Electrical and Hysteresis Characteristics of Top-Gate InGaZnO Thin-Film Transistors with Oxygen Plasma Treatment Prior to TEOS Oxide Gate Dielectrics
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Surface Roughness Analysis of a-IGZO Films at Various O2 Plasma Times
3.2. Electrical Characteristics of IGZO TFTs at Various O2 Plasma Times
3.3. Effect of O2 Annealing on Hysteresis Characteristics of IGZO TFTs at Various O2 Plasma Times
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baek, G.; Bie, L.; Abe, K.; Kumomi, H.; Kanicki, J. Electrical Instability of Double-Gate a-IGZO TFTs With Metal Source/Drain Recessed Electrodes. IEEE Trans. Electron Devices 2014, 61, 1109–1115. [Google Scholar] [CrossRef]
- Cao, Q.; Kim, H.S.; Pimparkar, N.; Kulkarni, J.P.; Wang, C.; Shim, M.; Roy, K.; Alam, M.A.; Rogers, J.A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-L.; Chang, W.-Y.; Hung, C.-C. Compensating Pixel Circuit Driving AMOLED Display With a-IGZO TFTs. IEEE Electron Device Lett. 2013, 34, 1166–1168. [Google Scholar] [CrossRef]
- Seok, M.J.; Choi, M.H.; Mativenga, M.; Geng, D.; Kim, D.Y.; Jang, J. A Full-Swing a-IGZO TFT-Based Inverter with a Top-Gate-Bias-Induced Depletion Load. IEEE Electron Device Lett. 2011, 32, 1089–1091. [Google Scholar] [CrossRef]
- Kang, D.H.; Kang, I.; Ryu, S.H.; Jang, J. Self-Aligned Coplanar a-IGZO TFTs and Application to High-Speed Circuits. IEEE Electron Device Lett. 2011, 32, 1385–1387. [Google Scholar] [CrossRef]
- Arias, A.C.; MacKenzie, J.D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 2010, 110, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 2006, 352, 851–858. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Yen, T.-W.; Lin, C.-I.; Lin, H.-C.; Yeh, Y. Electrical characteristics of amorphous In–Ga–Zn–O thin-film transistors prepared by radio frequency magnetron sputtering with varying oxygen flows. Displays 2014, 35, 165–170. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Fan, S.-K.; Chen, C.-W.; Yen, T.-W.; Lin, H.-C. Temperature instability of amorphous In-Ga-Zn-O thin film transistors. In Proceedings of the 2013 6th IEEE/International Conference on Advanced Infocomm Technology (ICAIT), Hsinchu, Taiwan, 6–9 July 2013. [Google Scholar]
- Park, J.; Song, I.; Kim, S.; Kim, S.; Kim, C.; Lee, J.; Lee, H.; Lee, E.; Yin, H.; Kim, K.-K.; et al. Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 53501. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, W.; Zhang, M.; Wong, M.; Kwok, H.S. Self-aligned top-gate InGaZnO thin film transistors using SiO2/Al2O3 stack gate dielectric. Thin. Solid Film. 2013, 548, 572–575. [Google Scholar] [CrossRef]
- Ahn, J.S.; Lee, K.B. Control of the threshold voltage by using the oxygen partial pressure in sputter-deposited InGaZnO4 thin-film transistors. J. Korean Phys. Soc. 2012, 60, 1625–1628. [Google Scholar] [CrossRef]
- Jeong, J.K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond. Sci. Technol. 2011, 26, 34008. [Google Scholar] [CrossRef]
- Pu, H.; Zhou, Q.; Yue, L.; Zhang, Q. Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors. Appl. Surf. Sci. 2013, 283, 722–726. [Google Scholar] [CrossRef]
- Kim, J.-S.; Joo, M.-K.; Xing Piao, M.; Ahn, S.-E.; Choi, Y.-H.; Jang, H.-K.; Kim, G.-T. Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors. J. Appl. Phys. 2014, 115, 114503. [Google Scholar] [CrossRef]
- Liu, W.-S.; Hsu, C.-H.; Jiang, Y.; Lai, Y.-C.; Kuo, H.-C. Improvement of device characteristics of plasma-treated indium gallium zinc oxide thin-film transistors through thermal annealing. Semicond. Sci. Technol. 2021, 36, 45007. [Google Scholar] [CrossRef]
- Wang, H.; Xu, W.; Zhou, S.; Xie, F.; Xiao, Y.; Ye, L.; Chen, J.; Xu, J. Oxygen plasma assisted high performance solution-processed Al2Ox gate insulator for combustion-processed InGaZnOx thin film transistors. J. Appl. Phys. 2015, 117, 35703. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Wang, Y.-H.; Tien, T.-C.; Hsieh, T.-E.; Lai, C.-H. Electrical Characteristics and Stability Improvement of Top-Gate In-Ga-Zn-O Thin-Film Transistors with Al2O3/TEOS Oxide Gate Dielectrics. Coatings 2020, 10, 1146. [Google Scholar] [CrossRef]
