Investigation of Thermal Shock Behavior of Multilayer Thermal Barrier Coatings with Superior Erosion Resistance Prepared by Atmospheric Plasma Spraying
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Coating Deposition
2.2. Particle-Erosion Test
2.3. Thermal Shock Test
2.4. Characterization
2.5. Finite Element Analysis
3. Results and Discussion
3.1. Characterization
3.2. Particle-Erosion Resistance
3.3. Thermal Shock Resistance
4. Conclusions
- The Al2O3-GAP amorphous coating with a dense microstructure was fabricated by Al2O3/Gd2O3 granulated powder under an appropriate plasma-spraying process. In the particle-erosion test, Al2O3-GAP coating exhibited superior erosion resistance compared to the middle layers and protected the integrity of the coating structure. It shows that the Al2O3-GAP coating is a promising erosion-resistant layer under severe erosion conditions.
- In the thermal shock test, the Al2O3-GAP layer experienced a series of transitions. Obvious compositional segregation and vitrification occurred at the central area of the sample after the thermal shock test, which indicated that the glass transition temperature of the Al2O3-GAP coating is close to 1500 °C. The hardness of the Al2O3-GAP coating after glass transition increased ~170% compared to the as-sprayed Al2O3-GAP coating.
- Different failure mechanisms occurred in DCL TBCs and TCL TBCs during the thermal shock test. The AGAP-YSZ coating bulged dramatically due to the tremendous thermal expansion mismatch between the TC and BC, whereas the failure of the AGAP-GZ-YSZ coating is related to the interfaces cracking inside the TC layer. The FEM simulation shows that the introduction of the GZ layer can obviously reduce the thermal stress at the TC/BC interface. Therefore, the existence of the GZ middle layer is necessary and the triple-ceramic-layered architecture is reasonable.
- In order to improve the crack resistance of the topcoat, an AGAP-GZ/YSZ-YSZ coating and an AGAP-GSZC-YSZ coating were prepared, which showed a similar failure mode to the AGAP-GZ-YSZ coating. However, the AGAP-GSZC-YSZ coating exhibited the best thermal shock resistance due to the higher fracture toughness and lower thermal conductivity of the GSZC layer. This research will provide a fundamental contribution to the engineering application of TBCs in harsh service environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, X.Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–902. [Google Scholar] [CrossRef] [Green Version]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 2002, 296, 280. [Google Scholar] [CrossRef] [PubMed]
- Feuerstein, A.; Knapp, J.; Taylor, T.; Ashary, A.; Bolcavage, A.; Hitchman, N. Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review. J. Therm. Spray Technol. 2008, 17, 199–213. [Google Scholar] [CrossRef]
- Wright, P.K.; Evans, A.G. Mechanisms governing the performance of thermal barrier coatings. Curr. Opin. Solid State Mater. Sci. 1999, 4, 255–265. [Google Scholar] [CrossRef]
