Application of Functional and Edible Coatings and Films as Promising Strategies for Developing Dairy Functional Products—A Review on Yoghurt Case
Abstract
:1. Introduction
2. Nanotechnology Applications for Food and Dairy Industries
3. New Strategy for Developing Yoghurt as Functional Food
3.1. Different Forms of Yoghurt
3.2. Materials Used in the Manufacture of Yoghurt
3.3. Yoghurt Production
3.4. Yoghurt as Functional Food
4. Effect of Yoghurt Manufacture Technology on Health
4.1. Yoghurt for Alzheimer Treatment
4.2. Yoghurt Consumptions for Women Health
Premenstrual Syndrome
5. Research Recommendations and Personalization Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, Z.M.R.; Awad, R.A.; El-Sayed, M.M.; Salama, H.H.; Otzen, D. Application of nanotechnology using whey protein concentrates to improve bioavailability of Iron. Int. J. Biol. Chem. Environ. Sci. 2011, 6, 235–255. [Google Scholar]
- El-Sayed, M.M.; Hassan, Z.M.R.; Foda, M.I.; Awad, R.A.; Salama, H.H. Chitosan-whey protein complex (CS-WP) as delivery systems to improve bioavailability of iron. Int. J. Appl. Pure Sci. Agric. 2015, 1, 34–46. [Google Scholar]
- EFSA guidelines for the assessment of nanomaterials in the food and animal feed chain form the basis for risk assessment. EFSA J. 2018, 16, 7.
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novel Foods Regulation (EU) 2015/2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R2283&from=IT (accessed on 28 February 2022).
- Sharma, C.; Dhiman, R.; Rokana, N.; Panwar, H. Nanotechnology: An Untapped Resource for Food Packaging. Front. Microbiol. 2017, 8, 1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braicu, C.; Gulei, D.; Raduly, L.; Harangus, A.; Rusu, A.; Berindan-Neagoe, I. Altered expression of miR-181 affects cell fate and targets drug resistance-related mechanisms. Mol. Asp. Med. 2019, 70, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, B. Perspectives on FDA’s regulation of nanotechnology: Emerging challenges and potential solutions. Compr. Rev. Food Sci. Food Saf. 2009, 8, 375–393. [Google Scholar] [CrossRef]
- Neethirajan, S.; Jayas, D.S. Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 2011, 4, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Siemer, S.; Hahlbrock, A.; Vallet, C.; McClements, D.J.; Balszuweit, J.; Voskuhl, J.; Docter, D.; Wessler, S.; Knauer, S.K.; Westmeier, D.; et al. Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: A simulated gastrointestinal study. npj Sci. Food 2018, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Ameta, S.K.; Rai, A.K.; Hiran, D.; Ameta, R.; Ameta, S.C. Use of Nanomaterials in Food Science. In Biogenic Nano-Particles and Their Use in Agro-Ecosystems; Springer: Singapore, 2020; pp. 457–488. [Google Scholar]
- Subramani, T.; Ganapathyswamy, H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020, 57, 3545–3555. [Google Scholar] [CrossRef]
- Rusu, A.V.; Criste, F.L.; Mierliţă, D.; Socol, C.T.; Trif, M. Formulation of Lipoprotein Microencapsulated Beadlets by Ionic Complexes in Algae-Based Carbohydrates. Coatings 2020, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Jampilek, J.; Kos, J.; Kralova, K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. Nanomaterials 2019, 9, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K.; Rather, I.A. Application of Nanotechnology in Food Science: Perception and Overview. Front. Microbiol. 2017, 8, 1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangar, S.P.; Purewal, S.S.; Trif, M.; Maqsood, S.; Kumar, M.; Manjunatha, V.; Rusu, A.V. Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021, 10, 2181. [Google Scholar] [CrossRef] [PubMed]
- Drago, E.; Campardelli, R.; Pettinato, M.; Perego, P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020, 9, 1628. [Google Scholar] [CrossRef] [PubMed]
