Effect of Low-Pressure Plasma Treatment on the Surface Wettability of Poly(butylene succinate) Films
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Plasma Reactor and Parameters
2.3. Surface Properties
2.4. Oxygen Barrier Properties
2.5. Water Contact Angle Measurements
3. Results and Discussions
3.1. Effects of Plasma on the Hydrophobicity of PBS Samples
3.2. Topographical Changes Induced by Plasma
3.3. Stability of Surface-Treated PBS Films
3.4. Chemical Modifications Induced by Plasma
3.4.1. FTIR Analysis
3.4.2. XPS Analysis
3.4.3. XRD Analysis
3.5. Oxygen Barrier Property Analysis of PBS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doi, Y.; Kasuya, K.-I.; Abe, H.; Koyama, N.; Shin-Ichi, I.; Koichi, T.; Yoshida, Y. Evaluation of biodegradabilities of biosynthetic and chemosynthetic polyesters in river water. Polym. Degrad. Stab. 1996, 51, 281–286. [Google Scholar] [CrossRef]
- Rafiqah, S.; Khalina, A.; Harmaen, A.; Tawakkal, I.; Zaman, K.; Asim, M.; Nurrazi, M.; Lee, C. A review on properties and application of bio-based poly(butylene succinate). Polymers 2021, 13, 1436. [Google Scholar] [CrossRef]
- Vassallo, E.; Cremona, A.; Ghezzi, F.; Ricci, D. Characterization by optical emission spectroscopy of an oxygen plasma used for improving PET wettability. Vacuum 2010, 84, 902–906. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, J.; Ye, Y.; Fang, M.; Lang, J.; Yang, D.; Pan, Z. Biodegradable poly(butylene succinate) nanofibrous membrane treated with oxygen plasma for superhydrophilicity. Surf. Coat. Technol. 2020, 381, 125147. [Google Scholar] [CrossRef]
- Zhao, H.-P.; Zhu, J.-T.; Fu, Z.-Y.; Feng, X.-Q.; Shao, Y.; Ma, R.-T. Plasma surface graft of acrylic acid and biodegradation of poly(butylene succinate) films. Thin Solid Film. 2008, 516, 5659–5663. [Google Scholar] [CrossRef]
- Vassallo, E.; Pedroni, M.; Silvetti, T.; Morandi, S.; Brasca, M. Inactivation of Staphylococcus aureus by the synergistic action of charged and reactive plasma particles. Plasma Sci. Technol. 2020, 22, 085504. [Google Scholar] [CrossRef]
- Chen, F.F. Plasma Diagnostic Techniques; Huddlestone, R.H., Leonard, S.L., Eds.; Academic Press: Cambridge, MA, USA, 1965; p. 113. [Google Scholar]
- Yeh, J.; Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103. At. Data Nucl. Data Tables 1985, 32, 1–155. [Google Scholar] [CrossRef]
- Ruffieux, P.; Gröning, O.; Schlapbach, L.; Gröning, P.; Herd, Q.C.; Schwaller, P.; Funnemann, D.; Westermann, J. Experimental determination of the transmission factor for the Omicron EA125 electron analyzer. Rev. Sci. Instrum. 2000, 71, 3634. [Google Scholar] [CrossRef]
- Cross, Y.; Castle, J. The relationship between transmission efficiencies in the FRR and fat modes of an electron spectrometer. J. Electron. Spectrosc. Relat. Phenom. 1981, 22, 53–60. [Google Scholar] [CrossRef]
- Inagaki, N.; Narushima, K.; Tsutsui, Y.; Ohyama, Y. Surface modification and degradation of poly(lactic acid) films by Ar-plasma. J. Adhes. Sci. Technol. 2002, 16, 1041–1054. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Trentesaux, M.; Gengembre, L.; Dubruel, P.; Leys, C.; Payen, E. Influence of discharge atmosphere on the ageing behaviour of plasma-treated polylactic acid. Plasma Chem. Plasma Process. 2010, 30, 525–536. [Google Scholar] [CrossRef]
- Borcia, C.; Punga, I.; Borcia, G. Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma. Appl. Surf. Sci. 2014, 317, 103–110. [Google Scholar] [CrossRef]
- Jacobs, T.; Declercq, H.; De Geyter, N.; Cornelissen, R.; Dubruel, P.; Leys, C.; Beaurain, A.; Payen, E.; Morent, R. Plasma surface modification of polylactic acid to promote interaction with fibroblasts. J. Mater. Sci. Mater. Med. 2013, 24, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Phua, Y.J.; Chow, W.S.; Mohd Ishak, Z.A. Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polym. Lett. 2013, 7, 340–354. [Google Scholar] [CrossRef]
