Analysis and Control of Cracks in Ni60 Coating of 7050 Aluminum Alloy by Electron Beam Cladding
Abstract
:1. Introduction
2. ANSYS Temperature Field Simulation
3. Materials and Methods
4. Results, Discussion, and Analysis
4.1. Method for Dividing Optimization Interval of Process Parameters
4.2. Analysis of Primary and Secondary Factors of Cladding Process Parameters
4.3. Optimal Interval of Cladding Process Parameters
4.4. Modeling Analysis
5. Conclusions
- (1)
- ANSYS software is utilized to simulate the temperature field under different electron beam cladding process parameters to determine the value range of the process parameters.
- (2)
- The primary and secondary order of the influence of the process parameters on the crack is determined by the range value of the test results.
- (3)
- Analysis of the influence trend of process parameter level changes and interval changes on cracks is undertaken, and the process parameters for the least factors of crack areal density, the optimal interval, are determined.
- (4)
- A prediction model for Ni60 crack areal density of 7050 aluminum alloy electron beam cladding is established, which has important guiding significance for the selection of subsequent processing parameters.
- (5)
- F-test analysis of the fitted model can effectively predict the crack areal density of Ni60 in electron beam cladding of 7050 aluminum alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oh, J.C.; Yun, E.; Golkovski, M.G.; Lee, S. Improvement of hardness and wear resistance in SiC/Ti-6Al-4V surface composites fabricated by high-energy electron beam irradiation. Mater. Sci. Eng. A 2003, 351, 98–108. [Google Scholar] [CrossRef]
- Segura, I.A.; Murr, L.E.; Terrazas, C.A.; Bermudez, D.; Mireles, J.; Injeti, V.S.V.; Li, K.; Yu, B.; Misra, R.D.K.; Wicker, R.B. Grain boundary and microstructure engineering of Inconel 690 cladding on stainless-steel 316L using electron-beam powder bed fusion additive manufacturing. J. Mater. Sci. Technol. 2019, 35, 351–367. [Google Scholar] [CrossRef]
- Dixit, M.; Mishra, R.S.; Sankaran, K.K. Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Mater. Sci. Eng. A 2008, 478, 163–172. [Google Scholar] [CrossRef]
- Zheng, C. Research on the crack mechanism of laser cladding layer of nickel-based alloy. China Met. Bull. 2018, 11, 75–76. (In Chinese) [Google Scholar]
- Li, Q.; Li, T.; Wu, Z.; Shi, B.; Zhang, H. Research on the crack mechanism of laser cladding layer of Ni-based alloy. J. Dalian Univ. Technol. 2020, 60, 159–164. (In Chinese) [Google Scholar]
- Yun, E.; Lee, S. Correlation of microstructure with hardness and wear resistance in Cr 3 C 2/stainless steel surface composites fabricated by high-energy electron beam irradiation. Mater. Sci. Eng. A 2005, 405, 163–172. [Google Scholar] [CrossRef]
- Yu, B.; Jin, Q.; Liu, Z.; He, J. Electron beam remelting surface modification technology of silicide coating. Chin. Space Sci. Technol. 2010, 30, 54–58. (In Chinese) [Google Scholar]
- Lu, Q.; Du, C.; Wang, H.; Wang, C. Experimental study on the preparation of Ni60-based ceramic cladding by plasma spray welding of hot forging die. Therm. Process. Process. 2014, 43, 131–133. (In Chinese) [Google Scholar]
