An In Vitro Study to Evaluate the Effect of Artificial Aging on Translucency, Contrast Ratio, and Color of Zirconia Dental Ceramic at Different Sintering Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Designing and Subtractive Manufacturing
2.4. Segregation of Samples
2.5. Recording of Initial Colorimetric Data in Yxy and CIELAB (“L*a*b*”) Color Space Values
2.6. Thermocycling
2.7. Recording of Final Colorimetric Data in Yxy and CIELAB (“L*a*b*”) Color Space Values
2.8. Calculation of Translucency Parameter
2.9. Calculation of Contrast Ratio
2.10. Calculation of Change in Color
2.11. Data Analysis
3. Results
4. Discussion
- Less yttria content in partially stabilized zirconia with non-prevalent cubic lattice phase.
- Non-isotropic and birefringent nature of cubic crystals makes for an unfavorable passage light pathway through Zolid HT (PSZ) compared to FSZ.
- Spontaneous tetragonal to monoclinic transformation can be a possible cause for the material’s change after artificial aging. This is in accordance to Alraheam et al. [41]
5. Conclusions
- After the samples were subjected to different sintering temperatures, it was observed that the delta E values changed.
- The color difference did not occur when stored in artificial salivary substitute for the specified time according to the standardized protocols.
- Thermocycling affects the translucency of samples; thus showing a significant difference in the translucency among the groups, and a difference was observed when pre- and post-thermocycling results were evaluated.
- Even though the changes observed were statistically significant, they were considered well within the clinically perceptible value and, therefore, clinically imperceptible.
- An increase in sintering temperature causes a significant increase in the TP, which reduces with aging. At the time of fabrication of the prosthesis, sintering temperatures can be changed according to the requirement, within the limit, to achieve the best clinical outcome.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craig, R.G.; Powers, J.M. Craig’s Restorative Dental Materials, 12th ed.; Elsevier: St. Louis, MO, USA, 2006. [Google Scholar]
- Stawarczyk, B.; Özcan, M.; Hämmerle, C.H.; Roos, M. The fracture load and failure types of veneered anterior zirconia crowns: An analysis of normal and Weibull distribution of complete and censored data. Dent. Mater. 2012, 28, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Sjölin, R.; Sundh, A.; Bergman, M. The Decim system for the production of dental restorations. Int. J. Comput. Dent. 1999, 2, 197–207. [Google Scholar]
- Christel, P.; Meunier, A.; Heller, M.; Torre, J.P.; Peille, C.N. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J. Biomed. Mater. Res. 1989, 23, 45–61. [Google Scholar] [CrossRef]
- Luangruangrong, P.; Cook, N.B.; Sabrah, A.H.; Hara, A.T.; Bottino, M.C. Influence of full-contour zirconia surface roughness on wear of glass-ceramics. J. Prosthodont. 2014, 23, 198–205. [Google Scholar] [CrossRef]
- Preis, V.; Behr, M.; Hahnel, S.; Handel, G.; Rosentritt, M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J. Dent. 2012, 40, 921–928. [Google Scholar] [CrossRef]
- Ruiz, L.; Readey, M.J. Effect of Heat Treatment on Grain Size, Phase Assemblage, and Mechanical Properties of 3 mol% Y-TZP. J. Am. Ceram. Soc. 1996, 79, 2331–2340. [Google Scholar] [CrossRef]
- Øilo, M.; Gjerdet, N.R.; Tvinnereim, H.M. The firing procedure influences properties of a zirconia core ceramic. Dent. Mater. 2008, 24, 471–475. [Google Scholar] [CrossRef]
- Baldissara, P.; Llukacej, A.; Ciocca, L.; Valandro, L.F.; Scotti, R. Translucency of zirconia copings made with different CAD/CAM systems. J. Prosthet. Dent. 2010, 104, 6–12. [Google Scholar] [CrossRef]
