The Effect of Bond Coat Roughness on the CMAS Hot Corrosion Resistance of EB-PVD Thermal Barrier Coatings
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Characterization of Microstructure
3.2. Wetting Experiments
3.3. Infiltration Experiments of Molten CMAS on 7YSZ Coatings
4. Conclusions
- The average surface roughness of the as-prepared 100#-, 400#-, and 1200#-polished bond coats is 3.54, 1.13, 0.50, and 0.10 μm, respectively. The corresponding roughness of the 7YSZ coating deposited on these bond coats is 4.88, 2.23, 1.56, and 0.62 μm, respectively. In the four different roughness treatments, the columns of the EB-PVD 7YSZ became denser with decreasing roughness of the bond coat. Moreover, the feather-like microstructural morphologies became less apparent with decreasing roughness of the bond coat.
- During the CMAS wetting process at 1250 °C, the 7YSZ coating prepared by EB-PVD tended to present with a lotus effect. This effect was particularly pronounced on the samples with the 1200#-polished bond coat. In the four different roughness treatments, the contact angle between the CMAS droplets and the 7YSZ coating increased, and the spread area became smaller as the roughness of the bond coat decreased.
- After the CMAS infiltration test at 1250 °C, the EB-PVD 7YSZ columns grown on the 1200#-treated (smoothest) bond coat could still maintain clearly visible columnar crystals. It is believed that the roughness pretreatment (i.e., polishing) of the bond coat can improve CMAS corrosion resistance by reducing the width of columnar gaps and consequently minimizing the penetration and flow of molten CMAS into the columns. In addition, with increasing bond coat surface smoothness, the feather-like microstructural feature also becomes less dominant, which clearly favors the mitigation of capillary motion-assisted infiltration of molten CMAS into the columns.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perepezko, J.H. The Hotter the Engine, the Better. Science 2009, 326, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Padture, N.P.; Gell, M.; Jordan, E.H. TBCs for Gas-Turbine Engine Applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.A. Thermal barrier coatings for aircraft engines: History and directions. J. Therm. Spray Technol. 1997, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.A. Current status of thermal barrier coatings—An overview. Surf. Coat. Technol. 1987, 30, 1–11. [Google Scholar] [CrossRef]
- Kang, Y.X.; Bai, Y.; Yuan, T.; Wang, Y.; Li, B.Q. Thermal cycling lives of plasma sprayed YSZ based thermal barrier coatings in a burner rig corrosion test. Surf. Coat. Technol. 2017, 324, 307–317. [Google Scholar] [CrossRef]
- Nieto, A.; Agrawal, R.; Bravo, L.; Hofmeister-Mock, C.; Ghoshal, A. Calcia–magnesia–alumina–silicate (CMAS) attack mechanisms and roadmap towards Sandphobic thermal and environmental barrier coatings. Int. Mater. Rev. 2020, 66, 451–492. [Google Scholar] [CrossRef]
- Wu, J.; Guo, H.B.; Gao, Y.Z.; Gong, S.K. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. J. Eur. Ceram. Soc. 2011, 31, 1881–1888. [Google Scholar] [CrossRef]
- Zhang, D.B.; Gong, S.K.; Xu, H.B.; Wu, Z.Y. Effect of bond coat surface roughness on the thermal cyclic behavior of thermal barrier coatings. Surf. Coat. Technol. 2006, 201, 649–653. [Google Scholar] [CrossRef]
- Lei, X.G.; Wang, Y.F.; Wang, Q.S.; Li, L.; Ning, X.J. A case study on CMAS corrosion of an in-situ microstructure modification YSZ TBCs fabricated by EB-PVD. Surf. Coat. Technol. 2021, 425, 127738. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Wei, H.; Zhu, S. Progress of High-temperature Protective Coatings. Corros. Sci. Technol. 2013, 25, 175–183. [Google Scholar]
- Lee, K. Volcanic Ash Degradation on Thermal Barrier Coatings and Preliminary Fabrication of Protective Coatings. University of Manchester Manchester UK. 2014. Available online: http://www.mysciencework.com/publication/show/volcanic-ash-degradation-thermal-barrier-coatings-preliminary-fabrication-protective-coatings-30a4e3cd (accessed on 18 March 2022).