- Gao, L.H.; Guo, H.B.; Wei, L.L.; Li, C.Y.; Gong, S.K.; Xu, H.B. Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition. Ceram. Int. 2015, 41, 8305–8311. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, W.; Meng, X.; Huang, W.; Bai, Y.; Dong, H. Deposition characteristics of CeO2-Gd2O3 co-stabilized zirconia (CGZ) coating prepared by solution precursor plasma spray. Surf. Coat. Technol. 2020, 381, 125114. [Google Scholar] [CrossRef]
- Pathak, D.; Bedi, R.K.; Kaur, D. Characterization of laser ablated AgInSe2 films. Mater. Sci.-Pol. 2010, 28, 199–205. [Google Scholar]
- Vaßen, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E.; Stöver, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Lashmi, P.G.; Ananthapadmanabhan, P.V.; Unnikrishnan, G.; Aruna, S.T. Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems. J. Eur. Ceram. Soc. 2020, 40, 2731–2745. [Google Scholar] [CrossRef]
- Fang, H.J.; Wang, W.Z.; Huang, J.B.; Li, Y.J.; Ye, D.D. Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate (CMAS) deposition: Experiments and first-principles calculation. Corros. Sci. 2021, 182, 109230. [Google Scholar] [CrossRef]
- Huang, J.B.; Wang, W.Z.; Li, Y.J.; Fang, H.J.; Ye, D.D.; Zhang, X.C.; Tu, S.T. A novel strategy to control the microstructure of plasma-sprayed YSZ thermal barrier coatings. Surf. Coat. Technol. 2020, 402, 126304. [Google Scholar] [CrossRef]
- Li, G.R.; Yang, G.J.; Li, C.X.; Li, C.J. Sintering characteristics of plasma-sprayed TBCs: Experimental analysis and an overall modelling. Ceram. Int. 2018, 44, 2982–2990. [Google Scholar] [CrossRef]
- Trice, R.W.; Su, Y.J.; Mawdsley, J.R.; Faber, K.T.; De Arellano-Lopez, A.R.; Wang, H.; Porter, W.D. Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ. J. Mater. Sci. 2002, 37, 2359–2365. [Google Scholar] [CrossRef]
- Fang, H.J.; Wang, W.Z.; Yang, Z.N.; Yang, T.; Wang, Y.H.; Huang, J.B.; Ye, D.D. Phase stability, thermal shock behavior and CMAS corrosion resistance of Yb2O3-Y2O3 co-stabilized zirconia thermal barrier coatings prepared by atmospheric plasma spraying. Surf. Coat. Technol. 2021, 427, 127864. [Google Scholar] [CrossRef]
- Yang, T.; Ma, W.; Meng, X.F.; Li, E.B.; Bai, Y.; Liu, C.W.; Dong, H.Y. Preparation and Thermophysical Properties of CeO2-Gd2O3 Costabilized Zirconia Thermal Barrier Coating. J. Therm. Spray Technol. 2020, 29, 115–124. [Google Scholar] [CrossRef]
- Zhang, H.S.; Chen, X.G.; Li, G.; Wang, X.L.; Dang, X.D. Influence of Gd2O3 addition on thermophysical properties of La2Ce2O7 ceramics for thermal barrier coatings. J. Eur. Ceram. Soc. 2012, 32, 3693–3700. [Google Scholar]
- Li, Z.P.; Gao, F.M. Bonding and hardness of LnMgAl11O19 (Ln = La; Pr; Nd; Sm; Eu; Gd). J. Alloys Compd. 2010, 508, 625–628. [Google Scholar] [CrossRef]
- Xie, X.Y.; Guo, H.B.; Gong, S.K.; Xu, H.B. Lanthanum-titanium-aluminum oxide: A novel thermal barrier coating material for applications at 1300 degrees C. J. Eur. Ceram. Soc. 2011, 31, 1677–1683. [Google Scholar] [CrossRef]
- Ma, W.; Mack, D.; Malzbender, J.; Vaßen, R.; Stöver, D. Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings. J. Eur. Ceram. Soc. 2008, 28, 3071–3081. [Google Scholar] [CrossRef]
- Kutty, K.V.G.; Rajagopalan, S.; Mathews, C.K.; Varadaraju, U.V. Thermal expansion behaviour of some rare earth oxide pyrochlores. Mater. Res. Bull. 1994, 29, 759–766. [Google Scholar] [CrossRef]