- Vichi, A.; Sedda, M.; Fonzar, R.F.; Carrabba, M.; Ferrari, M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM system. J. Esthet. Restor. Dent. 2015, 28, 32–39. [Google Scholar] [CrossRef]
- Brodbelt, R.H.; O’Brien, W.J.; Fan, P.L. Translucency of dental porcelains. J. Dent. Res. 1980, 59, 70–75. [Google Scholar] [CrossRef]
- Yu, B.; Ahn, J.S.; Lee, Y.K. Measurement of translucency of tooth enamel and dentin. Acta Odontol. Scand. 2009, 67, 57–64. [Google Scholar] [CrossRef]
- Passerini, L. Isomorphism among oxides of different tetravalent metals: CeO2–ThO2; CeO2–ZrO2; CeO2–HfO2. Gazzet Chim. Ital. 1939, 60, 762–776. [Google Scholar]
- Ruff, O.; Ebert, F.; Stephen, E. Contributions to the ceramics of highly refractory materials: II. System zirconia-lime. Z. Anorg. Allg. Chem 1929, 180, 215–224. [Google Scholar] [CrossRef]
- Ruff, O.; Ebert, F. Refractory ceramics: I. The forms of zirconium dioxide. Z. Anorg. Allg. Chem. 1929, 180, 19–41. [Google Scholar] [CrossRef]
- Wang, F.; Takahashi, H.; Iwasaki, N. Translucency of dental ceramics with different thicknesses. J. Prosthet. Dent. 2013, 110, 14–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Griggs, J.A.; Benham, A.W. Influence of powder/liquid mixing ratio on porosity and translucency of dental porcelains. J. Prosthet. Dent. 2004, 91, 128–135. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.K.; Powers, J.M. Influence of a series of organic and chemical substances on the translucency of resin composites. J. Biomed. Mater. Res. B. Appl. Biomater. 2006, 77, 21–27. [Google Scholar] [CrossRef]
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar]
- Bagis, B.; Turgut, S. Optical properties of current ceramics systems for laminate veneers. J. Dent. 2013, 41 (Suppl. S3), e24–e30. [Google Scholar] [CrossRef]
- Pyo, S.W.; Kim, D.J.; Han, J.S.; Yeo, I.L. Ceramic Materials and Technologies Applied to Digital Works in Implant-Supported Restorative Dentistry. Materials 2020, 13, 1964. [Google Scholar] [CrossRef]
- Klein, G.A. Systems of standardized tristimulus values: Covering capacity. In Industrial Color Physics; Klein, G.A., Ed.; Springer: New York, NY, USA, 2010; pp. 185–186, 189. [Google Scholar]
- Lughi, V.; Sergo, V. Low temperature degradation-aging-of zirconia: A critical review of the relevant aspects in dentistry. Dent. Mater. 2010, 26, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Basu, B.; Vitchev, R.G.; Vleugels, J.; Celis, J.P.; Van der Biest, O. Influence of humidity on the fretting wear of self-mated tetragonal zirconia ceramics. Acta Mater. 2000, 48, 2461–2471. [Google Scholar] [CrossRef]
- Lee, T.H.; Lee, S.H.; Her, S.B.; Chang, W.G.; Lim, B.S. Effects of surface treatments on the susceptibilities of low temperature degradation by autoclaving in zirconia. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.Y. Effects of Sintering Holding Time on the Microstructure and Mechanical Properties of Translucent Zirconia. Ph.D. Thesis, Indiana University, Indianapolis, IN, USA, 2015. [Google Scholar]
- Johnston, W.M.; Reisbick, M.H. Color and translucency changes during and after curing of esthetic restorative materials. Dent. Mater. 1997, 13, 89–97. [Google Scholar] [CrossRef]
- Ikeda, T.; Murata, Y.; Sano, H. Translucency of opaque-shade resin composites. Am. J. Dent. 2004, 17, 127–130. [Google Scholar]
- Ikeda, T.; Sidhu, S.K.; Omata, Y.; Fujita, M.; Sano, H. Colour and translucency of opaque-shades and body-shades of resin composites. Eur. J. Oral Sci. 2005, 113, 170–173. [Google Scholar] [CrossRef]
- GitHub. Available online: http://zschuessler.github.io/DeltaE/learn/ (accessed on 12 January 2022).
