar, Yanala Dharmendar Reddy, Meznah M. Alanazi, Heba Y. Zahran, and Mohamed R. Eid. 2022. "Chemical Reactive and Viscous Dissipative Flow of Magneto Nanofluid via Natural Convection by Employing Galerkin Finite Element Technique" Coatings 12, no. 2: 151. https://doi.org/10.3390/coatings12020151
APA StyleBejawada, S. G., Jamshed, W., Safdar, R., Reddy, Y. D., M. Alanazi, M., Zahran, H. Y., & Eid, M. R. (2022). Chemical Reactive and Viscous Dissipative Flow of Magneto Nanofluid via Natural Convection by Employing Galerkin Finite Element Technique. Coatings, 12(2), 151. https://doi.org/10.3390/coatings12020151