- Trif, M.; Csutak, E.; Perez-Moral, N.; Gagyi, T.; Pintori, D.; Bethke, M.; Wilde, P. TeRiFiQ EU Project: Multiple Gel in Oil in Water Emulsions as Fat Replacers in Sauces and Ready Prepared Foods. Bull. UASVM Food Sci. Technol. 2016, 73, 47–48. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y.-K. Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Talebian, S.; Wallace, G.G.; Schroeder, A.; Stellacci, F.; Conde, J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol. 2020, 15, 618–621. [Google Scholar] [CrossRef]
- Gubala, V.; Johnston, L.J.; Krug, H.F.; Moore, C.J.; Ober, C.K.; Schwenk, M.; Vert, M. Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). Pure Appl. Chem. 2018, 90, 1325–1356. [Google Scholar] [CrossRef] [Green Version]
- El-Messery, T.M.; El-Said, M.M.; Shahein, N.M.; El-Din, H.M.F.; Farrag, A. Functional yoghurt supplemented with orange peel encapsulated using coacervation technique. Pak. J. Biol. Sci. 2019, 22, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, K.; Bajaj, R.K.; Mandal, S.; Saha, P.; Mann, B. Evaluation of total phenol content and antioxidant properties of encapsulated grape seed extract in yoghurt. Int. J. Dairy Technol. 2018, 71, 96–104. [Google Scholar] [CrossRef]
- El-Said, M.M.; El-Messery, T.M.; El-Din, H.M.F. The encapsulation of powdered doum extract in liposomes and its application in yoghurt. Acta Sci. Pol. Technol. Aliment. 2018, 17, 235–245. [Google Scholar] [PubMed]
- Akgun, D.; Gultekin-Ozguven, M.; Yucetepe, A.; Altin, G.; Gibis, M.; Weiss, J.; Ozcelik, B. Stirred-type yoghurt incorporated with sour cherry extract in chitosan-coated liposomes. Food Hydrocoll. 2020, 101, 105532. [Google Scholar] [CrossRef]
- De Moura, S.C.S.R.; Schettini, G.N.; Garcia, A.O.; Gallina, D.A.; Alvim, I.D.; Hubinger, M.D. Stability of hibiscus extract encapsulated by ionic gelation incorporated in yoghurt. Food Bioprocess Technol. 2019, 12, 1500–1515. [Google Scholar] [CrossRef]
- Osojnik Črnivec, I.G.; Neresyan, T.; Gatina, Y.; Kolmanič Bučar, V.; Skrt, M.; Dogša, I.; Bogovič Matijašić, B.; Kulikova, I.; Lodygin, A.; Poklar Ulrih, N. Polysaccharide Hydrogels for the Protection of Dairy-Related Microorganisms in Adverse Environmental Conditions. Molecules 2021, 26, 7484. [Google Scholar] [CrossRef]
- Levinson, Y.; Ish-Shalom, S.; Segal, E.; Livney, Y.D. Bioavailability, rheology and sensory evaluation of fat-free yoghurt enriched with VD3 encapsulated in re-assembled casein micelles. Food Funct. 2016, 7, 1477–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashaolu, T.J. Nanoemulsions for health, food, and cosmetics: A review. Environ. Chem. Lett. 2021, 19, 3381–3395. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef]
- Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nano-Micro Lett. 2020, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Kwak, H.S.; Al Mijan, M.; Ganesan, P. Application of nanomaterials, nano-and microencapsulation to milk and dairy products. In Nano- and Microencapsulation for Foods, 1st ed.; John Wiley and Sons: Hoboken, NJ, USA, 2014; pp. 273–300. [Google Scholar]
- Park, H.S.; Jeon, B.J.; Ahn, J.; Kwak, H.S. Effects of nanocalcium supplemented milk on bone calcium metabolism in ovariectomized rats. Asian-Australas. J. Anim. Sci. 2007, 20, 1266–1271. [Google Scholar] [CrossRef]
- Seo, M.H.; Chang, Y.H.; Lee, S.; Kwak, H.S. The physicochemical and sensory properties of milk supplemented with ascorbic acid-soluble nano-chitosan during storage. Int. J. Dairy Technol. 2011, 64, 57–63. [Google Scholar] [CrossRef]
- Ahn, S.I.; Lee, Y.K.; Kwak, H.S. Optimization of water-in-oil-in-water microencapsulated β-galactosidase by response surface methodology. J. Microencapsul. 2013, 30, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius Commission. Codex Standard for Fermented Milks; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; pp. 1–5. [Google Scholar]
- Yilmaz-Ersan, L.; Kurdal, E. The production of set-type-bio-yoghurt with commercial probiotic culture. Int. J. Chem. Eng. Appl. 2014, 5, 402. [Google Scholar] [CrossRef] [Green Version]