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B.-H. Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications. In Plastics from Bacteria; Chen, G.Q., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 347–388. [Google Scholar] [CrossRef]
- Schneider, J.; Akbar, M.I.; Dutroncy, J.; Kiesler, D.; Leins, M.; Schulz, A.; Walker, M.; Schumacher, U.; Stroth, U. Silicon oxide barrier coatings deposited on polymer materials for applications in food packaging industry. Plasma Process. Polym. 2009, 6, S700–S704. [Google Scholar] [CrossRef]
- Bang, S.-H.; Hwang, N.-M.; Kim, H.-L. Permeation barrier properties of silicon oxide films deposited on polyethylene terephthalate (PET) substrate using roll-to-roll reactive magnetron sputtering system. Microelectron. Eng. 2016, 166, 39–44. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, L.; Tian, M.; Ning, N.; Zhang, L.; Wang, W. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review. Eur. Polym. J. 2021, 147, 110352. [Google Scholar] [CrossRef]
- Mrsic, I.; Bäuerle, T.; Ulitzsch, S.; Lorenz, G.; Rebner, K.; Kandelbauer, A.; Chassé, T. Oxygen plasma surface treatment of polymer films—Pellethane 55DE and EPR-g-VTMS. Appl. Surf. Sci. 2021, 536, 147782. [Google Scholar] [CrossRef]
- Polini, W.; Sorrentino, L. Adhesion of a protective coating on a surface of aluminium alloy treated by air cold plasma. Int. J. Adhes. Adhes. 2007, 27, 1–8. [Google Scholar] [CrossRef]
- Lambaré, C.; Tessier, P.-Y.; Poncin-Epaillard, F.; Debarnot, D. Plasma functionalization and etching for enhancing metal adhesion onto polymeric substrates. RSC Adv. 2015, 5, 62348–62357. [Google Scholar] [CrossRef]
- Bahroun, K.; Behm, H.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.; Hopmann, C. Influence of layer type and order on barrier properties of multilayer PECVD barrier coatings. J. Phys. D Appl. Phys. 2013, 47, 015201. [Google Scholar] [CrossRef]
- Cremona, A.; Vassallo, E.; Merlo, A.; Phani, S.; Laguardia, L. Synthesis by plasma-enhanced chemical-vapor deposition and characterization of siliconlike films with hydrophobic functionalities for improved long-term geometric stability of fiber-reinforced polymers. J. Mater. Res. 2008, 23, 1042–1050. [Google Scholar] [CrossRef]
Plasma Gas | Total Gas Flow (Sccm) | Power (W) and Power Density (W/cm2) | Oxygen % | Electron Density (m−3) in O2 | Electron Density (m−3) in Ar | Electron Temperature (eV) |
---|---|---|---|---|---|---|
Oxygen plasma | 20 | 100 (0.3) | / | 2 × 1014 | / | ≈ 1 |
Argon/oxygen plasma | 20 | 100 (0.3) | 20 | 1.5 × 1015 | 1.5 × 1015 | ≈1.5 |
Oxygen plasma with Ar post-crosslinking plasma | 20 | 100 (0.3) | / | 2 × 1014 | 2.5 × 1015 | ≈1 (O2) |
≈1.7 (Ar) |
Plasma Gas | Treatment Time (s) | Ar Post-CrossLinking Time (s) | L % |
---|---|---|---|
Oxygen | 30 | -- | 84 |
Argon/oxygen | 30 | -- | 83.6 |
Oxygen plasma with Ar post-crosslinking | 30 | 60 | 77.9 |
Oxygen plasma with Ar post-crosslinking | 30 | 120 | 79.2 |
Oxygen plasma with Ar post-crosslinking | 30 | 240 | 83.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassallo, E.; Aloisio, M.; Pedroni, M.; Ghezzi, F.; Cerruti, P.; Donnini, R. Effect of Low-Pressure Plasma Treatment on the Surface Wettability of Poly(butylene succinate) Films. Coatings 2022, 12, 220. https://doi.org/10.3390/coatings12020220
Vassallo E, Aloisio M, Pedroni M, Ghezzi F, Cerruti P, Donnini R. Effect of Low-Pressure Plasma Treatment on the Surface Wettability of Poly(butylene succinate) Films. Coatings. 2022; 12(2):220. https://doi.org/10.3390/coatings12020220
Chicago/Turabian StyleVassallo, Espedito, Marco Aloisio, Matteo Pedroni, Francesco Ghezzi, Pierfrancesco Cerruti, and Riccardo Donnini. 2022. "Effect of Low-Pressure Plasma Treatment on the Surface Wettability of Poly(butylene succinate) Films" Coatings 12, no. 2: 220. https://doi.org/10.3390/coatings12020220
APA StyleVassallo, E., Aloisio, M., Pedroni, M., Ghezzi, F., Cerruti, P., & Donnini, R. (2022). Effect of Low-Pressure Plasma Treatment on the Surface Wettability of Poly(butylene succinate) Films. Coatings, 12(2), 220. https://doi.org/10.3390/coatings12020220