- Nogueira, A.D.; Della Bona, A. The effect of a coupling medium on color and translucency of CAD-CAM ceramics. J. Dent. 2013, 41 (Suppl. S3), e18–e23. [Google Scholar] [CrossRef] [Green Version]
- Kontonasaki, E.; Rigos, A.E.; Ilia, C.; Istantsos, T. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance. Dent. J. 2019, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Liao, Y.; Wan, Q.; Li, W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J. Mater. Sci. Mater. Med. 2011, 22, 2429–2435. [Google Scholar] [CrossRef]
- Sen, N.; Sermet, I.B.; Cinar, S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J. Prosthet. Dent. 2018, 119, 308.e1–308.e7. [Google Scholar] [CrossRef]
- Ebeid, K.; Wille, S.; Hamdy, A.; Salah, T.; El-Etreby, A.; Kern, M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent. Mater. 2014, 30, e419–e424. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Özcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hämmerlet, C.H. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin. Oral Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Ahn, J.S.; Kim, J.H.; Kim, H.Y.; Kim, W.C. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J. Adv. Prosthodont. 2013, 5, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Kim, S.H. Comparison of the optical properties of pre-colored dental monolithic zirconia ceramics sintered in a conventional furnace versus a microwave oven. J. Adv. Prosthodont. 2017, 9, 394–401. [Google Scholar] [CrossRef]
- Tuncel, İ.; Turp, I.; Üşümez, A. Evaluation of translucency of monolithic zirconia and framework zirconia materials. J. Adv. Prosthodont. 2016, 8, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Stawarczyk, B.; Frevert, K.; Ender, A.; Roos, M.; Sener, B.; Wimmer, T. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. J. Mech. Behav. Biomed. Mater. 2016, 59, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Alraheam, I.A.; Donovan, T.E.; Rodgers, B.; Boushell, L.; Sulaiman, T.A. Effect of masticatory simulation on the translucency of different types of dental zirconia. J. Prosthet. Dent. 2019, 122, 404–409. [Google Scholar] [CrossRef]
- Gómez, S.; Suárez, G.; Rendtorff, N.M.; Aglietti, E.F. Relation between mechanical and textural properties of dense materials of tetragonal and cubic zirconia. Sci. Sinter. 2016, 48, 119–130. [Google Scholar] [CrossRef]
- Zhang, H.; Kim, B.-N.; Morita, K.; Hiraga, H.Y.K.; Sakka, Y. Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering. Sci. Technol. Adv. Mater. 2011, 12, 055003. [Google Scholar] [CrossRef]