- Gismondo, M.R.; Drago, L.; Lombardi, A. Review of probiotics available to modify gastrointestinal flora. Int. J. Antimicrob. Agents 1999, 12, 287–292. [Google Scholar] [CrossRef]
- Corrieu, G.; Be’al, C. Yoghurt: The Product and its Manufacture. In The Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; Volume 5, pp. 617–624. [Google Scholar]
- Weerathilake, W.A.D.V.; Rasika, D.M.D.; Ruwanmali, J.K.U.; Munasinghe, M.A.D.D. The evolution, processing, varieties and health benefits of yoghurt. Int. J. Sci. Res. 2014, 4, 1–10. [Google Scholar]
- EL-Sayed, S.M.; Salama, H.H.; El-Sayed, M.M. Preparation and properties of functional milk beverage fortified with kiwi pulp and sesame oil. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 609–618. [Google Scholar]
- McClements, D.J.; Newman, E.; McClements, I.F. Plant-Based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Zahran, H.; Mabrouk, A.M.M.; Salama, H.H. Evaluation of Yoghurt Fortified with Encapsulated Echium Oil Rich in Stearidonic Acid as a Low-Fat Dairy Food. Egypt. J. Chem. 2022, 65, 29–41. [Google Scholar] [CrossRef]
- Dal Bello, B.; Torri, L.; Piochi, M.; Zeppa, G. Healthy yoghurt fortified with n-3 fatty acids from vegetable sources. J. Dairy Sci. 2015, 98, 8375–8385. [Google Scholar] [CrossRef]
- Salama, H.H.; Abdelhamid, S.M.; El Dairouty, R.K. Coconut bio-yoghurt Phytochemical-Chemical and antimicrobial-microbial activities. Pak. J. Biol. Sci. 2019, 22, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Salama, H.H.; Abdelhamid, S.M.; Abd-Rabou, N.S. Probiotic Frozen Yoghurt Supplemented with Coconut Flour Green Nanoparticles. Curr. Bioact. Compd. 2020, 16, 661–670. [Google Scholar] [CrossRef]
- Salama, H.H.; El-Said, M.M.; Abdelhamid, S.M.; Abozed, S.S.; Mounier, M.M. Effect of Fortification with Sage Loaded Liposomes on the Chemical, Physical, Microbiological Properties and Cytotoxicity of Yoghurt. Egypt. J. Chem. 2020, 63, 3879–3890. [Google Scholar] [CrossRef]
- Salama, H.H.; El-Sayed, H.S.; Abd-Rabou, N.S.; Hassan, Z.R. Production and use of eco-friendly selenium nanoparticles in the fortification of yoghurt. J. Food Process. Preserv. 2021, 45, e15510. [Google Scholar] [CrossRef]
- Salama, H.H.; Abd El-Salam, M.H.; El-Sayed, M.M. Preparation of ß-carotene enriched nanoemulsion by spontaneous emulsification using oleic acid as nano carrier. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 585–593. [Google Scholar]
- Hassan, Z.M.R.; Awad, R.A.; El-Sayed, M.M.; Foda, M.I.; Otzen, D.; Salama, H.H. Interaction between Whey Protein Nanoparticles and Fatty Acids. Integr. Food Nutr. Metab. 2014, 1, 1–6. [Google Scholar]
- Bangar, S.P.; Siroha, A.K.; Nehra, M.; Trif, M.; Ganwal, V.; Kumar, S. Structural and Film-Forming Properties of Millet Starches: A Comparative Study. Coatings 2021, 11, 954. [Google Scholar] [CrossRef]
- Salama, H.H.; Foda, M.I.; El-Sayed, M.M.; Hassan, Z.M.R.; Awad, R.A.; Otzen, D. Characteristic and cytotoxic activity of different α-Lactalbumin/fatty acids nanocomplex. Am. Int. J. Contemp. Sci. Res. 2015, 2, 200–207. [Google Scholar]
- Trif, M.; Socaciu, C. Evaluation of effiency, release and oxidation stability of sea buckthorn microencapsulated oil using Fourier transformed infrared spectroscopy. Chem. Listy 2008, 102, 1198–1199. [Google Scholar]
- Coronel-Aquilera, C.P.; Martin-Gonzalez, M.F.S. Encapsulation of spray dried β-carotene emulsion by fluized bed coating technology. LWT Food Sci. Technol. 2015, 62, 187–193. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Ganesan, P.; Kwak, H.S. Comparison of nanopowdered and powdered peanut sprout-added yoghurt on its physicochemical and sensory properties during storage. Food Sci. Anim. Resour. 2012, 32, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.J.; Ganesan, P.; Kwak, H.S. Comparison of polyphenol content and antiradical scavenging activity in methanolic extract of nanopowdered and powdered peanut sprouts. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 793–798. [Google Scholar] [CrossRef]
