Facile Preparation of YVO4: RE Films and the Investigation of Photoluminescence
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Characterization of Y2(OH)5NO3·nH2O (LYH) Film and YVO4 Film
3.2. Evolution of Phase and Morphology from LYH to YVO4 upon Anion Exchange
3.3. Structure Characterization and Photoluminescence of Activators Doped YVO4 Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dunlap-Shohl, W.A.; Zhou, Y.; Padture, N.P.; Mitzi, D.B. Synthetic Approaches for Halide Perovskite Thin Films. Chem. Rev. 2019, 119, 3193–3295. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Li, L.; Yang, Y. Inorganic Porous Films for Renewable Energy Storage. ACS Energy Lett. 2017, 2, 373–390. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Zhao, B.; Pei, P.; Fan, Y.; Li, X.; Zhang, F. Er3+ Sensitized 1530 nm to 1180 nm Second Near-Infrared Window Upconversion Nanocrystals for In Vivo Biosensing. Angew. Chem. Int. Ed. 2018, 57, 7518–7522. [Google Scholar] [CrossRef] [PubMed]
- Mashford, B.S.; Nguyen, T.L.; Wilson, G.J.; Mulvaney, P. All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing. J. Mater. Chem. A 2010, 20, 167–172. [Google Scholar] [CrossRef]
- Vadivel, S.; Paul, B.; Kumaravel, M.; Hariganesh, S.; Rajendran, S.; Mantilaka, M.M.M.G.P.G.; Mamba, G.; Puviarasu, P. Facile synthesis of YbVO4, and YVO4 nanostructures through MOF route for photocatalytic applications. Inorganic Chem. Commun. 2020, 115, 107855. [Google Scholar] [CrossRef]
- Yi, S.; Bae, J.S.; Shim, K.S.; Moon, B.K.; Jeong, J.H.; Chung, S.T.; Kim, J.H. Luminescence characteristics of Eu-doped GdVO4 thin films grown by pulsed-laser deposition. J. Vac. Sci. Technol. A 2005, 23, 1124–1127. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Jin, T.; Yan, H. Rapid fabrication of luminescent Eu: YVO4 films by microwave-assisted chemical solution deposition. Nanotechnology 2005, 16, 65–69. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, P.; Li, C.; Wang, L.; Lian, H.; Quan, Z.; Lin, J. Preparation and Luminescence Properties of YVO4:Ln and Y(V, P)O4:Ln (Ln ) Eu3+, Sm3+, Dy3+) Nanofibers and Microbelts by Sol-Gel/Electrospinning Process. Chem. Mater. 2008, 20, 6686–6696. [Google Scholar] [CrossRef]
- Geng, F.; Matsushita, Y.; Ma, R.; Xin, H.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T. General synthesis and structural evolution of a layered family of Ln8(OH)20Cl4·nH2O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y). J. Am. Chem. Soc. 2008, 130, 16344–16350. [Google Scholar] [CrossRef]
- Geng, F.; Xin, H.; Matsushita, Y.; Ma, R.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T. New layered rare-earth hydroxides with anion-exchange properties. Chem. Eur. J. 2008, 14, 9255–9260. [Google Scholar] [CrossRef]
- Gandara, F.; Perles, J.; Snejko, N.; Iglesias, M.; Gomez-Lor, B.; Gutierrez-Puebla, E.; Monge, M.A. Layered rare-earth hydroxides: A class of pillared crystalline compounds for intercalation chemistry. Agnew. Chem. Int. Ed. 2006, 45, 7998–8001. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, L.J.; Jackson, L.K.; Fogg, A.M. Ln2(OH)5NO3 · xH2O (Ln = Y, Gd-Lu): A Novel Family of Anion Exchange Intercalation Hosts. Chem. Mater. 2008, 20, 335–340. [Google Scholar] [CrossRef]
- Hindocha, S.A.; McIntyre, L.J.; Fogg, A.M. Precipitation synthesis of lanthanide hydroxy nitrate anion exchange materials, Ln2(OH)5NO3·H2O (Ln =Y, Eu-Er). J. Solid State Chem. 2009, 182, 1070–1074. [Google Scholar] [CrossRef]
- Gandara, F.; Puebla, E.G.; Iglesias, M.; Proserpio, D.M.; Snejko, N.; Monge, M.A. Controlling the structure of Arenedisulfonates toward Catalytically Active Materials. Chem. Mater. 2009, 21, 655–661. [Google Scholar] [CrossRef]
- Sokolov, M.R.; Enakieva, Y.Y.; Yapryntsev, A.D.; Shiryaev, A.A.; Zvyagina, A.I.; Kalinina, M.A. Intercalation of Porphyrin-Based SURMOF in Layered Eu (III) Hydroxide: An Approach Toward Symbimetic Hybrid Materials. Adv. Funct. Mater. 2020, 30, 2000681. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, B.I.; You, J.; Byeon, S.H. Transparent Gd2O3: Eu phosphor layer derived from exfoliated layered gadolinium hydroxide nanosheets. Chem. Commun. 2010, 46, 1461–1463. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Guo, M.; Yang, X. Structural and photoluminescent investigation of LTbH/LEuH nanosheets and their color-tunable colloidal hybrids. J. Mater. Chem. C 2013, 1, 3584–3592. [Google Scholar] [CrossRef]