- Walczak, K.; Meißner, H.; Range, U.; Sakkas, A.; Boening, K.; Wieckiewicz, M.; Konstantinidis, I. Translucency of Zirconia Ceramics before and after Artificial Aging. J. Prosthodont. 2019, 28, e319–e324. [Google Scholar] [CrossRef] [Green Version]
- Sabet, H.; Wahsh, M.; Sherif, A.; Salah, T. Effect of different immersion times and sintering temperatures on translucency of monolithic nanocrystalline zirconia. Futur. Dent. J. 2018, 4, 84–89. [Google Scholar] [CrossRef]
- Alamledin, A.M. Effect of accelerated aging on the translucency of monolithic zirconia at minimal thickness. Al-Azhar J. Dent. Sci. 2020, 23, 7–14. [Google Scholar]
Material Trade Name | Manufacturer | Chemical Composition |
---|---|---|
Ceramill Zolid HT+ | AmannGirbachCeramill® CAD/CAM zirconia blank (16 mm) Amann Girrbach AG, Herrschaftswiesen, Koblach, Austria |
|
N | Mean | Std. Deviation | 95% Confidence Interval for Mean | Significance | |||
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
LWT0 | 1350 °C | 7 | 95.529 | 0.7931 | 94.795 | 96.262 | F = 2597.805 p-value < 0.001 Significant |
1400 °C | 7 | 85.471 | 0.3498 | 85.148 | 85.795 | ||
1450 °C | 7 | 80.471 | 0.3498 | 80.148 | 80.795 | ||
1500 °C | 7 | 73.186 | 0.2734 | 72.933 | 73.439 | ||
Total | 28 | 83.664 | 8.2862 | 80.451 | 86.877 | ||
aWT0 | 1350 °C | 7 | −0.214 | 0.2795 | −0.473 | 0.044 | F = 185.204 p-value < 0.001 Significant |
1400 °C | 7 | −0.843 | 0.0535 | −0.892 | −0.793 | ||
1450 °C | 7 | −1.443 | 0.0535 | −1.492 | −1.393 | ||
1500 °C | 7 | −2.043 | 0.0976 | −2.133 | −1.953 | ||
Total | 28 | −1.136 | 0.7077 | −1.410 | −0.861 | ||
bWT0 | 1350 °C | 7 | 1.4429 | 0.78921 | 0.7130 | 2.1728 | F = 203.577 p-value < 0.001 Significant |
1400 °C | 7 | −0.8714 | 0.13801 | −0.9991 | −0.7438 | ||
1450 °C | 7 | −1.8100 | 0.14387 | −1.9431 | −1.6769 | ||
1500 °C | 7 | −3.8714 | 0.07559 | −3.9413 | −3.8015 | ||
Total | 28 | −1.2775 | 1.98187 | −2.0460 | −0.5090 | ||
LBT0 | 1350 °C | 7 | 94.614 | 0.8533 | 93.825 | 95.403 | F = 2668.384 p-value < 0.001 Significant |
1400 °C | 7 | 81.043 | 0.5127 | 80.569 | 81.517 | ||
1450 °C | 7 | 74.043 | 0.5127 | 73.569 | 74.517 | ||
1500 °C | 7 | 67.614 | 0.3891 | 67.254 | 67.974 | ||
Total | 28 | 79.329 | 10.2211 | 75.365 | 83.292 | ||
aBT0 | 1350 °C | 7 | −0.457 | 0.2225 | −0.663 | −0.251 | F = 242.951 p-value < 0.001 Significant |
1400 °C | 7 | −1.300 | 0.0000 | −1.300 | −1.300 | ||
1450 °C | 7 | −1.729 | 0.0756 | −1.798 | −1.659 | ||
1500 °C | 7 | −2.271 | 0.1113 | −2.374 | −2.169 | ||