- Seo, M.H.; Lee, S.Y.; Chang, Y.H.; Kwak, H.S. Physicochemical, microbial, and sensory properties of yoghurt supplemented with nanopowdered chitosan during storage. J. Dairy Sci. 2009, 92, 5907–5916. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Hong, E.K.; Ahn, J.; Kwak, H.S. Properties of nanopowdered chitosan and its cholesterol lowering effect in rats. Food Sci. Biotechnol. 2010, 19, 1457–1462. [Google Scholar] [CrossRef]
- Seo, M.H.; Park, J.H.; Kwak, H.S. Antidiabetic activity of nanopowdered chitosan in db/db mice. Food Sci. Biotechnol. 2010, 19, 1245–1250. [Google Scholar] [CrossRef]
- Lee, S.B.; Ganesan, P.; Kwak, H.S. Comparison of nanopowdered and powdered ginseng-added yoghurt on its physicochemical and sensory properties during storage. Food Sci. Anim. Resour. 2013, 33, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Schaafsma, A.; Beelen, G.M. Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: Piglet studies. J. Sci. Food Agric. 1999, 79, 1596–1600. [Google Scholar] [CrossRef]
- Mijan, M.A.; Lee, Y.K.; Kim, D.H.; Kwak, H.S. Effects of Nanopowdered Eggshell on Postmenopausal Osteoporosis: A Rat Study. Master’s Thesis, Sejong University, Seoul, Korea, 2013. [Google Scholar]
- Santillán-Urquiza, E.; Méndez-Rojas, M.Á.; Vélez-Ruiz, J.F. Fortification of yoghurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT Food Sci. Technol. 2017, 80, 462–469. [Google Scholar] [CrossRef]
- Fisberg, M.; Machado, R. History of yoghurt and current patterns of consumption. Nutr. Rev. 2015, 73, 4–7. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, H.S.; Salama, H.H.; Edris, A.E. Survival of Lactobacillus helveticus CNRZ32 in spray dried functional yoghurt powder during processing and storage. Int. J. Dairy Sci. 2020, 19, 461–467. [Google Scholar]
- Winblad, B.; Amouyel, P.; Andrieu, S.; Ballard, C.; Brayne, C.; Brodaty, H.; Cedazo-Minguez, A.; Dubois, B.; Edvardsson, D.; Feldman, H.; et al. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol. 2016, 15, 455–532. [Google Scholar] [CrossRef] [Green Version]
- Ano, Y.; Ayabe, T.; Kutsukake, T.; Ohya, R.; Takaichi, Y.; Uchida, S.; Yamada, K.; Uchida, K.; Takashima, A.; Nakayama, H. Novel lactopeptides in fermented dairy products improve memory function and cognitive decline. Neurobiol. Aging 2018, 72, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.M.A.; Salama, H.H.; Al-Mokaddem, A.K.; Aljuaydi, S.H.; Edris, A.E. Edible dairy formula fortified with coconut oil for neuroprotection against aluminium chloride-induced Alzheimer’s disease in rats. J. Funct. Foods. 2020, 75, 104296. [Google Scholar] [CrossRef]
- Mustafa, M.A.; Ashry, M.; Salama, H.H.; Abdelhamid, S.M.; Hassan, L.K.; Abdel-Wahhab, K.G. Amelioration Role of Ashwagandha/Probiotics Fortified Yoghurt against AlCl3 Toxicity in Rats. Int. J. Dairy Sci. 2020, 15, 169–181. [Google Scholar] [CrossRef]
- FAO/WHO. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. In Probiotics in Food Health and Nutritional Properties and Guidelines for Evaluation; Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; FAO/WHO: Cordoba, Argentina, 1–4 October 2001; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Shah, N.P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Tamime, A.Y.; Robinson, R.K. Yoghurt Science and Technology; CRC Press: New York, NY, USA, 2001; p. 619. [Google Scholar]
- Misra, S.; Mohanty, D.; Mohapatra, S. Applications of Probiotics as a Functional Ingredient in Food and Gut Health. J. Food Nutr. Res. 2019, 7, 213–223. [Google Scholar]
- Szilagyi, A.; Ishayek, N. Lactose Intolerance, Dairy Avoidance, and Treatment Options. Nutrients 2018, 10, 1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission Regulation (EU) No 432/2012, Consolidated Version. Available online: http://data.europa.eu/eli/reg/2012/432/2021-05-17 (accessed on 16 February 2022).
