Mechanical Behaviour of Hard Chromium Deposited from a Trivalent Chromium Bath
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Microstructure
3.2. Mechanical Behaviour
3.3. Mechanical Properties
3.3.1. Hardness and Stiffness
3.3.2. Yield Strength
3.3.3. Toughness
4. Discussion
5. Conclusions
- The elastofragile behaviour of the trivalent chromium coating was demonstrated by spherical indentation.
- The modulus of elasticity was determined by nanoindentation tests. Depending on the processing conditions, the values varied from 182 to 211 GPa on trivalent chromium coatings. The average value was 15% lower than those of the hexavalent chromium deposit.
- The lower measured stiffness value of the trivalent chromium coating was attributed to its amorphous microstructure in contrast to the hexavalent chromium, which has a fine-grained polycrystalline structure.
- Concerning brittleness, a lower toughness value was assessed for trivalent chromium by the micropillar indentation test. Previously, for the hexavalent deposit, a minimum value of 5 MPa√m was estimated. Finally, the low toughness value of the trivalent chromium deposit was attributed to its high interstitial carbon content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Ma, C.; Walsh, F.C. Alternative Tribological Coatings to Electrodeposited Hard Chromium: A Critical Review. Trans. IMF 2020, 98, 173–185. [Google Scholar] [CrossRef]
- Do Nascimento, M.P.; Voorwald, H.J.C. The Significance and Determination by Image Analysis of Microcrack Density in Hard Chromium Plating. Plat. Surf. Finish. 2008, 95, 36–42. [Google Scholar]
- Benaben, P. Chromage. Technique de l’Ingénieur. 10 June 1997, M1625 v2. Available online: https://www.techniques-ingenieur.fr/ (accessed on 30 January 2022).
- Zeng, Z.; Wang, L.; Liang, A.; Zhang, J. Tribological and Electrochemical Behavior of Thick Cr–C Alloy Coatings Electrodeposited in Trivalent Chromium Bath as an Alternative to Conventional Cr Coatings. Electrochim. Acta 2006, 52, 1366–1373. [Google Scholar] [CrossRef]
- Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Saravanan, G.; Renganathan, N.G. Comparison of Chromium Coatings and Electrochemical Behaviour with Direct Current and Pulse Current Deposition in Trivalent Chromium Formate Urea Bath as Alternative to Conventional Cr Coatings. Surf. Eng. 2011, 27, 775–783. [Google Scholar] [CrossRef]
- Protsenko, V.S.; Danilov, F.I. Chromium Electroplating from Trivalent Chromium Baths as an Environmentally Friendly Alternative to Hazardous Hexavalent Chromium Baths: Comparative Study on Advantages and Disadvantages. Clean Technol. Environ. Policy 2014, 16, 1201–1206. [Google Scholar] [CrossRef]
- Danilov, F.I.; Protsenko, V.S.; Gordiienko, V.O.; Kwon, S.C.; Lee, J.Y.; Kim, M. Nanocrystalline Hard Chromium Electrodeposition from Trivalent Chromium Bath Containing Carbamide and Formic Acid: Structure, Composition, Electrochemical Corrosion Behavior, Hardness and Wear Characteristics of Deposits. Appl. Surf. Sci. 2011, 257, 8048–8053. [Google Scholar] [CrossRef]
- Hordienko, V.O.; Protsenko, V.S.; Kwon, S.C.; Lee, J.-Y.; Danilov, F.I. Electrodeposition of Chromium Coatings from Sulfate–Carbamide Electrolytes Based on Cr(III) Compounds. Mater. Sci. 2011, 46, 647–652. [Google Scholar] [CrossRef]