Total | 28 | −1.439 | 0.6866 | −1.706 | −1.173 | ||
bBT0 | 1350 °C | 7 | 0.957 | 0.7829 | 0.233 | 1.681 | F = 305.702 p-value < 0.001 Significant |
1400 °C | 7 | −2.343 | 0.1272 | −2.461 | −2.225 | ||
1450 °C | 7 | −3.357 | 0.1397 | −3.486 | −3.228 | ||
1500 °C | 7 | −5.457 | 0.0787 | −5.530 | −5.384 | ||
Total | 28 | −2.550 | 2.3886 | −3.476 | −1.624 | ||
CR T0 | 1350 °C | 7 | 1.0186 | 0.00378 | 1.0151 | 1.0221 | F = 1577.545 p-value < 0.001 Significant |
1400 °C | 7 | 1.1500 | 0.00000 | 1.1500 | 1.1500 | ||
1450 °C | 7 | 1.2243 | 0.00976 | 1.2153 | 1.2333 | ||
1500 °C | 7 | 1.2114 | 0.00690 | 1.2050 | 1.2178 | ||
Total | 28 | 1.1511 | 0.08319 | 1.1188 | 1.1833 | ||
TP T0 | 1350 °C | 7 | 1.0741 | 0.1371 | 0.9473 | 1.2010 | F = 1198.764 p-value < 0.001 Significant |
1400 °C | 7 | 4.6896 | 0.2313 | 4.475 | 4.9035 | ||
1450 °C | 7 | 6.6222 | 0.2271 | 6.412 | 6.832 | ||
1500 °C | 7 | 5.797 | 0.1259 | 5.681 | 5.914 | ||
Total | 28 | 4.5459 | 2.1645 | 3.706 | 5.385 |
N | Mean | Std. Deviation | 95% Confidence Interval for Mean | Significance | |||
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
LWT1 | 1350 °C | 7 | 93.043 | 0.9484 | 92.166 | 93.920 | F = 1963.333 p-value < 0.001 Significant |
1400 °C | 7 | 83.457 | 0.1512 | 83.317 | 83.597 | ||
1450 °C | 7 | 77.486 | 0.3671 | 77.146 | 77.825 | ||
1500 °C | 7 | 70.943 | 0.4467 | 70.530 | 71.356 | ||
Total | 28 | 81.232 | 8.2954 | 78.016 | 84.449 | ||
aWT1 | 1350 °C | 7 | −0.257 | 0.0535 | −0.307 | −0.208 | F = 492.617 p-value < 0.001 Significant |
1400 °C | 7 | −0.686 | 0.0690 | −0.750 | −0.622 | ||
1450 °C | 6 | −1.367 | 0.0816 | −1.452 | −1.281 | ||
1500 °C | 7 | −1.986 | 0.1345 | −2.110 | −1.861 | ||
Total | 27 | −1.063 | 0.6862 | −1.334 | −0.792 | ||
bWT1 | 1350 °C | 7 | 1.257 | 0.2637 | 1.013 | 1.501 | F = 10.041 p-value < 0.001 Significant |
1400 °C | 7 | −0.714 | 0.0900 | −0.797 | −0.631 | ||
1450 °C | 7 | −1.671 | 0.1604 | −1.820 | −1.523 | ||
1500 °C | 7 | −2.171 | 2.5078 | −4.491 | 0.148 | ||
Total | 28 | −0.825 | 1.7898 | −1.519 | −0.131 | ||
Delta EW | 1350 °C | 7 | 0.8857 | 0.3436 | 0.5678 | 1.2035 | F = 21.827 p-value < 0.001 Significant |
1400 °C | 7 | 1.857 | 0.1511 | 1.7173 | 1.9969 | ||
1450 °C | 7 | 1.814 | 0.1772 | 1.6503 | 1.9782 | ||
1500 °C | 7 | 1.785 | 0.3287 | 1.4816 | 2.0897 | ||
Total | 28 | 1.585 | 0.4820 | 1.3987 | 1.7726 | ||
LBT1 | 1350 °C | 7 | 91.657 | 0.3645 | 91.320 | 91.994 | F = 6565.305 p-value < 0.001 Significant |
1400 °C | 7 | 77.014 | 0.1574 | 76.869 | 77.160 | ||
1450 °C | 7 | 71.586 | 0.1773 | 71.422 | 71.750 | ||
