Impact of Throughflow and Coriolis Force on the Onset of Double-Diffusive Convection with Internal Heat Source
Abstract
:1. Introduction
2. Governing Equations
3. Basic State
4. Linear Stability Study
5. Solution Methodology
6. Results and Discussion
7. Conclusions
- -
- In the absence of throughflow and rotation, the Rac and the wave number for the Darcy porous medium match with those found in the literature and reported by Gasser and Kazimi [31].
- -
- In the absence of an inner heater and rotation, the critical values of Ra for the Darcy porous medium are identical to those discovered by Barletta et al. [48].
- -
- The system is destabilized by the internal heat source parameter.
- -
- The Taylor number has a stabilizing impact on the considered unit for both upward and downward throughflows.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tritton, D.J. Internally heated convection in the atmosphere of Venus and in the laboratory. Nature 1975, 257, 110–112. [Google Scholar] [CrossRef]
- Hurley, M.J.; Gottuk, D.T.; Hall, J.R., Jr.; Harada, K.; Kuligowski, E.D.; Puchovsky, M.; Watts, J.M., Jr.; Wieczorek, C.J. (Eds.) SFPE Handbook of Fire Protection Engineering; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mckenzie, D.P.; Roberts, J.M.; Weiss, N.O. Convection in the Earth’s mantle: Towards a numerical simulation. J. Fluid Mech. 1974, 62, 465–538. [Google Scholar] [CrossRef]
- Chadwick, M.L.; Webb, B.W.; Heaton, H.S. Natural convection from two-dimensional discrete heat sources in a rectangular enclosure. Int. J. Heat Mass Transf. 1991, 34, 1679–1693. [Google Scholar] [CrossRef]
- May, H.O. A numerical study on natural convection in an inclined square enclosure containing internal heat sources. Int. J. Heat Mass Transf. 1991, 34, 919–928. [Google Scholar] [CrossRef]
- Tritton, D.J.; Zarraga, M.N. Convection in horizontal layers with internal heat generation. Experiments. J. Fluid Mech. 1967, 30, 21–31. [Google Scholar] [CrossRef]
- Roberts, P.H. Convection in horizontal layers with internal heat generation. Theory. J. Fluid Mech. 1967, 30, 33–49. [Google Scholar] [CrossRef]
- Thirlby, R. Convection in an internally heated layer. J. Fluid Mech. 1970, 44, 673–693. [Google Scholar] [CrossRef]
- Tveitereid, M.; Palm, E. Convection due to internal heat sources. J. Fluid Mech. 1976, 76, 481–499. [Google Scholar] [CrossRef] [Green Version]
- Takashima, M. The stability of natural convection in an inclined fluid layer with internal heat generation. J. Phys. Soc. Jpn. 1989, 58, 4431–4440. [Google Scholar] [CrossRef]
- Takashima, M. The stability of natural convection in an inclined fluid layer with internal heat generation. II. J. Phys. Soc. Jpn. 1991, 60, 455–465. [Google Scholar] [CrossRef]
- Tasaka, Y.; Takeda, Y. Effects of heat source distribution on natural convection induced by internal heating. Int. J. Heat Mass Transf. 2005, 48, 1164–1174. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Jones, M.C.; Persichetti, J.M. Convective instability in packed beds with throughflow. AIChE J. 1986, 32, 1555–1557. [Google Scholar] [CrossRef]
- Wooding, R.A. Rayleigh instability of a thermal boundary layer in flow through a porous medium. J. Fluid Mech. 1960, 9, 183–192. [Google Scholar] [CrossRef]
- Homsy, G.M.; Sherwood, A.E. Convective instabilities in porous media with throughflow. AIChE J. 1976, 22, 168–174. [Google Scholar] [CrossRef]
- Sutton, F.M. Onset of convection in a porous channel with net throughflow. Phys. Fluids 1970, 13, 1931. [Google Scholar] [CrossRef]
- Shivakumara, I.S. Effects of throughflow on convection in porous media. Proc. Seventh Asian Congr. Fluid Mech. 1997, 2, 557–560. [Google Scholar]