- Dimitrijev, S. Principle of Semiconductor Devices, 2nd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Park, J.-W.; Baik, H.-K.; Lim, T.; Ju, S. Threshold voltage control of oxide nanowire transistors using nitrogen plasma treatment. Appl. Phys. Lett. 2010, 97, 203508. [Google Scholar] [CrossRef]
- Liu, P.; Chen, T.P.; Liu, Z.; Tan, C.S.; Leong, K.C. Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films. Thin Solid Film. 2013, 545, 533–536. [Google Scholar] [CrossRef]
- Kim, J.; Bang, S.; Lee, S.; Shin, S.; Park, J.; Seo, H.; Jeon, H. A study on H2 plasma treatment effect on a-IGZO thin film transistor. J. Mater. Res. 2012, 27, 2318–2325. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-S.; Hsu, C.-H.; Jiang, Y.; Lai, Y.-C.; Kuo, H.-C. Improving Device Characteristics of Dual-Gate IGZO Thin-Film Transistors with Ar–O2 Mixed Plasma Treatment and Rapid Thermal Annealing. Membranes 2022, 12, 49. [Google Scholar] [CrossRef]
- Yi, C.; Rhee, S.W. Cyclic plasma deposition of SiO2 films at low temperature (80 °C) with intermediate plasma treatment. J. Vac. Sci. Technol. A Vac. Surf. Film. 2002, 20, 398–402. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing. Appl. Phys. Lett. 2008, 93, 192107. [Google Scholar] [CrossRef]
- Chung, W.-F.; Chang, T.-C.; Li, H.-W.; Chen, C.-W.; Chen, Y.-C.; Chen, S.-C.; Tseng, T.-Y.; Tai, Y.-H. Influence of H2O Dipole on Subthreshold Swing of Amorphous Indium–Gallium–Zinc-Oxide Thin Film Transistors. Electrochem. Solid-State Lett. 2011, 14, H114–H116. [Google Scholar] [CrossRef]
- Nayak, P.K.; Hedhili, M.N.; Cha, D.; Alshareef, H.N. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment. Appl. Phys. Lett. 2012, 100, 202106. [Google Scholar] [CrossRef] [Green Version]
- Nomura, K.; Kamiya, T.; Kikuchi, Y.; Hirano, M.; Hosono, H. Comprehensive studies on the stabilities of a-In-Ga-Zn-O based thin film transistor by constant current stress. Thin Solid Film. 2010, 518, 3012–3016. [Google Scholar] [CrossRef]
- Kimura, M.; Nakanishi, T.; Nomura, K.; Kamiya, T.; Hosono, H. Trap densities in amorphous-InGaZnO4 thin-film transistors. Appl. Phys. Lett. 2008, 92, 133512. [Google Scholar] [CrossRef]
O2 Plasma Time (s) | Z Range (nm) | RMS (nm) | Ra (nm) |
---|---|---|---|
0 | 8.329 | 0.671 | 0.458 |
60 | 7.877 | 1.049 | 0.817 |
120 | 11.14 | 1.857 | 1.531 |
O2 Plasma Time (s) | Vth (V) | S.S. (V/Decade) | μFE (cm2 V−1s−1) | Ion (A) | Ioff (A) | ρ2.5V (Ω·cm) |
---|---|---|---|---|---|---|
0 | −5.74 ± 0.31 | 1.045 ± 0.036 | 1.95 ± 0.31 | 2.4 × 10−6 | 3.0 × 10−14 | 6.26 |
60 | −0.14 ± 0.08 | 0.395 ± 0.031 | 8.14 ± 0.86 | 1.3 × 10−6 | 1.1 × 10−14 | 7.64 |
120 | 5.14 ± 0.51 | 2.210 ± 0.204 | 2.98 ± 0.31 | 1.3 × 10−6 | 4.4 × 10−12 | 8.26 |
O2 Plasma Time (s) | Si (%) | O (%) | C (%) | O/Si |
---|---|---|---|---|
0 | 44.66 | 51.41 | 3.91 | 1.15 |
60 | 26.77 | 70.80 | 2.42 | 2.64 |
120 | 21.40 | 75.88 | 2.71 | 3.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tien, T.-C.; Hsieh, T.-E.; Lee, Y.-S.; Wang, Y.-H.; Lee, M.-L. Electrical and Hysteresis Characteristics of Top-Gate InGaZnO Thin-Film Transistors with Oxygen Plasma Treatment Prior to TEOS Oxide Gate Dielectrics. Coatings 2022, 12, 383. https://doi.org/10.3390/coatings12030383
Tien T-C, Hsieh T-E, Lee Y-S, Wang Y-H, Lee M-L. Electrical and Hysteresis Characteristics of Top-Gate InGaZnO Thin-Film Transistors with Oxygen Plasma Treatment Prior to TEOS Oxide Gate Dielectrics. Coatings. 2022; 12(3):383. https://doi.org/10.3390/coatings12030383
Chicago/Turabian StyleTien, Tsung-Cheng, Tsung-Eong Hsieh, Yih-Shing Lee, Yu-Hsin Wang, and Ming-Ling Lee. 2022. "Electrical and Hysteresis Characteristics of Top-Gate InGaZnO Thin-Film Transistors with Oxygen Plasma Treatment Prior to TEOS Oxide Gate Dielectrics" Coatings 12, no. 3: 383. https://doi.org/10.3390/coatings12030383
APA StyleTien, T. -C., Hsieh, T. -E., Lee, Y. -S., Wang, Y. -H., & Lee, M. -L. (2022). Electrical and Hysteresis Characteristics of Top-Gate InGaZnO Thin-Film Transistors with Oxygen Plasma Treatment Prior to TEOS Oxide Gate Dielectrics. Coatings, 12(3), 383. https://doi.org/10.3390/coatings12030383