1500 °C | 7 | 67.000 | 0.5477 | 66.493 | 67.507 | ||
Total | 28 | 76.814 | 9.4497 | 73.150 | 80.478 | ||
aBT1 | 1350 °C | 7 | −0.229 | 0.2812 | −0.489 | 0.031 | F = 190.015 p-value < 0.001 Significant |
1400 °C | 7 | −1.300 | 0.0000 | −1.300 | −1.300 | ||
1450 °C | 7 | −1.300 | 0.0000 | −1.300 | −1.300 | ||
1500 °C | 7 | −2.214 | 0.1345 | −2.339 | −2.090 | ||
Total | 28 | −1.261 | 0.7310 | −1.544 | −0.977 | ||
bBT1 | 1350 °C | 7 | 0.714 | 0.1773 | 0.550 | 0.878 | F = 475.442 p-value < 0.001 Significant |
1400 °C | 7 | −1.686 | 0.1215 | −1.798 | −1.573 | ||
1450 °C | 7 | −2.186 | 0.1574 | −2.331 | −2.040 | ||
1500 °C | 7 | −4.729 | 0.4716 | −5.165 | −4.292 | ||
Total | 28 | −1.971 | 1.9847 | −2.741 | −1.202 | ||
Delta EB | 1350 °C | 7 | 1.4142 | 0.2035 | 1.2260 | 1.6025 | F = 14.701 p-value < 0.001 Significant |
1400 °C | 7 | 2.1714 | 0.1799 | 2.005 | 2.337 | ||
1450 °C | 7 | 2.0571 | 0.15118 | 1.9173 | 2.1969 | ||
1500 °C | 7 | 1.7142 | 0.3579 | 1.3832 | 2.0452 | ||
Total | 28 | 1.8392 | 0.3764 | 1.6933 | 1.9852 | ||
CR T1 | 1350 °C | 7 | 1.0357 | 0.02878 | 1.0091 | 1.0623 | F = 90.685 p-value < 0.001 Significant |
1400 °C | 7 | 1.2200 | 0.00816 | 1.2124 | 1.2276 | ||
1450 °C | 7 | 1.2157 | 0.00976 | 1.2067 | 1.2247 | ||
1500 °C | 7 | 1.1143 | 0.03780 | 1.0793 | 1.1492 | ||
Total | 28 | 1.1464 | 0.08143 | 1.1149 | 1.1780 | ||
TP T1 | 1350 °C | 7 | 1.5851 | 0.9292 | 0.72574 | 2.444 | F = 26.884 p-value < 0.001 Significant |
1400 °C | 7 | 6.5458 | 0.2334 | 6.329 | 6.761 | ||
1450 °C | 7 | 5.9597 | 0.3458 | 5.5968 | 6.3226 | ||
1500 °C | 7 | 5.009 | 1.9562 | 3.2000 | 6.8184 | ||
Total | 28 | 4.7311 | 2.2446 | 3.8431 | 5.6190 |
Mean | N | Std. Deviation | Mean Difference | ||
---|---|---|---|---|---|
Pair 1 | LWT0 | 95.529 | 7 | 0.7931 | 2.4857 |
LwT1 | 93.043 | 7 | 0.9484 | p-value = 0.000 * | |
Pair 2 | awT0 | −0.214 | 7 | 0.2795 | 0.0429 |
aWT1 | −0.257 | 7 | 0.0535 | p-value = 0.723 | |
Pair 3 | bWT0 | 1.4429 | 7 | 0.78921 | 0.1857 |
bWT1 | 1.257 | 7 | 0.2637 | p-value = 0.544 | |
Pair 4 | ΔEW T0 | 1.300 | 7 | 0.4282 | 0.8857 |
ΔEW T1 | 0.414 | 7 | 0.1069 | p-value = 0.000 * | |
Pair 5 | LBT0 | 94.614 | 7 | 0.8533 | 2.9571 |
LBT1 | 91.657 | 7 | 0.3645 | p-value = 0.000 * | |
Pair 6 | aBT0 | −0.457 | 7 | 0.2225 | −0.2286 |
aBT1 | −0.229 | 7 | 0.2812 | p-value = 0.000 * | |
Pair 7 | bBT0 | 0.957 | 7 | 0.7829 | 0.2429 |
bBT1 | 0.714 | 7 | 0.1773 | p-value = 0.406 | |
Pair 8 | ΔEB T0 | 2.457 | 7 | 0.1988 | 1.4143 |
ΔEB T1 | 1.043 | 7 | 0.1618 | p-value = 0.000 * | |
Pair 9 | CR T0 | 1.0186 | 7 | 0.00378 | −0.0171 |