- Mohan, S.; Vijayakumar, J.; Saravanan, G. Influence of CH3SO3H and AlCl3 in Direct and Pulse Current Electrodeposition of Trivalent Chromium. Surf. Eng. 2009, 25, 570–576. [Google Scholar] [CrossRef]
- Protsenko, V.; Danilov, F. Kinetics and Mechanism of Chromium Electrodeposition from Formate and Oxalate Solutions of Cr (III) Compounds. Electrochim. Acta 2009, 54, 5666–5672. [Google Scholar] [CrossRef]
- Hoare, J.P. On the Mechanisms of Chromium Electrodeposition. J. Electrochem. Soc. 1979, 126, 190–199. [Google Scholar] [CrossRef]
- Hoare, J.P. A Voltammetric Study of the Reduction of Chromic Acid on Bright Platinum. J. Electrochem. Soc. 1983, 130, 1475–1479. [Google Scholar] [CrossRef]
- Lu, C.-E.; Pu, N.-W.; Hou, K.-H.; Tseng, C.-C.; Ger, M.-D. The Effect of Formic Acid Concentration on the Conductivity and Corrosion Resistance of Chromium Carbide Coatings Electroplated with Trivalent Chromium. Appl. Surf. Sci. 2013, 282, 544–551. [Google Scholar] [CrossRef]
- Zeng, Z.; Sun, Y.; Zhang, J. The Electrochemical Reduction Mechanism of Trivalent Chromium in the Presence of Formic Acid. Electrochem. Commun. 2009, 11, 331–334. [Google Scholar] [CrossRef]
- Del Pianta, D.; Frayret, J.; Gleyzes, C.; Cugnet, C.; Dupin, J.C.; Le Hecho, I. Determination of the Chromium(III) Reduction Mechanism during Chromium Electroplating. Electrochim. Acta 2018, 284, 234–241. [Google Scholar] [CrossRef]
- Baral, A.; Engelken, R. Modeling, Optimization, and Comparative Analysis of Trivalent Chromium Electrodeposition from Aqueous Glycine and Formic Acid Baths. J. Electrochem. Soc. 2005, 152, C504. [Google Scholar] [CrossRef]
- Bikulčius, G.; Češunienė, A.; Selskienė, A.; Pakštas, V.; Matijošius, T. Dry Sliding Tribological Behavior of Cr Coatings Electrodeposited Intrivalent Chromium Sulphate Baths. Surf. Coat. Technol. 2017, 315, 130–138. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Tian, X.; Zou, L.; Zhao, X.; Wang, S.; Wang, S. The Hardness and Corrosion Properties of Trivalent Chromium Hard Chromium. Mater. Sci. Appl. 2017, 8, 1014–1026. [Google Scholar] [CrossRef] [Green Version]
- Survilienė, S.; Jasulaitienė, V.; Nivinskienė, O.; Češūnienė, A. Effect of Hydrazine and Hydroxylaminophosphate on Chrome Plating from Trivalent Electrolytes. Appl. Surf. Sci. 2007, 253, 6738–6743. [Google Scholar] [CrossRef]
- Giovanardi, R.; Orlando, G. Chromium Electrodeposition from Cr(III) Aqueous Solutions. Surf. Coat. Technol. 2011, 205, 3947–3955. [Google Scholar] [CrossRef]
- Protsenko, V.S.; Danilov, F.I.; Gordiienko, V.O.; Baskevich, A.S.; Artemchuk, V.V. Improving Hardness and Tribological Characteristics of Nanocrystalline Cr–C Films Obtained from Cr(III) Plating Bath Using Pulsed Electrodeposition. Int. J. Refract. Met. Hard Mater. 2012, 31, 281–283. [Google Scholar] [CrossRef]
- Liang, A.; Li, Y.; Liang, H.; Ni, L.; Zhang, J. A Favorable Chromium Coating Electrodeposited from Cr(III) Electrolyte Reveals Anti-Wear Performance Similar to Conventional Hard Chromium. Mater. Lett. 2017, 189, 221–224. [Google Scholar] [CrossRef]