- Zhang, J.; Wang, Z.; Zhao, L.; Liu, D.; Zhao, M. Laser cladding 4J36 low-expansion alloy coating process optimization based on orthogonal experiment method. Ordnance Mater. Sci. Eng. 2016, 39, 11–15. (In Chinese) [Google Scholar] [CrossRef]
- Al-Jarba, K.A.; Fuchs, G.E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy. Mater. Sci. Eng. A 2004, 373, 255–267. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Kravchenko, Y.A. Modification of mechanical properties of TiN/Al2O3and TiN/Cr/Al2O3coatings using low-energy high-current electron beams. J. Superhard Mater. 2013, 35, 105–110. [Google Scholar] [CrossRef]
- Komizo, Y.; Taka, T.; Koso, M. Surface modification by high energy density beams. Sumitomo Met. 1990, 42, 157–164. [Google Scholar]
Material | Elastic Modulus/Pa | Poisson Ratio | Density/kg/m3 | Melting Poing/°C | Specific Heat Capacity/J/kg °C | Linear Expansion Coefficient/20 °C | Thermal Conductivity/W/m·k |
---|---|---|---|---|---|---|---|
7050 | 69 × 109 | 0.33 | 2830 | 488~635 | 860 | 23.5 × 10−6 | 139.51 |
Ni60 | 206 × 109 | 0.3 | 8400 | 1040 | 456 | 18 × 10−6 | 63 |
C | Si | Cr | B | Fe | Ni | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ni60 | 1.0 | 4.5 | 17 | 4.5 | 15 | remainder | ||||
% | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al |
7050 | 0.12 | 0.15 | 2.4 | 0.1 | 2.3 | 0.04 | 6.2 | 0.06 | 0.11 | remainder |
Level | 1 | 2 | 3 | |
---|---|---|---|---|
Factor | ||||
Electron Beam Current/10−3 A | 25 | 30 | 32 | |
Scanning Speed/mm/s | 8 | 10 | 12 | |
Focusing Current/10−3 A | 680 | 700 | 720 |
Number | Electron Beam Current/10−3 A | Scan Speed/mm/s | Focus Current/10−3 A | Crack Areal Density |
---|---|---|---|---|
a | 25 | 8 | 680 | 0.007 |
b | 25 | 10 | 700 | 0.032 |
c | 25 | 12 | 720 | 0.012 |
d | 30 | 8 | 720 | 0.014 |
e | 30 | 10 | 680 | 0.003 |
f | 30 | 12 | 700 | 0.016 |
g | 32 | 8 | 680 | 0.061 |
h | 32 | 10 | 720 | 0.031 |
i | 32 | 12 | 700 | 0.021 |
Factor | Electron Beam Current/10−3 A | Scanning Speed/mm/s | Focus Current/10−3 A | |
---|---|---|---|---|
Level | ||||
1 | 0.0170 | 0.0273 | 0.0237 | |
2 | 0.0110 | 0.0220 | 0.0230 | |
3 | 0.0377 | 0.0163 | 0.0190 | |
R | 0.0267 | 0.0110 | 0.0047 |
Process Parameters | Preferred Interval | Crack Areal Density |
---|---|---|
Electron beam current/10−3 A | [25, 30] | 0.01~0.017 |
Scanning speed/mm/s | [10, 12] | 0.0213~0.0163 |
Focus current/10−3 A | [700, 720] | 0.023~0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, Q.; Chen, J.; Zeng, Z.; Tang, J. Analysis and Control of Cracks in Ni60 Coating of 7050 Aluminum Alloy by Electron Beam Cladding. Coatings 2022, 12, 602. https://doi.org/10.3390/coatings12050602
Liu H, Zhang Q, Chen J, Zeng Z, Tang J. Analysis and Control of Cracks in Ni60 Coating of 7050 Aluminum Alloy by Electron Beam Cladding. Coatings. 2022; 12(5):602. https://doi.org/10.3390/coatings12050602
Chicago/Turabian StyleLiu, Hailang, Qian Zhang, Jian Chen, Zhuangji Zeng, and Jie Tang. 2022. "Analysis and Control of Cracks in Ni60 Coating of 7050 Aluminum Alloy by Electron Beam Cladding" Coatings 12, no. 5: 602. https://doi.org/10.3390/coatings12050602
APA StyleLiu, H., Zhang, Q., Chen, J., Zeng, Z., & Tang, J. (2022). Analysis and Control of Cracks in Ni60 Coating of 7050 Aluminum Alloy by Electron Beam Cladding. Coatings, 12(5), 602. https://doi.org/10.3390/coatings12050602