CR T1 | 1.0357 | 7 | 0.02878 | p-value = 0.158 | |
Pair 10 | TP T0 | 1.074 | 7 | 0.13711 | −0.5109 |
TP T1 | 1.5851 | 7 | 0.9292 | p-value = 0.212 |
Mean | N | Std. Deviation | Mean Difference | ||
---|---|---|---|---|---|
Pair 1 | LWT0 | 85.471 | 7 | 0.3498 | 2.0143 |
LwT1 | 83.457 | 7 | 0.1512 | p-value = 0.000 | |
Pair 2 | awT0 | −0.843 | 7 | 0.0535 | −0.1571 |
aWT1 | −0.686 | 7 | 0.0690 | p-value = 0.005 | |
Pair 3 | bWT0 | −0.8714 | 7 | 0.13801 | −0.15714 |
bWT1 | −0.714 | 7 | 0.0900 | p-value = 0.062 | |
Pair 4 | ΔEW T0 | 7.329 | 7 | 0.1976 | 1.8571 |
ΔEW T1 | 5.471 | 7 | 0.0951 | p-value = 0.000 * | |
Pair 5 | LBT0 | 81.043 | 7 | 0.5127 | 4.0286 |
LBT1 | 77.014 | 7 | 0.1574 | p-value = 0.000 * | |
Pair 6 | aBT0 | −1.300 | 7 | 0.0000 | - |
aBT1 | −1.300 | 7 | 0.0000 | - | |
Pair 7 | bBT0 | −2.343 | 7 | 0.1272 | −0.6571 |
bBT1 | −1.686 | 7 | 0.1215 | p-value = 0.000 * | |
Pair 8 | ΔEB T0 | 10.657 | 7 | 0.2820 | 2.1714 |
ΔEB T1 | 8.486 | 7 | 0.2268 | p-value = 0.000 * | |
Pair 9 | CR T0 | 1.1500 | 7 | 0.00000 | −0.07000 |
CR T1 | 1.2200 | 7 | 0.00816 | p-value = 0.000 * | |
Pair 10 | TP T0 | 4.689 | 7 | 0.23131 | −1.8561 |
TP T1 | 6.545 | 7 | 0.23348 | p-value = 0.000 * |
Mean | N | Std. Deviation | Mean Difference | ||
---|---|---|---|---|---|
Pair 1 | LWT0 | 80.471 | 7 | 0.3498 | 2.9857 |
LwT1 | 77.486 | 7 | 0.3671 | p-value = 0.000 * | |
Pair 2 | awT0 | −1.450 | 6 | 0.0548 | −0.0833 |
aWT1 | −1.367 | 6 | 0.0816 | p-value = 0.093 | |
Pair 3 | bWT0 | −1.8100 | 7 | 0.14387 | −0.13857 |
bWT1 | −1.671 | 7 | 0.1604 | p-value = 0.054 | |
Pair 4 | ΔEW T0 | 12.329 | 7 | 0.1976 | 1.8143 |
ΔEW T1 | 10.514 | 7 | 0.2116 | p-value = 0.000 * | |
Pair 5 | LBT0 | 74.043 | 7 | 0.5127 | 2.4571 |
LBT1 | 71.586 | 7 | 0.1773 | p-value = 0.000 | |
Pair 6 | aBT0 | −1.729 | 7 | 0.0756 | −0.4286 |
aBT1 | −1.300 | 7 | 0.0000 | p-value = 0.000 * | |
Pair 7 | bBT0 | −3.357 | 7 | 0.1397 | −1.1714 |
bBT1 | −2.186 | 7 | 0.1574 | p-value = 0.000 * | |
Pair 8 | ΔEB T0 | 15.171 | 7 | 0.2628 | 2.0571 |
ΔEB T1 | 13.114 | 7 | 0.3716 | p-value = 0.000 * | |
Pair 9 | CR T0 | 1.2243 | 7 | 0.00976 | 0.00857 |
CR T1 | 1.2157 | 7 | 0.00976 | p-value = 0.200 | |
Pair 10 | TP T0 | 6.596 | 6 | 0.2376 | 0.6370 |
TP T1 | 5.959 | 6 | 0.3458 | p-value = 0.012 |
Mean | N | Std. Deviation | Mean Difference | ||
---|---|---|---|---|---|
Pair 1 | LWT0 | 73.186 | 7 | 0.2734 | 2.2429 |
LwT1 | 70.943 | 7 | 0.4467 | p-value = 0.000 * | |
Pair 2 | awT0 | −2.043 | 7 | 0.0976 | −0.0571 |
aWT1 | −1.986 | 7 | 0.1345 | p-value = 0.356 | |
