High-Temperature Oxidation Resistance and Tribological Properties of Al2O3/ta-C Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Ronkainen, H.; Varjus, S.; Koskinen, J.; Holmberg, K. Differentiating the tribological performance of hydrogenated and hydrogen-free DLC coatings. Wear 2001, 249, 260–266. [Google Scholar] [CrossRef]
- Vetter, J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 2014, 257, 213–240. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Chen, Y.; Zhang, G.; Liu, W.; Zhang, J. The effect of applied negative bias voltage on the structure of Ti-doped aC: H films deposited by FCVA. Appl. Surf. Sci. 2007, 253, 3722–3726. [Google Scholar] [CrossRef]
- Yang, L.; Neville, A.; Brown, A.; Ransom, P.; Morina, A. Friction reduction mechanisms in boundary lubricated W-doped DLC coatings. Tribol. Int. 2014, 70, 26–33. [Google Scholar] [CrossRef]
- Charitidis, C.A. Nanomechanical and nanotribological properties of carbon-based thin films: A review. Int. J. Refract. Met. Hard Mater. 2010, 28, 51–70. [Google Scholar] [CrossRef]
- Donnet, C. Recent progress on the tribology of doped diamond-like and carbon alloy coatings: A review. Surf. Coat. Technol. 1998, 100, 180–186. [Google Scholar] [CrossRef]
- Ronkainen, H.; Varjus, S.; Holmberg, K. Tribological performance of different DLC coatings in water-lubricated conditions. Wear 2001, 249, 267–271. [Google Scholar] [CrossRef]
- Flege, S.; Hatada, R.; Ensinger, W.; Baba, K. Properties of hydrogenated DLC films as prepared by a combined method of plasma source ion implantation and unbalanced magnetron sputtering. J. Mater. Res. 2012, 27, 845–849. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006, 39, R311. [Google Scholar] [CrossRef]
- Hainsworth, S.V.; Uhure, N.J. Diamond like carbon coatings for tribology: Production techniques, characterisation methods and applications. Int. Mater. Mater. Rev. 2007, 52, 153–174. [Google Scholar] [CrossRef]
- Tahir, N.A.; Abdollah, M.F.; Tamaldin, N.; Amiruddin, H.; Mohamad Zin, M.R. A brief review on the wear mechanisms and interfaces of carbon based materials. Compos. Interfaces 2018, 25, 491–513. [Google Scholar] [CrossRef]
- Yang, J.F.; Jiang, Y.; Hardell, J.; Prakash, B.; Fang, Q.F. Influence of service temperature on tribological characteristics of self-lubricant coatings: A Review. Front. Mater. Sci. 2013, 7, 28–39. [Google Scholar] [CrossRef]
- Donnet, C.; Fontaine, J.; Le Mogne, T.; Belin, M.; Héau, C.; Terrat, J.P.; Vaux, F.; Pont, G. Diamond-like carbon-based functionally gradient coatings for space tribology. Surf. Coat. Technol. 1999, 120, 548–554. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Costa, H.L.; Baykara, M.Z.; Martini, A. Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—A review. Tribol. Int. 2021, 155, 106792. [Google Scholar] [CrossRef]
- Rouhani, M.; Hong, F.C.; Jeng, Y.R. In-situ thermal stability analysis of amorphous carbon films with different sp3 content. Carbon 2018, 130, 401–409. [Google Scholar] [CrossRef]
- Grierson, D.S.; Sumant, A.V.; Konicek, A.R.; Friedmann, T.A.; Sullivan, J.P.; Carpick, R.W. Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 2010, 107, 033523. [Google Scholar] [CrossRef] [Green Version]
- Murashima, M.; Deng, X.; Izuoka, H.; Umehara, N.; Kousaka, H. Effect of oxygen on degradation of defects on ta-C coatings deposited by filtered arc deposition. Surf. Coat. Technol. 2019, 362, 200–207. [Google Scholar] [CrossRef]
- Deng, X.; Kousaka, H.; Tokoroyama, T.; Umehara, N. Tribological behavior of tetrahedral amorphous carbon (ta-C) coatings at elevated temperatures. Tribol. Int. 2014, 75, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, S.; Banerji, A.; Khan, M.Z.; Lukitsch, M.J.; Alpas, A.T. High temperature tribological behavior of tetrahedral amorphous carbon (ta-C) and fluorinated ta-C coatings against aluminum alloys. Surf. Coat. Technol. 2015, 284, 14–25. [Google Scholar] [CrossRef]
- Podgursky, V.; Alamgir, A.; Yashin, M.; Jõgiaas, T.; Viljus, M.; Raadik, T.; Danilson, M.; Sergejev, F.; Lümkemann, A.; Kluson, J.; et al. High-Temperature Tribological Performance of Al2O3/aC: H: Si Coating in Ambient Air. Coatings 2021, 11, 495. [Google Scholar] [CrossRef]
- Podgursky, V.; Yashin, M.; Jõgiaas, T.; Viljus, M.; Alamgir, A.; Danilson, M.; Bogatov, A. high temperature tribological properties of Al2O3/NCD films investigated under ambient air conditions. Coatings 2020, 10, 175. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, A.; Bogatov, A.; Yashin, M.; Podgursky, V. Mechanical and tribological properties of 100-nm thick alumina films prepared by atomic layer deposition on Si (100) substrates. Proc. Est. Acad. Sci. 2019, 68, 126–130. [Google Scholar] [CrossRef]
- Veprek, S.; Jílek, M.; Zindulka, O. Method of producing PVD layers using rotary cylindrical cathode and apparatus for making the same. CZ2009784A3, 1 June 2011. [Google Scholar]
- Platit. Portfolio. Available online: https://www.platit.com/media/filer/2020/compendium_en61.pdf (accessed on 12 December 2021).