- Zhang, B.; Song, W.; Wei, L.; Xiu, Y.; Xu, H.; Dingwell, D.B.; Guo, H. Novel thermal barrier coatings repel and resist molten silicate deposits. Scr. Mater. 2019, 163, 71–76. [Google Scholar] [CrossRef]
- Wang, L.; Guo, L.; Li, Z.; Peng, H.; Ma, Y.; Gong, S.; Guo, H. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium–magnesium–alumina–silicate (CMAS) attack. Ceram. Int. 2015, 41, 11662–11669. [Google Scholar] [CrossRef]
- Guo, L.; Li, G.; Gan, Z. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications. J. Adv. Ceram. 2021, 10, 472–481. [Google Scholar] [CrossRef]
- Zhang, B.; Song, W.; Guo, H. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor. J. Eur. Ceram. Soc. 2018, 38, 3564–3572. [Google Scholar] [CrossRef]
- Wu, M.; Chang, L.L.; Zhang, L.; He, X.B.; Qu, X.H. Effects of roughness on the wettability of high temperature wetting system. Surf. Coat. Technol. 2016, 287, 145–152. [Google Scholar] [CrossRef]
- Wan, B.; Zhang, H.; Gao, M.; Bai, P.; Zhang, H. High-temperature wettability and interactions between Hf-containing NbSi-based alloys and Y2O3 ceramics with various microstructures. Mater. Des. 2018, 138, 103–110. [Google Scholar] [CrossRef]
- Kang, Y.; Bai, Y.; Du, G.; Yu, F.; Bao, C.; Wang, Y.; Ding, F. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures. Mater. Lett. 2018, 229, 40–43. [Google Scholar] [CrossRef]
- Yang, S.; Song, W.; Lavallee, Y.; Zhou, X.; Dingwell, D.B.; Guo, H. Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings. Corros. Sci. 2020, 170, 108659. [Google Scholar] [CrossRef]
- Krause, A.R.; Garces, H.F.; Senturk, B.S.; Padture, N.P. 2ZrO2·Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part II, Interactions with Sand and Fly Ash. J. Am. Ceram. Soc. 2014, 97, 3950–3957. [Google Scholar] [CrossRef]
- Song, W.; Hess, K.U.; Damby, D.E.; Wadsworth, F.B.; Lavallée, Y.; Cimarelli, C.; Dingwell, D.B. Fusion characteristics of volcanic ash relevant to aviation hazards. Geophys. Res. Lett. 2014, 41, 2326–2333. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Lavallée, Y.; Hess, K.-U.; Kueppers, U.; Cimarelli, C.; Dingwell, D.B. Volcanic ash melting under conditions relevant to ash turbine interactions. Nat. Commun. 2016, 7, 10795. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Xin, H.; Hu, C. Comparison of NaVO3 + CMAS mixture and CMAS corrosion to thermal barrier coatings. Corros. Sci. 2020, 177, 108968. [Google Scholar] [CrossRef]
- Schulz, U.; Fritscher, K.; Raetzer-Scheibe, H.J.; Peters, M.; Kaysser, W.A. Thermocyclic Behaviour of Microstructurally Modified EB-PVD Thermal Barrier Coatings. In Proceedings of the 4th International Symposium High Temperature Corrosion and Protection of Materials, Les Embiez, France, 20–24 May 1996. [Google Scholar]
- Zhen, Z.; Wang, X.; Shen, Z.; Mu, R.; He, L.; Xu, Z. Thermal cycling behavior of EB-PVD rare earth oxides co-doping ZrO2-based thermal barrier coatings. Ceram. Int. 2021, 47, 23101–23109. [Google Scholar] [CrossRef]
- Shirtcliffe, N.; Comanns, P.; Hamlett, C.; Roach, P.; Atherton, S. The Effect of Roughness Geometry on Superhydrophobicity and Related Phenomena. Compr. Nanosci. Nanotechnol. 2019, 5, 291–308. [Google Scholar]