Pair 3 | bWT0 | −3.8714 | 7 | 0.07559 | −1.700 |
bWT1 | −2.171 | 7 | 2.5078 | p-value = 0.120 | |
Pair 4 | ΔEW T0 | 16.357 | 7 | 0.1813 | 1.7857 |
ΔEW T1 | 14.571 | 7 | 0.2289 | p-value = 0.000 * | |
Pair 5 | LBT0 | 67.614 | 7 | 0.3891 | 0.6143 |
LBT1 | 67.000 | 7 | 0.5477 | p-value = 0.056 | |
Pair 6 | aBT0 | −2.271 | 7 | 0.1113 | −0.0571 |
aBT1 | −2.214 | 7 | 0.1345 | p-value = 0.324 | |
Pair 7 | bBT0 | −5.457 | 7 | 0.0787 | −0.7286 |
bBT1 | −4.729 | 7 | 0.4716 | p-value = 0.000 * | |
Pair 8 | ΔEB T0 | 20.714 | 7 | 0.2673 | 1.7143 |
ΔEB T1 | 19.000 | 7 | 0.3215 | p-value = 0.000 * | |
Pair 9 | CR T0 | 1.2114 | 7 | 0.00690 | 0.09714 |
CR T1 | 1.1143 | 7 | 0.03780 | p-value = 0.000 * | |
Pair 10 | TP T0 | 5.797 | 7 | 0.12594 | 0.7884 |
TP T1 | 5.009 | 7 | 1.956 | p-value = 0.280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shetty, M.; Jain, S.; Wankhede, T.M.; Sayed, M.E.; Mohammed, Z.; Shetty, S.; Al Wadei, M.H.D.; Alqahtani, S.M.; Othman, A.A.A.; Alnijaiban, M.A.; et al. An In Vitro Study to Evaluate the Effect of Artificial Aging on Translucency, Contrast Ratio, and Color of Zirconia Dental Ceramic at Different Sintering Levels. Coatings 2022, 12, 642. https://doi.org/10.3390/coatings12050642
Shetty M, Jain S, Wankhede TM, Sayed ME, Mohammed Z, Shetty S, Al Wadei MHD, Alqahtani SM, Othman AAA, Alnijaiban MA, et al. An In Vitro Study to Evaluate the Effect of Artificial Aging on Translucency, Contrast Ratio, and Color of Zirconia Dental Ceramic at Different Sintering Levels. Coatings. 2022; 12(5):642. https://doi.org/10.3390/coatings12050642
Chicago/Turabian StyleShetty, Mallika, Saurabh Jain, Tushar Milind Wankhede, Mohammed E. Sayed, Zahid Mohammed, Sanath Shetty, Mohammed Hussain Dafer Al Wadei, Saeed M. Alqahtani, Ahlam Abdulsalam Ahmed Othman, Mashael Adullah Alnijaiban, and et al. 2022. "An In Vitro Study to Evaluate the Effect of Artificial Aging on Translucency, Contrast Ratio, and Color of Zirconia Dental Ceramic at Different Sintering Levels" Coatings 12, no. 5: 642. https://doi.org/10.3390/coatings12050642
APA StyleShetty, M., Jain, S., Wankhede, T. M., Sayed, M. E., Mohammed, Z., Shetty, S., Al Wadei, M. H. D., Alqahtani, S. M., Othman, A. A. A., Alnijaiban, M. A., Alnajdi, A. K., Akkam, T. I., AlResayes, S. S., Alshehri, A. H., & Shaabi, F. I. (2022). An In Vitro Study to Evaluate the Effect of Artificial Aging on Translucency, Contrast Ratio, and Color of Zirconia Dental Ceramic at Different Sintering Levels. Coatings, 12(5), 642. https://doi.org/10.3390/coatings12050642