RETRACTED: Cathode Interlayer Engineering for Efficient Organic Solar Cells under Solar Illumination and Light-Emitting Diode Lamp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Device Performance Characterization
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.K.H.; Wu, J.; Barbé, J.; Jain, S.M.; Wood, S.; Speller, E.M.; Li, Z.; Castro, F.A.; Durrant, J.R.; Tsoi, W.C. Organic photovoltaic cells-promising indoor light harvesters for self-sustainable electronics. J. Mater. Chem. A 2018, 6, 5618–5626. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, M.; Meng, L.; Wan, X.; Gao, H.; Zhang, Y.; Zhao, K.; Sun, Z.; Li, C.; Liu, S.; et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2019, 2, 513–520. [Google Scholar] [CrossRef]
- Doumon, N.Y.; Dryzhov, M.V.; Houard, F.V.; Le Corre, V.M.; Chatri, A.R.; Christodoulis, P.; Koster, L.J.A. Photostability of Fullerene and Non-Fullerene Polymer Solar Cells: The Role of the Acceptor. ACS Appl. Mater. Interfaces 2019, 11, 8310–8318. [Google Scholar] [CrossRef] [PubMed]
- Piva, N.; Greco, F.; Garbugli, M.; Iacchetti, A.; Mattoli, V.; Caironi, M. Tattoo-like transferable hole selective electrodes for highly efficient, solution-processed organic indoor photovoltaics. Adv. Electron. Mater. 2018, 4, 1700325. [Google Scholar] [CrossRef]
- Saeed, M.A.; Yoo, K.; Cheol, H.C.; Shim, J.W.; Lee, J. Recent developments in dye-sensitized photovoltaic cells under ambient illumination. Dyes Pigments 2021, 194, 109626. [Google Scholar] [CrossRef]
- Zhong, J.; Xiao, Z.; Liang, W.; Wu, Y.; Ye, Q.; Xu, H.; Deng, H.; Shen, L.; Feng, X.; Long, Y. Highly Efficient and High Peak Transmittance Colorful Semitransparent Organic Solar Cells with Hybrid-Electrode-Mirror Microcavity Structure. ACS Appl. Mater. Interfaces 2019, 11, 47992–48001. [Google Scholar] [CrossRef]
- Saeed, M.A.; Shahzad, A.; Rasool, K.; Mateen, F.; Oh, J.M.; Shim, J.W. 2D MXene: A Potential Candidate for Photovoltaic Cells? A Critical Review. Adv. Sci. 2022, 9, 2104743. [Google Scholar] [CrossRef]
- Ahmad, T.; Rahim, A.A.; Bilal, R.M.H.; Noor, A.; Maab, H.; Naveed, M.A.; Madni, A.; Ali, M.M.; Saeed, M.A. Ultrawideband Cross-Polarization Converter Using Anisotropic Reflective Metasurface. Electronics 2022, 11, 487. [Google Scholar] [CrossRef]
- You, Y.; Saeed, M.A.; Shafian, S.; Kim, J.; Kim, S.H.; Kim, S.H.; Kim, K.; Shim, J.W. Energy recycling under ambient illumination for internet-of-things using metal/oxide/metal-based colourful organic photovoltaics. Nanotechnology 2021, 32, 465401. [Google Scholar] [CrossRef]
- Lee, T.; Oh, S.; Rasool, S.; Song, C.E.; Kim, D.; Lee, S.K.; Shin, W.S.; Lim, E. Non-halogenated solvent-processed ternary-blend solar cells: Via alkyl-side-chain engineering of a non-fullerene acceptor and their application in large-area devices. J. Mater. Chem. A 2020, 8, 10318–10330. [Google Scholar] [CrossRef]
- Mateen, F.; Li, Y.; Saeed, M.A.; Sun, Y.; Zhang, Y.; Lee, S.Y.; Hong, S.K. Large-area luminescent solar concentrator utilizing donor-acceptor luminophore with nearly zero reabsorption: Indoor/outdoor performance evaluation. J. Lumin. 2021, 231, 117837. [Google Scholar] [CrossRef]