- Nazir, Y.; Hussain, S.A.; Hamid, A.A.; Song, Y. Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and hiv diseases. BioMed Res. Int. 2018, 2018, 3428437. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Bezirtzoglou, E. Probiotics in Medicine: A Long Debate. Front. Immunol. 2020, 11, 2192. [Google Scholar] [CrossRef]
- Elgamily, H.; Safwat, E.; Soliman, Z.; Salama, H.; El-Sayed, H.; Anwar, M. Antibacterial and Remineralization Efficacy of Casein Phosphopeptide, Glycomacropeptide Nanocomplex, and Probiotics in Experimental Toothpastes: An In Vitro Comparative Study. Eur. J. Dent. 2019, 13, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Elgamily, H.; Salama, H.; El-Sayed, H.; Safwat, E.; Abd El-Salam, M. The Promising Efficacy of Probiotics, Casein Phosphopeptide and Casein Macropeptide as Dental Anticariogenic and Remineralizing Agents Part I; An In Vitro Study. Annu. Res. Rev. Biol. 2018, 22, 1–11. [Google Scholar] [CrossRef]
- Sarvari, F.; Mortazavian, A.M.; Fazeli, M.R. Biochemical Characteristics and Viability of Probiotic and Yoghurt Bacteria in Yoghurt during the Fermentation and Refrigerated Storage. Appl. Food Biotechnol. 2014, 1, 55–61. [Google Scholar]
- Mohan, A.; Hadi, J.; Gutierrez-Maddox, N.; Li, Y.; Leung, I.K.; Gao, Y.; Quek, S.Y. Sensory, Microbiological and Physicochemical Characterization of Functional Manuka Honey Yoghurts Containing Probiotic Lactobacillus reuteri DPC16. Foods 2020, 9, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akl, E.M.; Abdelhamid, S.M.; Wagdy, S.M.; Salama, H.H. Manufacture of functional fat-free cream cheese fortified with probiotic bacteria and flaxseed mucilage as fat replacing agent. Curr. Nutr. Food Sci. 2020, 16, 1393–1403. [Google Scholar] [CrossRef]
- El-Messery, T.M.; El-Said, M.M.; Salama, H.H.; Mohammed, D.M.; Ros, G. Bioaccessibility of Encapsulated Mango Peel Phenolic Extract and Its Application in Milk Beverage. Int. J. Dairy Sci. 2021, 16, 29–40. [Google Scholar] [CrossRef]
- El-Said, M.M.; El-Messery, T.M.; Salama, H.H. Functional properties and in vitro bio-accessibility attributes of light ice cream incorporated with purple rice bran. Int. J. Dairy Sci. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Alizadeh, A.; Ehsani, M.R.; Homayouni, A. Acetaldehyde production rate in yoghurt made from ultrafiltered skim milk. Asian J. Chem. 2008, 20, 6529. [Google Scholar]
- Valencia, A.P.; Doyen, A.; Benoit, S.; Margni, M.; Pouliot, Y. Effect of ultrafiltration of milk prior to fermentation on mass balance and process efficiency in Greek-style yoghurt manufacture. Foods 2018, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Saad, S.A.; Salama, H.H.; EL-Sayed, H.S. Manufacture of Functional Labneh from UF-Retentate with Artichoke Puree. Int. J. Dairy Sci 2015, 10, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Ray, S.; Raychaudhuri, U.; Chakraborty, R. Microencapsulation of Probiotic Bacteria and Its Potential Application in Food Technology. Int. J. Agric. Environ. Biotechnol. 2014, 6, 63–69. [Google Scholar] [CrossRef]
- Silva, K.C.G.; Cezarino, E.C.; Michelon, M.; Sato, A.C.K. Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT Food Sci Technol. 2018, 89, 503–509. [Google Scholar] [CrossRef]
- Chavada, P.J. Novel application of nanotechnology in dairy and food industry: Nano inside. Int. J. Agric. Sci. 2016, 8, 2920–2922. [Google Scholar]
- Newbold, D.; Koppel, K. Carbonated Dairy Beverages: Challenges and Opportunities. Beverages 2018, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Abesinghe, A.M.N.L.; Priyashantha, H.; Prasanna, P.H.P.; Kurukulasuriya, M.S.; Ranadheera, C.S.; Vidanarachchi, J.K. Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. Fermentation 2020, 6, 121. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.S.; de Pinho, S.C.; Rocha, G.A. Revisão: Microencapsulação de ingredientes alimentícios. Braz. J. Food Technol. 2008, 11, 103–112. [Google Scholar]
- Mirzaei, H.; Pourjafar, H.; Homayouni, A. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem. 2012, 132, 1966–1970. [Google Scholar] [CrossRef]
- Polat, S.; Trif, M.; Rusu, A.; Šimat, V.; Čagalj, M.; Alak, G.; Meral, R.; Özogul, Y.; Polat, A.; Özogul, F. Recent advances in industrial applications of seaweeds. Crit. Rev. Food Sci. Nutr. 2021, 8, 1–30. [Google Scholar] [CrossRef]