- Grave, A.D.; Botija, P.; Hansen, H.N.; Tang, P.T. Manufacturing and characterisation of water repellent surfaces. In Proceedings of the 2nd International Conference on Multi-Material Micro Manufacturing, Grenoble, France, 20–22 September 2006; pp. 281–284. [Google Scholar]
- Naraparaju, R.; Chavez, J.J.G.; Niemeyer, P.; Hess, K.-U.; Song, W.; Dingwell, D.B.; Lokachari, S.; Ramana, C.; Schulz, U. Estimation of CMAS infiltration depth in EB-PVD TBCs: A new constraint model supported with experimental approach. J. Eur. Ceram. Soc. 2019, 39, 2936–2945. [Google Scholar] [CrossRef]
- Kabir, M.R.; Sirigiri, A.K.; Naraparaju, R.; Schulz, U. Flow kinetics of molten silicates through thermal barrier coating: A numerical study. Coatings 2019, 9, 332. [Google Scholar] [CrossRef] [Green Version]
- Naraparaju, R.; Hüttermann, M.; Schulz, U.; Mechnich, P. Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings. J. Eur. Ceram. Soc. 2017, 37, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Miao, W.; Wang, L.; Guo, H.; Peng, H.; Wang, K.; Gong, S. Thermal cycling behavior and associated failure mechanism of EB-PVD thermal barrier coatings with CMAS deposits. Acta Mater. Compos. Sin. 2012, 29, 76–82. [Google Scholar]
Ni | Co | Cr | Al | Y |
---|---|---|---|---|
Bal. | 10~12 | 18~25 | 8~12 | 0.2~0.5 |
Layers | Bombardment Current (A) | Bombardment Bias Voltage (V) | Furnace Vacuum (Pa) | Coating Thickness (μm) | Time (min) |
---|---|---|---|---|---|
Bond coat | 60–70 | 600–800 | 5 × 10−3 | 80 | 90 |
Layers | Electron Beam Current (A) | Rotation Speed (rpm) | Voltage (kV) | Heating Temperature (°C) | Vacuum Chamber Pressure (Torr) | Deposition Rate (μm/min) |
---|---|---|---|---|---|---|
7YSZ coating | 0.5 | 10 | 8.5 | 950 | 1.0 × 10−5 | 2 |
Bond Coat Treatment | Contact Angle (°) | Spread Area (mm2) |
---|---|---|
As-prepared (untreated) | 12.3 | 70.6 |
Polished with 100# silicon carbide sandpaper | 14.2 | 65.1 |
Polished with 400# silicon carbide sandpaper | 15.4 | 49.4 |
Polished with 1200# silicon carbide sandpaper | 16.3 | 40.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Liu, Q.; Lee, K.-I.; Zhu, W.; Wu, L.T.; Wu, R.T. The Effect of Bond Coat Roughness on the CMAS Hot Corrosion Resistance of EB-PVD Thermal Barrier Coatings. Coatings 2022, 12, 596. https://doi.org/10.3390/coatings12050596
Xie Z, Liu Q, Lee K-I, Zhu W, Wu LT, Wu RT. The Effect of Bond Coat Roughness on the CMAS Hot Corrosion Resistance of EB-PVD Thermal Barrier Coatings. Coatings. 2022; 12(5):596. https://doi.org/10.3390/coatings12050596
Chicago/Turabian StyleXie, Zhihang, Qing Liu, Kuan-I. Lee, Wang Zhu, Liberty T. Wu, and Rudder T. Wu. 2022. "The Effect of Bond Coat Roughness on the CMAS Hot Corrosion Resistance of EB-PVD Thermal Barrier Coatings" Coatings 12, no. 5: 596. https://doi.org/10.3390/coatings12050596
APA StyleXie, Z., Liu, Q., Lee, K. -I., Zhu, W., Wu, L. T., & Wu, R. T. (2022). The Effect of Bond Coat Roughness on the CMAS Hot Corrosion Resistance of EB-PVD Thermal Barrier Coatings. Coatings, 12(5), 596. https://doi.org/10.3390/coatings12050596