- Jõgiaas, T.; Zabels, R.; Tamm, A.; Merisalu, M.; Hussainova, I.; Heikkilä, M.; Maendar, H.; Kukli, K.; Ritala, M.; Leskelä, M. Mechanical properties of aluminum, zirconium, hafnium and tantalum oxides and their nanolaminates grown by atomic layer deposition. Surf. Coat. Technol. 2015, 282, 36–42. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Tokoroyama, T.; Murashima, M.; Umehara, N. The Surface Enhanced Raman Scattering Analysis for Carbonaceous Coating by Using Au Nano-Particles. Tribol. Online 2020, 15, 300–308. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Mullazzi, E.; Brivio, G.P.; Faulques, E.; Lefrant, S. Experimental and theoretical Raman results in trans polyacetylene. Solid State Commun. 1983, 46, 851–855. [Google Scholar] [CrossRef]
- Donnet, C.; Erdemir, A. (Eds.) Tribology of Diamond-Like Carbon Films: Fundamentals and Applications; Springer Science & Business Media: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Casiraghi, C.F.; Ferrari, A.C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B. 2005, 72, 085401. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.G.; Lai, Q.B.; Zhang, L.; Wang, F.M. Quantitative measurements of sp3 content in DLC films with Raman spectroscopy. Surf. Coat. Technol. 2010, 205, 1995–1999. [Google Scholar] [CrossRef]
- Bouchet, M.D.; Matta, C.; Vacher, B.; Le-Mogne, T.; Martin, J.M.; Von Lautz, J.; Ma, T.; Pastewka, L.; Otschik, J.; Gumbsch, P.; et al. Energy filtering transmission electron microscopy and atomistic simulations of tribo-induced hybridization change of nanocrystalline diamond coating. Carbon 2015, 87, 317–329. [Google Scholar] [CrossRef]
- Safaie, P.; Eshaghi, A.; Bakhshi, S.R. Structure and mechanical properties of oxygen doped diamond-like carbon thin films. Diam. Relat. Mater. 2016, 70, 91–97. [Google Scholar] [CrossRef]
- Guo, M.; Diao, D.; Fan, X.; Yang, L.; Yu, L. Scratch behavior of re-structured carbon coating by oxygen plasma etching technology for magnetic disk application. Surf. Coat. Technol. 2014, 251, 128–134. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamgir, A.; Bogatov, A.; Jõgiaas, T.; Viljus, M.; Raadik, T.; Kübarsepp, J.; Sergejev, F.; Lümkemann, A.; Kluson, J.; Podgursky, V. High-Temperature Oxidation Resistance and Tribological Properties of Al2O3/ta-C Coating. Coatings 2022, 12, 547. https://doi.org/10.3390/coatings12040547
Alamgir A, Bogatov A, Jõgiaas T, Viljus M, Raadik T, Kübarsepp J, Sergejev F, Lümkemann A, Kluson J, Podgursky V. High-Temperature Oxidation Resistance and Tribological Properties of Al2O3/ta-C Coating. Coatings. 2022; 12(4):547. https://doi.org/10.3390/coatings12040547
Chicago/Turabian StyleAlamgir, Asad, Andrei Bogatov, Taivo Jõgiaas, Mart Viljus, Taavi Raadik, Jakob Kübarsepp, Fjodor Sergejev, Andreas Lümkemann, Jan Kluson, and Vitali Podgursky. 2022. "High-Temperature Oxidation Resistance and Tribological Properties of Al2O3/ta-C Coating" Coatings 12, no. 4: 547. https://doi.org/10.3390/coatings12040547
APA StyleAlamgir, A., Bogatov, A., Jõgiaas, T., Viljus, M., Raadik, T., Kübarsepp, J., Sergejev, F., Lümkemann, A., Kluson, J., & Podgursky, V. (2022). High-Temperature Oxidation Resistance and Tribological Properties of Al2O3/ta-C Coating. Coatings, 12(4), 547. https://doi.org/10.3390/coatings12040547