- Hu, L.; Ma, R.; Ozawa, T.C.; Sasaki, T. Exfoliation of layered europium hydroxide into unilamellar nanosheets. Chem. Asian J. 2010, 5, 248–251. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, J.; Zhi, C.; Li, X.; Sun, X.; Sakka, Y.; Golberg, D.; Bando, Y. Layered Rare-Earth Hydroxides (LRHs) of (Y1−xEux)2(OH)5NO3·nH2O (x = 0–1): Structural Variations by Eu3+ Doping, Phase Conversion to Oxides, and the Correlation of Photoluminescence Behaviors. Chem. Mater. 2010, 22, 4204–4213. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Zhu, Q.; Li, J.; Ma, R.Z.; Sasaki, T.; Li, X.; Sun, X.; Sakka, Y. The effects of Gd3+ substitution on the crystal structure, site symmetry, and photoluminescence of Y/Eu layered rare-earth hydroxide (LRH) nanoplates. Dalton Trans. 2012, 41, 1854–1861. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Zhu, Q.; Liu, W.; Li, J.; Li, X.; Sun, X.; Sakka, Y. One-step freezing temperature crystallization of layered rare-earth hydroxide (Ln2(OH)5NO3·nH2O) nanosheets for a wide spectrum of Ln (Ln = Pr-Er, and Y), anion exchange with fluorine and sulfate, and microscopic coordination probed via photoluminescence. J. Mater. Chem. C 2015, 3, 3428–3437. [Google Scholar] [CrossRef]
- Hu, L.; Ma, R.; Ozawa, T.C.; Sasaki, T. Oriented Monolayer Film of Gd2O3:0.05Eu Crystallites: Quasi-Topotactic Transformation of the Hydroxide Film and Drastic Enhancement of Photoluminescence Properties. Agnew. Chem. Int. Ed. 2009, 48, 3846–3849. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, J.; Zhi, C.; Ma, R.; Sasaki, T.; Xu, J.; Liu, C.; Li, X.; Sun, X.; Sakka, Y. Nanometer-thin layered hydroxide platelets of (Y0.95Eu0.05)2(OH)5NO3·xH2O: Exfoliation-free synthesis, self-assembly, and the derivation of dense oriented oxide films of high transparency and greatly enhanced luminescence. J. Mater. Chem. 2011, 21, 6903–6908. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, T.; Ren, K.; Zhang, R.; Wu, X.; Li, J. Fabrication of oriented oxide films from exfoliated yttrium hydroxide layers: Enhanced photoluminescence and unexplored behavior of energy transfer. J. Alloys Compd. 2018, 763, 815–821. [Google Scholar] [CrossRef]
- Chu, N.; Sun, Y.; Zhao, Y.; Li, X.; Sun, G.; Ma, S.; Yang, X. Intercalation of organic sensitisers into layered europium hydroxide and enhanced luminescence property. Dalton Trans. 2012, 41, 7409–7414. [Google Scholar] [CrossRef]
- Sun, Y.; Chu, N.; Gu, Q.; Pan, G.; Sun, G.; Ma, S.; Yang, X. Hybrid of Europium-Doped Layered Yttrium Hydroxide and Organic-Sensitizer Effect of Solvent on Structure and Luminescence Behavior. Eur. J. Inorg. Chem. 2013, 32–38. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Li, J.; Zhu, Q.; Li, X.; Sun, X.; Sakka, Y. Layered rare-earth hydroxide (LRH) and oxide nanoplates of the Y/Tb/Eu system: Phase controlled processing, structure characterization, and color-tunable photoluminescence via selective excitation and efficient energy transfer. Sci. Technol. Adv. Mater. 2013, 14, 015006. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Ping, D.; Li, J.; Zhu, Q.; Li, X.; Sun, X.; Sakka, Y. Structure Characterization and Photoluminescence Properties of (Y0.95−xGdxEu0.05)2O3 Red phosphors Converted from Layered Rare-Earth Hydroxide (LRH) nanoflake precursors. J. Alloys Compd. 2013, 559, 188–195. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Liu, W.; Cui, H.; Liu, M.; Chen, J.; Zhu, H.; Li, X.; Sun, X. A novel method for improving particle growth and photoluminescence through F- substituting for gallery NO3− in layered Y./Eu hydroxides. Chem. Eng. J. 2020, 380, 122618. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, J.; Li, X.; Sun, X.; Yang, Q.; Zhu, M.; Sakka, Y. Tens of micron-sized unilamellar nanosheets of Y/Eu layered rare-earth hydroxide: Efficient exfoliation via fast anion exchange and their self-assembly into oriented oxide film with enhanced photoluminescence. Sci. Technol. Adv. Mater. 2014, 15, 506–512. [Google Scholar] [CrossRef]