- Park, S.Y.; Li, Y.; Kim, J.; Lee, T.H.; Walker, B.; Woo, H.Y.; Kim, J.Y. Alkoxybenzothiadiazole-Based Fullerene and Nonfullerene Polymer Solar Cells with High Shunt Resistance for Indoor Photovoltaic Applications. ACS Appl. Mater. Interfaces 2018, 10, 3885–3894. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.K.; Chen, Y.; Chow, P.C.Y.; Zhang, G.; Huang, J.; Ma, C.; Zhang, J.; Yin, H.; Cheung, A.M.H.; Wong, K.S.; et al. High-efficiency indoor organic photovoltaics with a band-aligned interlayer. Joule 2020, 4, 1486–1500. [Google Scholar] [CrossRef]
- Kim, S.; Jahandar, M.; Jeong, J.H.; Lim, D.C. Recent progress in solar cell technology for low-light indoor applications. Curr. Altern. Energy 2019, 3, 3–17. [Google Scholar] [CrossRef]
- Du, N.; Schmidt, H.; Polian, I. Low-power emerging memristive designs towards secure hardware systems for applications in internet of things. Nano Mater. Sci. 2021, 3, 186–204. [Google Scholar] [CrossRef]
- Michaels, H.; Rinderle, M.; Freitag, R.; Benesperi, I.; Edvinsson, T.; Socher, R.; Gagliardi, A.; Freitag, M. Dye-sensitized solar cells under ambient light powering machine learning: Towards autonomous smart sensors for the internet of things. Chem. Sci. 2020, 11, 2895–2906. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kang, H.C.; Yoo, K.; Asiam, F.K.; Lee, J.-J.; Shim, J.W. Cosensitization of metal-based dyes for high-performance dye-sensitized photovoltaics under ambient lighting conditions. Dyes Pigments 2021, 194, 109624. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, H.J.; Saeed, M.A.; Son, J.H.; Woo, H.Y.; Kim, T.G.; Shim, J.W. Elastomeric Indoor Organic Photovoltaics with Superb Photothermal Endurance. Adv. Funct. Mater. 2022, 2201921. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, C.H.; Saeed, M.A.; Ko, D.H.; Lee, J.H.; Shim, J.W. Β-Cyclodextrin–Polyacryloyl Hydrazide-Based Surface Modification for Efficient Electron-Collecting Electrodes of Indoor Organic Photovoltaics. J. Mater. Res. Technol. 2022, 16, 1659–1666. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ramakrishna, S.; Aberle, A.G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743. [Google Scholar] [CrossRef]
- Yin, H.; Chen, S.; Cheung, S.H.; Li, H.W.; Xie, Y.; Tsang, S.W.; Zhu, X.; So, S.K. Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. J. Mater. Chem. C 2018, 6, 9111–9118. [Google Scholar] [CrossRef]
- Kini, G.P.; Jeon, S.J.; Moon, D.K. Design Principles and Synergistic Effects of Chlorination on a Conjugated Backbone for Efficient Organic Photovoltaics: A Critical Review. Adv. Mater. 2020, 32, e1906175. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Saeed, M.A.; Kim, S.H.; Shim, J.W. Enhanced hole selecting behavior of WO3 interlayers for efficient indoor organic photovoltaics with high fill-factor. Appl. Surf. Sci. 2020, 527, 146840. [Google Scholar] [CrossRef]
- Lechêne, B.P.; Cowell, M.; Pierre, A.; Evans, J.W.; Wright, P.K.; Arias, A.C. Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 2016, 26, 631–640. [Google Scholar] [CrossRef]
- Kim, S.H.; Saeed, M.A.; Lee, S.Y.; Shim, J.W. Investigating the indoor performance of planar heterojunction based organic photovoltaics. IEEE J. Photovolt. 2021, 11, 997–1003. [Google Scholar] [CrossRef]