- Kanmani, P.; Lim, S.T. Development and characterization of novel probioticresiding pullulan/starch edible films. Food Chem. 2013, 141, 1041–1049. [Google Scholar] [CrossRef]
- Wang, H.; Livingston, K.A.; Fox, C.S.; Meigs, J.B.; Jacques, P.F. Yoghurt consumption is associated with better diet quality and metabolic profile in American men and women. Nutr. Res. 2013, 33, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Panahi, S.; Tremblay, A. The Potential Role of Yoghurt in Weight Management and Prevention of Type 2 Diabetes. J. Am. Coll. Nutr. 2016, 35, 717–731. [Google Scholar] [CrossRef]
- Wang, H.; Troy, L.M.; Rogers, G.T.; Fox, C.S.; McKeown, N.M.; Meigs, J.B.; Jacques, P.F. Longitudinal association between dairy consumption and changes of body weight and waist circumference: The Framingham Heart Study. Int. J. Obes. 2014, 38, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Fares, B.S.; Abd el Kader, S.; Abd El Hamid, A.A.; Gaafar, H.M. Effect of ingestion of yoghurt containing Lactobacillus acidophilus on vulvovaginal candidiasis among women attending a gynecological clinic. Egypt. Nurs. J. 2017, 14, 41–49. [Google Scholar] [CrossRef]
- Joseph, R.J.; Ser, H.-L.; Kuai, Y.-H.; Tan, L.T.-H.; Arasoo, V.J.T.; Letchumanan, V.; Wang, L.; Pusparajah, P.; Goh, B.-H.; Ab Mutalib, N.-S.; et al. Finding a Balance in the Vaginal Microbiome: How Do We Treat and Prevent the Occurrence of Bacterial Vaginosis? Antibiotics 2021, 10, 719. [Google Scholar] [CrossRef] [PubMed]
- Linares, D.M.; Gomez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic acid bacteria and Bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front. Microbiol. 2017, 8, 846. [Google Scholar] [CrossRef] [PubMed]
- Ano, Y.; Nakayama, H. Preventive effects of dairy products on dementia and the underlying mechanisms. Int. J. Mol. Sci. 2018, 19, 1927. [Google Scholar] [CrossRef] [Green Version]
- Mehta, V.; Bhatt, K.; Desai, N.; Naik, M. Probiotics: An Adjuvant Therapy for D-Galactose Induced Alzheimer’s disease. J. Med. Res. Innov. 2017, 1, 30–33. [Google Scholar] [CrossRef]
- Nimgampalle, M.; Kuna, Y. Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J. Clin. Diagn. Res. 2017, 11, KC01–KC05. [Google Scholar] [CrossRef]
- Mitrea, L.; Călinoiu, L.F.; Precup, G.; Bindea, M.; Rusu, B.; Trif, M.; Ferenczi, L.J.; Ștefănescu, B.E.; Vodnar, D.C. Inhibitory potential of Lactobacillus plantarum on Escherichia coli. Bull. UASVM Food Sci. Technol. 2017, 74, 99–101. [Google Scholar] [CrossRef] [Green Version]
- Ogata, S.; Tanaka, H.; Omura, K.; Honda, C.; Hayakawa, K. Association between intake of dairy products and short-term memory with and without adjustment for genetic and family environmental factors: A twin study. Clin. Nutr. 2016, 35, 507–513. [Google Scholar] [CrossRef]
- Akbari, E.; Asemi, Z.; Kakhaki, R.D.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci. 2016, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra e Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; et al. Oxidative stress and dementia in Alzheimer’s patients: Effects of synbiotic supplementation. Oxid. Med. Cell Longev. 2020, 2020, 2638703. [Google Scholar] [CrossRef]
- Jayachandran, S. The Roots of Gender Inequality in Developing Countries. Annu. Rev. Econ. 2015, 7, 63–88. [Google Scholar] [CrossRef]
- Burkman, R.T. Berek and Novak’s Gynecology. J. Obstet. Gynaecol. 2014, 64, 150–151. [Google Scholar]
- Moghadasi, A.; Abbasi, M.; Yousefi, M.; Kargarfard, M. A comparison of prevalence of premenstrual syndrome symptoms between athlete and non-athlete female students. Physiol. Sport Phys. Act. 2009, 3, 199–208. [Google Scholar]
- Bertone-Johnson, E.R.; Hankinson, S.E.; Willett, W.C.; Johnson, S.R.; Manson, J.E. Adiposity and the development of premenstrual syndrome. J. Women’s Health 2010, 19, 1955–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohebbi Dehnavi, Z.; Torkmannejad Sabzevari, M.; Rastaghi, S.; Rad, M. A survey on the association of premenstrual syndrome with type of temperament in high school students. Iran. J. Obstet. Gynecol. Infertil. 2017, 20, 15–23. [Google Scholar]
- Jafarirad, S.; Rasaie, N.; Darabi, F. Comparison of anthropometric indices and lifestyle factors between healthy university students and affected by premenstrual syndrome. Jundishapur Sci. Med. J. 2016, 15, 217–227. [Google Scholar]