- Pan, W.; Phillpot, S.R.; Wan, C.L.; Chernatynskiy, A.; Qu, Z.X. Low thermal conductivity oxides. MRS Bull. 2012, 37, 917–922. [Google Scholar] [CrossRef]
- Mahade, S.; Ruelle, C.; Curry, N.; Holmberg, J.; Björklund, S.; Markocsan, N.; Nylén, P. Understanding the effect of material composition and microstructural design on the erosion behavior of plasma sprayed thermal barrier coatings. Appl. Surf. Sci. 2019, 488, 170–184. [Google Scholar] [CrossRef]
- Wang, C.M.; Guo, L.; Zhang, Y.; Zhao, X.X.; Ye, F.X. Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics. Ceram. Int. 2015, 41, 10730–10735. [Google Scholar] [CrossRef]
- Zhong, X.H.; Zhao, H.Y.; Liu, C.G.; Wang, L.; Shao, F.; Zhou, X.M.; Tao, S.Y.; Ding, C.X. Improvement in thermal shock resistance of gadolinium zirconate coating by addition of nanostructured yttria partially-stabilized zirconia. Ceram. Int. 2015, 41, 7318–7324. [Google Scholar] [CrossRef]
- Wellman, R.G.; Nicholls, J.R. A review of the erosion of thermal barrier coatings. J. Phys. D Appl. Phys. 2007, 40, 293–305. [Google Scholar] [CrossRef]
- Dwivedi, G.; Viswanathan, V.; Sampath, S.; Shyam, A.; Lara-Curzio, E. Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging. J. Am. Ceram. Soc. 2014, 97, 2736–2744. [Google Scholar] [CrossRef]
- Cernuschi, F.; Lorenzoni, L.; Capelli, S.; Guardamagna, C.; Karger, M.; Vaßen, R.; Von Niessen, K.; Markocsan, N.; Menuey, J.; Giolli, C. Solid particle erosion of thermal spray and physical vapour deposition thermal barrier coatings. Wear 2011, 271, 2909–2918. [Google Scholar] [CrossRef]
- Li, C.J.; Yang, G.J.; Ohmori, A. Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings. Wear 2006, 260, 1166–1172. [Google Scholar] [CrossRef]
- Cernuschi, F.; Guardamagna, C.; Capelli, S.; Lorenzoni, L.; Mack, D.E.; Moscatelli, A. Solid particle erosion of standard and advanced thermal barrier coatings. Wear 2016, 348–349, 43–51. [Google Scholar] [CrossRef]
- Yang, Z.N.; Wang, W.Z.; Deng, S.J.; Fang, H.J.; Yang, T.; Wang, L.B. Thermal Shock Behavior and Particle Erosion Resistance of Toughened GZ Coatings Prepared by Atmospheric Plasma Spraying. Coatings 2021, 11, 1477. [Google Scholar] [CrossRef]
- Viswanathan, V.; Dwivedi, G.; Sampath, S. Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment. J. Am. Ceram. Soc. 2015, 98, 1769–1777. [Google Scholar] [CrossRef]
- Mahade, S.; Zhou, D.P.; Curry, N.; Markocsan, N.; Nylén, P.; Vaßen, R. Tailored microstructures of gadolinium zirconate/YSZ multi-layered thermal barrier coatings produced by suspension plasma spray: Durability and erosion testing. J. Mater. Process. Technol. 2019, 264, 283–294. [Google Scholar] [CrossRef]
- Kim, D.J.; Shin, I.H.; Koo, J.M.; Seok, C.S.; Lee, T.W. Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue. Surf. Coat. Technol. 2010, 205, S451–S458. [Google Scholar] [CrossRef]
- Guo, L.; Guo, H.B.; Peng, H.; Gong, S.K. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings. J. Eur. Ceram. Soc. 2014, 34, 1255–1263. [Google Scholar] [CrossRef]
- Zhou, C.G.; Wang, N.; Xu, H.B. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Mater. Sci. Eng. 2007, 452–453, 569–574. [Google Scholar] [CrossRef]