- Mori, S.; Gotanda, T.; Nakano, Y.; Saito, M.; Todori, K.; Hosoya, M. Investigation of the organic solar cell characteristics for indoor LED light applications. Jpn. J. Appl. Phys. 2015, 54, 071602. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kim, S.H.; Lee, S.Y.; Shim, J.W. High indoor performance of flexible organic photovoltaics using polymer electrodes. Thin Solid Films 2020, 704, 138006. [Google Scholar] [CrossRef]
- Khairulaman, F.L.; Yap, C.C.; Jumali, M.H.H. Improved performance of inverted type organic solar cell using copper iodide-doped P3HT:PCBM as active layer for low light application. Mater. Lett. 2021, 283, 128827. [Google Scholar] [CrossRef]
- Steim, R.; Ameri, T.; Schilinsky, P.; Waldauf, C.; Dennler, G.; Scharber, M.; Brabec, C.J. Organic photovoltaics for low light applications. Sol. Energy Mater. Sol. Cells 2011, 95, 3256–3261. [Google Scholar] [CrossRef]
- Reich, N.H.; van Sark, W.G.J.H.M.; Alsema, E.A.; Lof, R.W.; Schropp, R.E.I.; Sinke, W.C.; Turkenburg, W.C. Crystalline silicon cell performance at low light intensities. Sol. Energy Mater. Sol. Cells 2009, 93, 1471–1481. [Google Scholar] [CrossRef]
- Nam, M.; Baek, S.; Ko, D.H. Unraveling optimal interfacial conditions for highly efficient and reproducible organic photovoltaics under low light levels. Appl. Surf. Sci. 2020, 526, 146632. [Google Scholar] [CrossRef]
- Lee, J.; You, Y.; Saeed, M.A.; Kim, S.H.; Choi, S.; Kim, S.; Lee, S.Y.; Park, J.; Shim, J.W. Undoped tin dioxide transparent electrodes for efficient and cost-effective indoor organic photovoltaics (SnO2 electrode for indoor organic photovoltaics). NPG Asia Mater. 2021, 13, 43. [Google Scholar] [CrossRef]
- Goo, J.S.; Shin, S.C.; You, Y.J.; Shim, J.W. Polymer surface modification to optimize inverted organic photovoltaic devices under indoor light conditions. Sol. Energy Mater. Sol. Cells 2018, 184, 31–37. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics. Joule 2018, 2, 1108–1117. [Google Scholar] [CrossRef]
- Sattar, A.; Farooq, M.; Amjad, M.; Saeed, M.A.; Nawaz, S.; Mujtaba, M.A.; Anwar, S.; El-Sherbeeny, A.M.; Soudagar, M.E.M.; Filho, E.P.B.; et al. Performance evaluation of a direct absorption collector for solar thermal energy conversion. Energies 2020, 13, 4956. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Zhou, G.; Hao, T.; Xu, J.; Wang, J.; Qiu, C.; Prine, N.; Ali, J.; Feng, W.; et al. Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties. Adv. Energy Mater. 2020, 10, 1904234. [Google Scholar] [CrossRef]
- Shin, S.C.; You, Y.J.; Goo, J.S.; Shim, J.W. In-depth interfacial engineering for efficient indoor organic photovoltaics. Appl. Surf. Sci. 2019, 495, 143556. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kim, S.H.; Kim, H.; Liang, J.; Woo, H.Y.; Kim, T.G.; Yan, H.; Shim, J.W. Indoor organic photovoltaics: Optimal cell design principles with synergistic parasitic resistance and optical modulation effect. Adv. Energy Mater. 2021, 11, 2003103. [Google Scholar] [CrossRef]
- Kippelen, B.; Brédas, J.L. Organic photovoltaics. Energy Environ. Sci. 2009, 2, 251–261. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kim, S.H.; Baek, K.; Jerome, K.; Lee, S.Y.; Shim, J.W. PEDOT: PSS: CuNW-based Transparent Composite Electrodes for High-Performance and Flexible Organic Photovoltaics under indoor lighting. Appl. Surf. Sci. 2021, 567, 150852. [Google Scholar] [CrossRef]