- Mohebi Dehnavi, Z.; Jafarnejad, F.; Mojahedi, M.; Shakeri, M.T.; Sardar, M.A. The relationship between warm and cold temperament with symptoms of premenstrual syndrome. Iran. J. Obstet. Gynecol. Infertil. 2016, 18, 17–24. [Google Scholar]
- Vichnin, M.; Freeman, E.W.; Lin, H.; Hillman, J.; Bui, S. Premenstrual syndrome (PMS) in adolescents: Severity and impairment. J. Pediatr. Adolesc. Gynecol. 2006, 19, 397–402. [Google Scholar] [CrossRef]
- Bhuvaneswari, K.; Rabindran, P.; Bharadwaj, B. Prevalence of premenstrual syndrome and its impact on quality of life among selected college students in Puducherry. Natl. Med. J. India 2019, 32, 17–19. [Google Scholar]
- Raval, C.M.; Panchal, B.N.; Tiwari, D.S.; Vala, A.U.; Bhatt, R.B. Prevalence of premenstrual syndrome and premenstrual dysphoric disorder among college students of Bhavnagar, Gujarat. Indian J Psychiatry 2016, 58, 164–170. [Google Scholar] [CrossRef]
- Hammam, R.A.M.; Zalat, M.M.; Sadek, S.M.; Soliman, B.S.; Ahmad, R.A.; Mahdy, R.S.; Hardy, C. Premenstrual syndrome and work among female academic teaching staff in a governmental faculty of medicine in Egypt. Egypt. J. Occup. Med. 2017, 41, 35–53. [Google Scholar]
- Fernandez, M.A.; Marette, A. Potential Health Benefits of Combining Yoghurt and Fruits Based on Their Probiotic and Prebiotic Properties. Adv. Nutr. 2017, 8, 155S–164S. [Google Scholar] [CrossRef] [PubMed]
- Barengolts, E.; Smith, E.D.; Reutrakul, S.; Tonucci, L.; Anothaisintawee, T. The Effect of Probiotic Yoghurt on Glycemic Control in Type 2 Diabetes or Obesity: A Meta-Analysis of Nine Randomized Controlled Trials. Nutrients 2019, 11, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, M.A.; Panahi, S.; Daniel, N.; Tremblay, A.; Marette, A. Yoghurt and Cardiometabolic Diseases: A Critical Review of Potential Mechanisms. Adv. Nutr. 2017, 8, 812–829. [Google Scholar]
- Galgano, F.; Condelli, N.; Caruso, M.C.; Colangelo, M.A.; Favati, F. Probiotics and prebiotics in fruits and vegetables: Technological and sensory aspects. In Beneficial Microbes in Fermented and Functional Foods; Rai, V.R., Bai, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 189–206. [Google Scholar]
- Eales, J.; Lenoir-Wijnkoop, I.; King, S.; Wood, H.; Kok, F.J.; Shamir, R.; Prentice, A.; Edwards, M.; Glanville, J.; Atkinson, R.L. Is consuming yoghurt associated with weight management outcomes? Results from a systematic review. Int. J. Obes. 2016, 40, 731–746. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, J.B. Probiotics—An Indian Perspective. Int. J. Probiotics Prebiotics 2015, 10, 1–10. [Google Scholar]
- Rad, M.; Sabzevary, M.T.; Dehnavi, Z.M. Factors associated with premenstrual syndrome in female high school students. J. Educ. Health Promot. 2018, 7, 64. [Google Scholar]
- Filho, E.A.R.; Lima, J.C.; Neto, J.S.P.; Montarroyos, U. Essential fatty acids for premenstrual syndrome and their effect on prolactin and total cholesterol levels: A randomized, double blind, placebo-controlled study. Reprod. Health 2011, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016, 39, 763–781. [Google Scholar] [CrossRef] [Green Version]
- Aziz, T.; Sarwar, A.; Al-Dalali, S.; Din, Z.U.; Megrous, S.; Din, J.U.; Zou, X.; Zhennai, Y. Production of linoleic acid metabolites by different probiotic strains of Lactobacillus plantarum. Prog. Nutr. 2019, 21, 693–701. [Google Scholar]
- Mahboubi, M. Evening Primrose (Oenothera biennis) Oil in Management of Female Ailments. J. Menopaus. Med. 2019, 25, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Szparaga, A.; Tabor, S.; Kocira, S.; Czerwińska, E.; Kuboń, M.; Płóciennik, B.; Findura, P. Survivability of Probiotic Bacteria in Model Systems of Non-Fermented and Fermented Coconut and Hemp Milks. Sustainability 2019, 11, 6093. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, P.N.; Modi, H.A.; Prajapati, J. Therapeutic Impacts of Probiotics—As Magic Bullet. Am. J. Biomed. Sci. 2016, 8, 97–113. [Google Scholar] [CrossRef]
- Koutnikova, H.; Genser, B.; Monteiro-Sepulveda, M.; Faurie, J.M.; Rizkalla, S.; Schrezenmeir, J.; Clément, K. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2019, 9, e017995. [Google Scholar] [CrossRef] [PubMed]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Yen, S.; Johnson, J.S. Metagenomics: A path to understanding the gut microbiome. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2021, 32, 282–296. [Google Scholar] [CrossRef]
