Research into Carbon Dioxide Curing’s Effects on the Properties of Reactive Powder Concrete with Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement
Abstract
:1. Introduction
2. Experimental Section
2.1. Raw Materials
2.2. Specimens Preparation
2.3. Measurement Methods
3. Results and Discussion
3.1. Mechanical Strength
3.2. Mechanical Properties of RPC during NaCl Freeze-Thaw Cycles
3.3. Microscopic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berger, R.; Young, J.; Leung, K. Acceleration of hydration of calcium silicates by carbon dioxide treatment. Nature 1972, 240, 16–18. [Google Scholar] [CrossRef]
- Goodbrake, C.; Young, J.; Berger, R. Reaction of hydraulic calcium silicates with carbon dioxide and water. J. Am. Ceram. Soc. 1979, 62, 488–491. [Google Scholar] [CrossRef]
- Shah, J. Laboratory characterization of controlled low-strength material and its application to construction of flexible pipe drainage system. Health Manpow. Manag. 2000, 19, 30–59. [Google Scholar]
- Haselbach, L.; Valavala, S.; Montes, F. Permeability predictions for sand clogged Portland cement pervious concrete pavement systems. J. Environ. Manag. 2005, 81, 42–49. [Google Scholar] [CrossRef]
- Shtepenko, O.; Hills, C.; Brough, A.; Thomas, M. The effect of carbon dioxide on β-dicalcium silicate and Portland cement. Chem. Eng. J. 2006, 118, 107–118. [Google Scholar] [CrossRef]
- Grounds, T.; Midgley, H.; Novell, D. Carbonation of ettringite by atmospheric carbon dioxide. Thermochim. Acta 1988, 135, 347–352. [Google Scholar] [CrossRef]
- Mahoutian, M.; Ghouleh, Z.; Shao, Y. Carbon dioxide activated ladle slag binder Constr. Build. Mater. 2014, 66, 214–221. [Google Scholar] [CrossRef]
- Rendek, E.; Ducom, G.; Germain, P. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J. Hazard. Mater. 2006, 128, 73–79. [Google Scholar] [CrossRef]
- Diener, S.; Andreas, L.; Herrmann, I.; Ecke, H.; Lagerkvist, A. Accelerated carbonation of steel slags in a landfill cover construction. Waste Manag. 2010, 30, 132–139. [Google Scholar] [CrossRef]
- Gunning, P.; Hills, C.; Carey, P. Accelerated carbonation treatment of industrial wastes. Waste Manag. 2010, 30, 1081–1090. [Google Scholar] [CrossRef]
- Monkman, S.M.; Macdonald, M. On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. J. Clean. Prod. 2017, 167, 365–375. [Google Scholar] [CrossRef]
- Smirnov, V.G.; Manakov, A.Y.; Dyrdin, V.V.; Ismagilov, Z.R.; Mikhailova, E.S.; Rodionova, T.V. The formation of carbon dioxide hydrate from water sorbed by coals. Fuel 2018, 228, 123–131. [Google Scholar] [CrossRef]
- Ahmad, S.; Assaggaf, R.; Maslehuddin, M.; Al-Amoudi, O.; Adekunle, S.; Ali, S.I. Effects of carbonation pressure and duration on strength evolution of concrete subjected to accelerated carbonation curing. Constr. Build. Mater. 2017, 136, 565–573. [Google Scholar] [CrossRef]
- Rostami, V.; Shao, Y.; Boyd, A.J. Carbonation curing versus steam curing for precast concrete production. J. Mater. Civ. Eng. 2011, 24, 1221–1229. [Google Scholar] [CrossRef]
- El-Hassan, H.; Shao, Y. Early carbonation curing of concrete masonry units with Portland limestone cement. Cem. Concr. Compos. 2015, 62, 168–177. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X.; Chen, T. Influence of mineral admixtures on carbonation curing of cement paste. Constr. Build. Mater. 2019, 212, 653–662. [Google Scholar] [CrossRef]
- Ashraf, W. Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater. 2016, 120, 558–570. [Google Scholar] [CrossRef]
- Ashraf, W.; Olek, J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: Potential of utilizing low-lime calcium silicates in cement-based materials. J. Mater. Sci. 2016, 51, 6173–6191. [Google Scholar] [CrossRef]
- Morandeau, A.E.; White, C.E. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium–silicate–hydrate gel. J. Mater. Chem. A 2015, 3, 8597–8605. [Google Scholar] [CrossRef]
- Mo, A.; El-Tawil, S.; Liu, Z.; Hansen, W. Effects of silica powder and cement type on durability of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2016, 66, 47–56. [Google Scholar]
- Hong, H.; Wang, H.; Shi, F. Influence of NaCl Freeze Thaw Cycles and Cyclic Loading on the Mechanical Performance and Permeability of Sulphoaluminate Cement Reactive Powder Concrete. Coatings 2020, 10, 1227. [Google Scholar] [CrossRef]
- Mo, Z.; Gao, X.; Su, A. Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions. Constr. Build. Mater. 2021, 268, 121112. [Google Scholar] [CrossRef]
- Huang, G.; Wang, H.; Shi, F. Coupling Effect of Salt Freeze-thaw Cycles and Carbonation on the Mechanical Performance of Quick Hardening Sulphoalu-minate Cement-based Reactive Powder Concrete with Basalt Fibers. Coatings 2021, 11, 1142. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, H. Influence of NaCl Freeze–thaw Cycles on the Mechanical Strength of Reactive Powder Concrete with the Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement. Coatings 2021, 11, 1238. [Google Scholar] [CrossRef]
- GB/T 50082-2009; Standard for Test Method of Long-Term Performance and Durability of Ordinary Concrete. Ministry of Housing and Urban Rural Development of the People’s Republic of China: Beijing, China, 2009.