- Qin, F.; Wang, W.; Sun, L.; Jiang, X.; Hu, L.; Xiong, S.; Liu, T.; Dong, X.; Li, J.; Jiang, Y.; et al. Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat. Commun. 2020, 11, 4508. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Wang, J. Open-circuit voltage in organic solar cells. J. Mater. Chem. 2012, 22, 24315–24325. [Google Scholar] [CrossRef]
- Saeed, M.A.; Cheng, S.; Biswas, S.; Hyeon, S.; Kwon, S.; Kim, H.; Kim, Y.; Shim, J.W. Remarkably high performance of organic photovoltaic devices with 3,9-bis dithiophene)-ethylhexyloxy ] photoactive acceptor under halogen light illumination. J. Power Sources 2022, 518, 230782. [Google Scholar] [CrossRef]
- Stubhan, T.; Li, N.; Luechinger, N.A.; Halim, S.C.; Matt, G.J.; Brabec, C.J. High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer. Adv. Energy Mater. 2012, 2, 1433–1438. [Google Scholar] [CrossRef]
- Rafique, S.; Abdullah, S.M.; Shahid, M.M.; Ansari, M.O.; Sulaiman, K. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer. Sci. Rep. 2017, 7, 39555. [Google Scholar] [CrossRef]
- Singh, R.; Duan, T.; Kan, Z.; Chochos, C.L.; Kini, G.P.; Kumar, M.; Park, J.; Lee, J.; Lee, J.J. Revealing the structural effects of non-fullerene acceptors on the performances of ternary organic photovoltaics under indoor light conditions. Nano Energy 2020, 75, 104934. [Google Scholar] [CrossRef]
CILs | VOC (mV) | JSC (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
CIL_PEIE | (801) 798 ± 4 | (22.5) 21.5 ± 0.5 | (66.8) 66.1 ± 1.0 | (12.1) 11.6 ± 0.2 |
CIL_ZnO | (807) 805 ± 1 | (23.6) 22.7 ± 0.5 | (68.6) 68.1 ± 0.4 | (12.9) 12.8 ± 0.1 |
CIL_Bilayer | (820) 817 ± 2 | (24.5) 23.8 ± 0.3 | (69.0) 68.9 ± 0.3 | (13.9) 13.7 ± 0.1 |
CILs | VOC (mV) | JSC (mA/cm2) | FF (%) | PCE (%) | RS (Ωcm2) | Rsh (kΩcm2) |
---|---|---|---|---|---|---|
CIL_PEIE | (605) 603 ± 2 | (100.4) 99.5 ± 1.3 | (67.5) 66.9 ± 0.9 | (18.5) 17.9 ± 0.3 | 5.6 | 120 |
CIL_ZnO | (615) 611 ± 2 | (103.3) 102.9 ± 0.9 | (69.2) 68.7 ± 0.2 | (19.9) 18.5 ± 0.2 | 4.3 | 132 |
CIL_Bilayer | (623) 618 ± 3 | (108.9) 108.1 ± 0.4 | (71.6) 70.4 ± 0.4 | (22.1) 21.5 ± 0.2 | 2.4 | 144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benesperi, I.S. RETRACTED: Cathode Interlayer Engineering for Efficient Organic Solar Cells under Solar Illumination and Light-Emitting Diode Lamp. Coatings 2022, 12, 816. https://doi.org/10.3390/coatings12060816
Benesperi IS. RETRACTED: Cathode Interlayer Engineering for Efficient Organic Solar Cells under Solar Illumination and Light-Emitting Diode Lamp. Coatings. 2022; 12(6):816. https://doi.org/10.3390/coatings12060816
Chicago/Turabian StyleBenesperi, Iacopo Sîm. 2022. "RETRACTED: Cathode Interlayer Engineering for Efficient Organic Solar Cells under Solar Illumination and Light-Emitting Diode Lamp" Coatings 12, no. 6: 816. https://doi.org/10.3390/coatings12060816
APA StyleBenesperi, I. S. (2022). RETRACTED: Cathode Interlayer Engineering for Efficient Organic Solar Cells under Solar Illumination and Light-Emitting Diode Lamp. Coatings, 12(6), 816. https://doi.org/10.3390/coatings12060816