- Daure, J.L.; Carrington, M.J.; Shipway, P.H.; McCartney, D.G.; Stewart, D.A. A Comparison of the Galling Wear Behaviour of PVD Cr and Electroplated Hard Cr Thin Films. Surf. Coat. Technol. 2018, 350, 40–47. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, S.; Cheng, Q.; Zhang, Z.; Yao, Z.; Moliar, O. Characterization and Corrosion Resistance Study of the Fe–Cr Films Electrodeposited from Trivalent Chromium Sulfate Electrolyte. Mater. Res. Express 2019, 6, 126430. [Google Scholar] [CrossRef]
- Xu, L.; Pi, L.; Dou, Y.; Cui, Y.; Mao, X.; Lin, A.; Fernandez, C.; Peng, C. Electroplating of Thick Hard Chromium Coating from a Trivalent Chromium Bath Containing a Ternary Complexing Agent: A Methodological and Mechanistic Study. ACS Sustain. Chem. Eng. 2020, 8, 15540–15549. [Google Scholar] [CrossRef]
- Mahdavi, S.; Allahkaram, S.; Heidarzadeh, A. Characteristics and Properties of Cr Coatings Electrodeposited from Cr(III) Baths. Mater. Res. Express 2019, 6, 026403. [Google Scholar] [CrossRef]
- Darbeïda, A.; von Stebut, J.; Barthole, M.; Belliard, P.; Lelait, L.; Zacharie, G. Comparative Tribological Study of Chromium Coatings with Different Specific Hardness. Surf. Coat. Technol. 1994, 68–69, 582–590. [Google Scholar] [CrossRef]
- Kamiya, S.; Hanyu, H.; Amaki, S.; Yanase, H. Statistical Evaluation of the Strength of Wear-Resistant Hard Coatings. Surf. Coat. Technol. 2007, 202, 1154–1159. [Google Scholar] [CrossRef]
- Best, J.P.; Zechner, J.; Wheeler, J.M.; Schoeppner, R.; Morstein, M.; Michler, J. Small-Scale Fracture Toughness of Ceramic Thin Films: The Effects of Specimen Geometry, Ion Beam Notching and High Temperature on Chromium Nitride Toughness Evaluation. Philos. Mag. 2016, 96, 3552–3569. [Google Scholar] [CrossRef]
- Sebastiani, M.; Johanns, K.E.; Herbert, E.G.; Pharr, G.M. Measurement of Fracture Toughness by Nanoindentation Methods: Recent Advances and Future Challenges. Curr. Opin. Solid State Mater. Sci. 2015, 19, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Riedl, A.; Daniel, R.; Stefenelli, M.; Schöberl, T.; Kolednik, O.; Mitterer, C.; Keckes, J. A Novel Approach for Determining Fracture Toughness of Hard Coatings on the Micrometer Scale. Scr. Mater. 2012, 67, 708–711. [Google Scholar] [CrossRef]
- Di Maio, D.; Roberts, S.G. Measuring Fracture Toughness of Coatings Using Focused-Ion-Beam-Machined Microbeams. J. Mater. Res. 2005, 20, 299–302. [Google Scholar] [CrossRef]
- Liu, S.; Wheeler, J.M.; Howie, P.R.; Zeng, X.T.; Michler, J.; Clegg, W.J. Measuring the Fracture Resistance of Hard Coatings. Appl. Phys. Lett. 2013, 102, 171907. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, M.; Johanns, K.E.; Herbert, E.G.; Carassiti, F.; Pharr, G.M. A Novel Pillar Indentation Splitting Test for Measuring Fracture Toughness of Thin Ceramic Coatings. Philos. Mag. 2015, 95, 1928–1944. [Google Scholar] [CrossRef]
- Pharr, G.M. Measurement of Mechanical Properties by Ultra-Low Load Indentation. Mater. Sci. Eng. A 1998, 253, 151–159. [Google Scholar] [CrossRef]
- Brandes, E.A.; Brook, G.B. (Eds.) Smithells Metals Reference Book, 7th ed.; Elsevier: Amsterdam, The Netherlands, 1992; ISBN 978-0-08-051730-8. [Google Scholar]
- Sebastiani, M.; Bemporad, E.; Carassiti, F.; Schwarzer, N. Residual Stress Measurement at the Micrometer Scale: Focused Ion Beam (FIB) Milling and Nanoindentation Testing. Philos. Mag. 2011, 91, 1121–1136. [Google Scholar] [CrossRef]