- Hu, L.; Ma, R.Z.; Ozawa, T.C.; Geng, F.; Lyi, N.B.; Sasaki, T. Oriented films of layered rare-earth hydroxide crystallites self-assembled at the hexane/water interface. Chem. Commun. 2008, 40, 4897–4899. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.S.; Byeon, S.H.; Lee, I.S. Unexplored thermal transformation behavior of two-dimensionally bound gadolinium hydroxide layers: Fabrication of oriented crystalline films of gadolinium oxychloride nanosheets suitable for the multicolor luminescence with color tunability. Adv. Mater. 2010, 22, 3272–3276. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.I.; Lee, E.S.; Byeon, S.H. Assembly of layered rare-earth hydroxide nanosheets and SiO2 nanoparticles to fabricate multifunctional transparent films capable of combinatorial color generation. Adv. Funct. Mater. 2012, 22, 3562–3569. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, S.; Wang, Q.; Qi, Y.; Li, X.; Sun, X.; Li, J. Grafting of terbium(iii) complexes onto layered rare-earth hydroxide nanosheets to fabricate novel optical fiber temperature sensors. Nanoscale 2019, 11, 2795. [Google Scholar] [CrossRef]
- Liu, L.; Yu, M.; Zhang, J.; Wang, B.; Liu, W.; Tang, Y. Facile fabrication of color-tunable and white light emitting nano-composite films based on layered rare-earth hydroxides. J. Mater. Chem. C 2015, 3, 2326–2333. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Zhu, Q.; Li, X.; Sun, X. Sacrificial conversion of layered rare-earth hydroxide (LRH) nanosheets into (Y1-xEux)PO4 nanophosphors and investigation of photoluminescence. Dalton Trans. 2016, 45, 5290–5299. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Z.; Zhu, Q.; Shi, X.; Wang, X.; Li, X.; Sun, X.; Li, J. A new protocol for templated synthesis of YVO4: Ln luminescent crystallites (Ln = Eu, Dy, Sm). J. Alloys Compd. 2019, 776, 773–781. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y.; Bai, X. Controllable synthesis and size-dependent luminescent properties of YVO4:Eu3+ nanospheres and microspheres. J. Phys. Chem. C 2010, 114, 14018–14024. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Xu, L.; Zhai, Z.; Li, M.; Li, M.; Liu, X.; Hou, W. Surfactant-free sacrificial template synthesis of submicrometer-sized YVO4:Eu3+ hierarchical hollow spheres with tunable textual parameters and luminescent properties. Dalton Trans. 2013, 42, 3986–3993. [Google Scholar] [CrossRef]
- Jia, G.; Song, Y.; Yang, M. Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: Solvothermal synthesis and luminescence properties. Opt. Mater. 2009, 31, 1032–1037. [Google Scholar] [CrossRef]
- Judd, B.R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
Samples | A = b (Å) | c (Å) | V (Å3) | Crystalline Sizes (nm) |
---|---|---|---|---|
YVO4: Eu (2%) | 7.100 | 6.259 | 315.516 | 24.51 |
YVO4: Eu (5%) | 7.121 | 6.288 | 318.856 | 23.20 |
YVO4: Eu (10%) | 7.137 | 6.304 | 321.105 | 21.73 |
YVO4: Eu (15%) | 7.160 | 6.295 | 322.717 | 21.01 |
YVO4: Eu (30%) | 7.163 | 6.315 | 324.014 | 20.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Zhang, H.; Luo, Z.; Liang, J.; Wu, X. Facile Preparation of YVO4: RE Films and the Investigation of Photoluminescence. Coatings 2022, 12, 461. https://doi.org/10.3390/coatings12040461
Chen T, Zhang H, Luo Z, Liang J, Wu X. Facile Preparation of YVO4: RE Films and the Investigation of Photoluminescence. Coatings. 2022; 12(4):461. https://doi.org/10.3390/coatings12040461
Chicago/Turabian StyleChen, Taihui, He Zhang, Zhihong Luo, Jun Liang, and Xiaoli Wu. 2022. "Facile Preparation of YVO4: RE Films and the Investigation of Photoluminescence" Coatings 12, no. 4: 461. https://doi.org/10.3390/coatings12040461
APA StyleChen, T., Zhang, H., Luo, Z., Liang, J., & Wu, X. (2022). Facile Preparation of YVO4: RE Films and the Investigation of Photoluminescence. Coatings, 12(4), 461. https://doi.org/10.3390/coatings12040461