- Qiang, L.; Zhang, X.; Ai, Y.; Zhuang, Y.; Sheng, J.; Ni, J.; Yang, K. In Situ Deposition of Amorphous Al2O3-GAP Ceramic Coating with Excellent Microstructure Stability and Uniformity via Atmospheric Plasma Spraying. Coatings 2022, 12, 119. [Google Scholar] [CrossRef]
- Leckie, R.M.; Krämer, S.; Rühle, M.; Levi, C.G. Thermochemical compatibility between alumina and ZrO2–GdO3/2 thermal barrier coatings. Acta Mater. 2005, 53, 3281–3292. [Google Scholar] [CrossRef]
- Huang, J.B.; Wang, W.Z.; Lu, X.; Liu, S.W.; Li, C.X. Influence of Lamellar Interface Morphology on Cracking Resistance of Plasma-Sprayed YSZ Coatings. Coatings 2018, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Jamali, H.; Mozafarinia, R.; Shoja Razavi, R.; Ahmadi-Pidani, R. Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 2012, 38, 6705–6712. [Google Scholar] [CrossRef]
- Wu, J.; Guo, H.B.; Zhou, L.; Wang, L.; Gong, S.K. Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings from Nanostructured YSZ. J. Therm. Spray Technol. 2010, 19, 1186–1194. [Google Scholar] [CrossRef]
- Rabiei, A.; Evans, A.G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater. 2000, 48, 3963–3976. [Google Scholar] [CrossRef]
- Schlichting, K.W.; Padture, N.P.; Jordan, E.H.; Gell, M. Failure modes in plasma-sprayed thermal barrier coatings. Mater. Sci. Eng. 2003, 342, 120–130. [Google Scholar] [CrossRef]
Parameters | BC | YSZ | GZ | GZ/YSZ | GSZC | AGAP |
---|---|---|---|---|---|---|
Current, A | 550 | 600 | 600 | 600 | 600 | 650 |
Voltage, V | 68.5 | 67.2 | 65.3 | 67.2 | 65.3 | 67.0 |
Primary gas flow rate, Ar, L/min | 50 | 40 | 40 | 40 | 40 | 40 |
Carrier gas flow rate, H2, L/min | 8 | 9 | 8 | 9 | 8 | 9 |
Spray distance, mm | 120 | 90 | 90 | 90 | 90 | 120 |
Travers speed of gun, mm/s | 900 | 500 | 500 | 500 | 500 | 900 |
Powder feeding rate, % | 10 | 20 | 20 | 20 | 20 | 20 |
Thickness, μm | 120 | 300 | 80 | 80 | 80 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yang, K.; Wang, W.; Yang, T.; Fang, H.; Qiang, L.; Zhang, X.; Zhang, C. Investigation of Thermal Shock Behavior of Multilayer Thermal Barrier Coatings with Superior Erosion Resistance Prepared by Atmospheric Plasma Spraying. Coatings 2022, 12, 804. https://doi.org/10.3390/coatings12060804
Yang Z, Yang K, Wang W, Yang T, Fang H, Qiang L, Zhang X, Zhang C. Investigation of Thermal Shock Behavior of Multilayer Thermal Barrier Coatings with Superior Erosion Resistance Prepared by Atmospheric Plasma Spraying. Coatings. 2022; 12(6):804. https://doi.org/10.3390/coatings12060804
Chicago/Turabian StyleYang, Zining, Kai Yang, Weize Wang, Ting Yang, Huanjie Fang, Linya Qiang, Xiancheng Zhang, and Chengcheng Zhang. 2022. "Investigation of Thermal Shock Behavior of Multilayer Thermal Barrier Coatings with Superior Erosion Resistance Prepared by Atmospheric Plasma Spraying" Coatings 12, no. 6: 804. https://doi.org/10.3390/coatings12060804
APA StyleYang, Z., Yang, K., Wang, W., Yang, T., Fang, H., Qiang, L., Zhang, X., & Zhang, C. (2022). Investigation of Thermal Shock Behavior of Multilayer Thermal Barrier Coatings with Superior Erosion Resistance Prepared by Atmospheric Plasma Spraying. Coatings, 12(6), 804. https://doi.org/10.3390/coatings12060804