- GB/T 17671-1999; Method of Testing Cements—Determination of Strength. The State Bureau of Quality and Technical Supervision: Beijing, China, 1999.
- Velazco, G.; Almanza, J.M.; Cortés, D.A.; Escobedo, J.C.; Escalante-Garcia, J.I. Effect of citric acid and the hemihydrate amount on the properties of a calcium sulphoaluminate cement. Mater. Constr. 2014, 64, e036. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tian, W.; Wang, M.; Qi, B.; Wang, W. Rapid strength formation of on-site carbon fiber reinforced high-performance concrete cured by ohmic heating. Constr. Build. Mater. 2020, 244, 118344. [Google Scholar] [CrossRef]
- Huijgen, W.J.; Witkamp, G.J.; Comans, R.N. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem. Eng. Sci. 2006, 61, 4242–4251. [Google Scholar] [CrossRef]
- Berger, R.L.; Klemm, W. Accelerated curing of cementitious systems by carbon dioxide: Part II. Hydraulic calcium silicates and aluminates. Cem. Concr. Res. 1972, 2, 647–652. [Google Scholar] [CrossRef]
- Shi, X.; Fay, L.; Peterson, M.; Yang, Z. Freeze-thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers. Mater. Struct. 2010, 43, 933–946. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Liu, J. Effects of salt freeze-thaw cycles and cyclic loading on the piezoresistive properties of carbon nanofibers mortar. Constr. Build. Mater. 2018, 177, 192–201. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Liu, J. Coupling effect of salt freeze-thaw cycles and cyclic loading on performance degradation of carbon nanofiber mortar. Cold Reg. Sci. Technol. 2018, 154, 95–102. [Google Scholar] [CrossRef]
- Villain, G.; Thiery, M.; Platret, G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res. 2007, 37, 1182–1192. [Google Scholar] [CrossRef]
- Chang, C.F.; Chen, J.W. The experimental investigation of concrete carbonation depth. Cem. Concr. Res. 2006, 36, 1760–1767. [Google Scholar] [CrossRef]
- Lo, Y.; Lee, H. Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy. Build. Environ. 2002, 37, 507–514. [Google Scholar] [CrossRef]
- Liu, Q.; Iqbal, M.; Yang, J.; Lu, X.; Zhang, P.; Rauf, M. Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation. Constr. Build. Mater. 2021, 266, 12108. [Google Scholar] [CrossRef]
- Mao, L.; Hu, Z.; Xia, J.; Feng, G.; Azim, I.; Yang, J.; Liu, Q. Multi-phase modelling of electrochemical rehabilitation for ASR and chloride affected concrete composites. Compos. Struct. 2019, 207, 176–189. [Google Scholar] [CrossRef]
Density (g/cm3) | Length (mm) | Diameter (μm) | Tensile Strength (MPa) | Modulus of Elasticity (GPa) |
---|---|---|---|---|
0.91 | 10–13 | 18–48 | 710 | 3.85 |
Types | Particle Size (μm) | ||||||
---|---|---|---|---|---|---|---|
0.3 | 0.6 | 1 | 4 | 8 | 64 | 360 | |
SAC | 0 | 0.35 | 1.92 | 16.35 | 30.12 | 95.15 | 100 |
P·O Cement | 0 | 0.33 | 2.66 | 15.01 | 28.77 | 93.59 | 100 |
Slag power | 0.025 | 0.1 | 3.51 | 19.63 | 35.01 | 97.9 | 100 |
Silica fume | 31.2 | 58.3 | 82.3 | 100 | 100 | 100 | 100 |
Types | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | SO3 | Ti2O |
---|---|---|---|---|---|---|---|
SAC | 4.55 | 50.23 | 33.22 | 5.95 | 0.79 | 0.91 | 1.48 |
OPC | 4.55 | 50.23 | 33.22 | 5.95 | 0.79 | 0.91 | 1.48 |
Slag power | 42.19 | 27.56 | 15.80 | 0.31 | 7.52 | 2.89 | 0.45 |
Silica fume | 48.62 | 29.67 | 0.72 | 0.47 | 20.17 | 0.05 | 0.18 |