- Fricker, A.M.; Podlesny, D.; Fricke, W.F. What is new and relevant for sequencing-based microbiome research? A mini-review. J. Adv. Res. 2019, 19, 105–112. [Google Scholar] [CrossRef]
- Singh, A.P. Genomic Techniques Used to Investigate the Human Gut Microbiota. In Human Microbiome; Beloborodova, N.V., Grechko, A.V., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Kvakova, M.; Bertkova, I.; Stofilova, J.; Savidge, T.C. Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021, 10, 1297. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Bahrami, A.; Rehman, A.; Rezaei, A.; Babazadeh, A.; Singh, H.; Jafari, S.M. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit. Rev. Food Sci. Nutr. 2020, 62, 2470–2494. [Google Scholar] [CrossRef]
- Huq, T.; Fraschini, C.; Khan, A.; Riedl, B.; Bouchard, J.; Lacroix, M. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr. Polym. 2017, 168, 61–69. [Google Scholar] [CrossRef]
- El-Abd, M.M.; Abdel-Hamid, M.; El-Sayed, S.H.; El Metwaly, A.H.; El-Demerdash, M.E.; Zeinab, F.A.M. Viability of Micro-Encapsulated Probiotics Combined with Plant Extracts in Fermented Camel Milk under Simulated Gastrointestinal Conditions. Middle East J. Appl. Sci. 2018, 8, 837–850. [Google Scholar]
- Yu, J.; Jeon, Y.-R.; Kim, Y.-H.; Jung, E.-B.; Choi, S.-J. Characterization and Determination of Nanoparticles in Commercial Processed Foods. Foods 2021, 10, 2020. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, M.M.A.N.; Shafique, B.; Rehman, A.; Mehmood, A.; Ali, A.; Zahra, S.M.; Roobab, U.; Singh, A.; Ibrahim, S.A.; Siddiqui, S.A. Biocompatible Nanomaterials in Food Science, Technology, and Nutrient Drug Delivery: Recent Developments and Applications. Front. Nutr. 2022, 8, 778155. [Google Scholar] [CrossRef] [PubMed]
Products | Technology Used | Food and Dairy Applications | References |
---|---|---|---|
Nano-sized additives/ingredients | Nanostructures of food ingredients | Enhancing bioavailability, improved texture, flavor, taste, salt and sugar reduction | [10,11] |
Delivery systems for additives/supplements | Supplements nano-encapsulated e.g., micelles- and liposomes-based | Taste masking | [12,13] |
Nano-engineered particulate additives/supplements | Nanoparticle form of additives/supplements | Antimicrobial and antifungal, enhancing bioavailability of nutrients, health benefits | [14,15] |
Food coating and packaging | Active nano-composites, intelligent and smart packaging | Durability, barrier properties, improve flexibility, temperature/moisture stability | [16,17] |
Enzymatic structure, modification, emulsions, foams, aerogels | Nutrient delivery | Increasing bioavailability of nutrients, targeted delivery of nutrients | [18] |
Effective separation of target material from food | Membrane filtration | Higher quality fluids and food products | [19] |
Engineering nanoparticles | Nanotechnology-based disinfectants | Non-contaminated foods, protection against pathogens | [20] |
Nanolithography depositions | Nanoparticle-based intelligent inks; reactive nanolayers | Authentication, prevention of adulteration, traceability | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, H.H.; Trif, M.; Rusu, A.V.; Bhattacharya, S. Application of Functional and Edible Coatings and Films as Promising Strategies for Developing Dairy Functional Products—A Review on Yoghurt Case. Coatings 2022, 12, 838. https://doi.org/10.3390/coatings12060838
Salama HH, Trif M, Rusu AV, Bhattacharya S. Application of Functional and Edible Coatings and Films as Promising Strategies for Developing Dairy Functional Products—A Review on Yoghurt Case. Coatings. 2022; 12(6):838. https://doi.org/10.3390/coatings12060838
Chicago/Turabian StyleSalama, Heba Hassan, Monica Trif, Alexandru Vasile Rusu, and Sourish Bhattacharya. 2022. "Application of Functional and Edible Coatings and Films as Promising Strategies for Developing Dairy Functional Products—A Review on Yoghurt Case" Coatings 12, no. 6: 838. https://doi.org/10.3390/coatings12060838
APA StyleSalama, H. H., Trif, M., Rusu, A. V., & Bhattacharya, S. (2022). Application of Functional and Edible Coatings and Films as Promising Strategies for Developing Dairy Functional Products—A Review on Yoghurt Case. Coatings, 12(6), 838. https://doi.org/10.3390/coatings12060838