- Willis, D.J.; Hammond, C. Structure of Chromium Deposits from Plating Solutions Containing Trivalent and Hexavalent Chromium. Mater. Sci. Technol. 1986, 2, 630–636. [Google Scholar] [CrossRef]
- Wang, L.M.; Wang, W.H.; Wang, R.J.; Zhan, Z.J.; Dai, D.Y.; Sun, L.L.; Wang, W.K. Ultrasonic Investigation of Pd39Ni10Cu30P21 Bulk Metallic Glass upon Crystallization. Appl. Phys. Lett. 2000, 77, 1147–1149. [Google Scholar] [CrossRef]
- Xing, L.Q.; Bertrand, C.; Dallas, J.-P.; Cornet, M. Nanocrystal Evolution in Bulk Amorphous Zr57Cu20Al10Ni8Ti5 Alloy and Its Mechanical Properties. Mater. Sci. Eng. A 1998, 241, 216–225. [Google Scholar] [CrossRef]
- Alexis, J.; Etcheverry, B.; Beguin, J.D.; Bonino, J.P. Structure, Morphology and Mechanical Properties of Electrodeposited Composite Coatings Ni–P/SiC. Mater. Chem. Phys. 2010, 120, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Swanson, H.E. Standard X-ray Diffraction Powder Patterns. Natl. Bur. Stand. Circ. 1954, 539, 73. [Google Scholar] [CrossRef]
- Liao, G.; Long, Z.; Zhao, M.; Zhong, M.; Liu, W.; Chai, W. Serrated Flow Behavior in a Pd-Based Bulk Metallic Glass under Nanoindentation. J. Non-Cryst. Solids 2017, 460, 47–53. [Google Scholar] [CrossRef]
- Kumar, A.; Nayak, S.K.; Pathak, A.; Banerjee, A.; Laha, T. Investigation of Nanomechanical Deformation Behavior in Plasma Sprayed Fe-Based Amorphous/ Nanocrystalline Composite Coating via Multi-Scale Indentation and Nanotribology. J. Non-Cryst. Solids 2020, 545, 120244. [Google Scholar] [CrossRef]
- Pöhl, F. Pop-in Behavior and Elastic-to-Plastic Transition of Polycrystalline Pure Iron during Sharp Nanoindentation. Sci. Rep. 2019, 9, 15350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durut, F. Recherche des Mécanismes Microstructuraux qui Régissent les Propriétés Macroscopiques de Dépôts de Chrome: Influence des Paramètres d’Elaboration. Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint-Etienne, France, 1999. [Google Scholar]
- Chen, X.; Yan, Q.; Ma, Q. Influence of the Laser Pre-Quenched Substrate on an Electroplated Chromium Coating/Steel Substrate. Appl. Surf. Sci. 2017, 405, 273–279. [Google Scholar] [CrossRef]
- Briant, C.L.; Kumar, K.S.; Rosenberg, N.; Tomioka, H. The Mechanical Properties of High Purity Chromium. Int. J. Refract. Met. Hard Mater. 2000, 18, 9–11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillon, R.; Dalverny, O.; Fori, B.; Gazeau, C.; Alexis, J. Mechanical Behaviour of Hard Chromium Deposited from a Trivalent Chromium Bath. Coatings 2022, 12, 354. https://doi.org/10.3390/coatings12030354
Guillon R, Dalverny O, Fori B, Gazeau C, Alexis J. Mechanical Behaviour of Hard Chromium Deposited from a Trivalent Chromium Bath. Coatings. 2022; 12(3):354. https://doi.org/10.3390/coatings12030354
Chicago/Turabian StyleGuillon, Robin, Olivier Dalverny, Benoit Fori, Celine Gazeau, and Joel Alexis. 2022. "Mechanical Behaviour of Hard Chromium Deposited from a Trivalent Chromium Bath" Coatings 12, no. 3: 354. https://doi.org/10.3390/coatings12030354
APA StyleGuillon, R., Dalverny, O., Fori, B., Gazeau, C., & Alexis, J. (2022). Mechanical Behaviour of Hard Chromium Deposited from a Trivalent Chromium Bath. Coatings, 12(3), 354. https://doi.org/10.3390/coatings12030354