Specimens | Water | OPC | SAC | SF | GGBS | Quartz Sand | Water-Reducer | PPFs | Li2SO4 | Tartaric Acid | Calcium Formate |
---|---|---|---|---|---|---|---|---|---|---|---|
RPC-1 | 244.4 | 740.7 | 0 | 370.3 | 111.1 | 977.9 | 16.3 | 0 | 0 | 0 | 5.2 |
RPC-2 | 244.4 | 555.5 | 185.2 | 370.3 | 111.1 | 977.9 | 16.3 | 0 | 1.3 | 0.3 | 3.9 |
RPC-3 | 244.4 | 370.4 | 370.4 | 370.3 | 111.1 | 977.9 | 16.3 | 0 | 2.6 | 0.6 | 2.6 |
RPC-4 | 244.4 | 185.2 | 555.5 | 370.3 | 111.1 | 977.9 | 16.3 | 0 | 3.9 | 0.8 | 1.3 |
RPC-5 | 244.4 | 0 | 740.7 | 370.3 | 111.1 | 977.9 | 16.3 | 0 | 5.2 | 1.1 | 0 |
RPC-6 | 244.4 | 370.4 | 370.4 | 370.3 | 111.1 | 977.9 | 16.3 | 0.91 | 2.6 | 0.6 | 2.6 |
RPC-7 | 244.4 | 370.4 | 370.4 | 370.3 | 111.1 | 977.9 | 16.3 | 1.82 | 2.6 | 0.6 | 2.6 |
RPC-8 | 244.4 | 370.4 | 370.4 | 370.3 | 111.1 | 977.9 | 16.3 | 2.73 | 2.6 | 0.6 | 2.6 |
RPC-9 | 244.4 | 370.4 | 370.4 | 370.3 | 111.1 | 977.9 | 16.3 | 3.64 | 2.6 | 0.6 | 2.6 |
Equation | Curing Type | Fiber Content/% | a | b | c | R2 |
---|---|---|---|---|---|---|
Standard curing | 0 | 5.90 × 10−5 | −0.085 | 100.29 | 0.99 | |
1 | 6.98 × 10−5 | −0.068 | 99.82 | 0.98 | ||
2 | 4.30 × 10−5 | −0.051 | 100.09 | 0.95 | ||
3 | −4.33 × 10−6 | −0.031 | 100.07 | 0.98 | ||
4 | −3.97 × 10−5 | −0.015 | 100.04 | 0.99 | ||
CO2 curing | 0 | 1.69 × 10−4 | −0.122 | 98.83 | 0.97 | |
1 | 6.24 × 10−5 | −0.081 | 98.61 | 0.95 | ||
2 | 1.95 × 10−5 | −0.055 | 98.61 | 0.92 | ||
3 | 3.41 × 10−5 | −0.052 | 99.41 | 0.98 | ||
4 | 3.48 × 10−5 | −0.047 | 99.66 | 0.98 |
Equation | Curing Type | Fiber Content/% | a | b | c | R2 |
---|---|---|---|---|---|---|
Standard curing | 0 | −3.10 × 10−5 | 0.028 | 1.80 | 0.99 | |
1 | −1.43 × 10−5 | 0.023 | 1.39 | 0.99 | ||
2 | −1.62 × 10−5 | 0.023 | 1.01 | 0.99 | ||
3 | −1.42 × 10−6 | 0.022 | 0.80 | 0.99 | ||
4 | −1.73 × 10−5 | 0.023 | 0.60 | 0.99 | ||
CO2 curing | 0 | −2.52 × 10−4 | 0.028 | 2.07 | 0.99 | |
1 | −2.10 × 10−5 | 0.027 | 1.67 | 0.99 | ||
2 | −2.72 × 10−5 | 0.027 | 1.41 | 0.99 | ||
3 | −1.61 × 10−5 | 0.023 | 1.34 | 0.99 | ||
4 | −1.77 × 10−5 | 0.023 | 1.03 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Liang, Z.; Peng, X.; Cai, X.; Wang, K.; Wang, H.; Lyu, Z. Research into Carbon Dioxide Curing’s Effects on the Properties of Reactive Powder Concrete with Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement. Coatings 2022, 12, 209. https://doi.org/10.3390/coatings12020209
Cao H, Liang Z, Peng X, Cai X, Wang K, Wang H, Lyu Z. Research into Carbon Dioxide Curing’s Effects on the Properties of Reactive Powder Concrete with Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement. Coatings. 2022; 12(2):209. https://doi.org/10.3390/coatings12020209
Chicago/Turabian StyleCao, Hongfei, Zhao Liang, Xi Peng, Xin Cai, Kewei Wang, Hui Wang, and Zhongda Lyu. 2022. "Research into Carbon Dioxide Curing’s Effects on the Properties of Reactive Powder Concrete with Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement" Coatings 12, no. 2: 209. https://doi.org/10.3390/coatings12020209
APA StyleCao, H., Liang, Z., Peng, X., Cai, X., Wang, K., Wang, H., & Lyu, Z. (2022). Research into Carbon Dioxide Curing’s Effects on the Properties of Reactive Powder Concrete with Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement. Coatings, 12(2), 209. https://doi.org/10.3390/coatings12020209