- Khalili, A.; Shivakumara, I.S. Onset of convection in a porous layer with net throughflow and internal heat generation. Phys. Fluids 1998, 10, 315. [Google Scholar] [CrossRef]
- Brevdo, L. Three-dimensional absolute and convective instabilities at the onset of convection in a porous medium with inclined temperature gradient and vertical throughflow. J. Fluid Mech. 2009, 641, 475–487. [Google Scholar] [CrossRef]
- Shivakumara, I.S.; Sureshkumar, S. Convective instabilities in a viscoelastic fluid-saturated porous medium with throughflow. J. Geophys. Eng. 2007, 4, 104–115. [Google Scholar] [CrossRef]
- Yadav, D. Numerical investigation of the combined impact of variable gravity field and throughflow on the onset of convective motion in a porous medium layer. Int. Commun. Heat Mass Transf. 2019, 108, 104274. [Google Scholar] [CrossRef]
- Kiran, P. Throughflow and gravity modulation effects on heat transport in a porous medium. J. Appl. Fluid Mech. 2016, 93, 1105–1113. [Google Scholar] [CrossRef]
- Bhadauria, S.; Kiran, P. Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under g-jitter. Int. J. Heat Mass Transf. 2015, 84, 610–624. [Google Scholar] [CrossRef]
- Kiran, P. Throughow and g-jitter effects on binary fluid saturated porous medium. Appl. Math. Mech. 2015, 36, 1285–1304. [Google Scholar] [CrossRef]
- Shinkumara, I.S.; Nanjundappa, C.E. Effects of quadratic drag and throughflow on double diffusive convection in a porous layer. Int. Commun. Heat Mass Transf. 2006, 33, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Reza, M.; Gupta, A.S. Magnetohydrodynamic thermal instability in a conducting fluid layer with throughflow. Int. J. Non-Linear Mech. 2012, 47, 616–625. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A.V. The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium with horizontal throughflow. Int. J. Heat Mass Transf. 2011, 54, 5595–5601. [Google Scholar] [CrossRef]
- Yadav, D. The onset of Darcy-Brinkman convection in a porous medium layer with vertical throughflow and variable gravity field effects. Heat Transf. 2020, 49, 3161–3173. [Google Scholar] [CrossRef]
- Kiran, P.; Bhadauria, S. Throughflow and rotational effects on oscillatory convection with modulation. Nonlinear Stud. 2016, 23, 439–455. [Google Scholar]
- Gasser, R.D.; Kazimi, M.S. Onset of convection in a porous medium with internal heat generation. J. Heat Transf. 1976, 98, 49–54. [Google Scholar] [CrossRef]
- Tveitereid, M. Thermal convection in a horizontal porous layer with internal heat sources. Int. J. Heat Mass Transf. 1977, 20, 1045–1050. [Google Scholar] [CrossRef]
- Yadav, D.; Wang, J.; Jinho, L. Onset of Darcy-Brinkman convection in a rotating porous layer induced by purely internal heating. J. Porous Media 2017, 20, 691–706. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Basavaraja, D.; Wang, S.; Lorenzini, G.; Lorenzini, E. Convection in a porous medium with variable internal heat source and variable gravity. Int. J. Heat Mass Transf. 2017, 111, 651–656. [Google Scholar] [CrossRef]
- Gholamalizadeh, E.; Pahlevanzadeh, F.; Ghani, K.; Karimipour, A.; Nguyen, T.K.; Safaei, M.R. Simulation of water/FMWCNT nanofluid forced convection in a microchannel filled with porous material under slip velocity and temperature jump boundary conditions. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 2329–2349. [Google Scholar] [CrossRef]
- Heydari, A.; Akbari, O.A.; Safaei, M.R.; Derakhshani, M.; Alrashed, A.A.A.A.; Mashayekhi, R.; Ahmadi Sheikh Shabani, G.; Zarringhalam, M.; Nguyen, T.K. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J. Therm. Anal. Calorim. 2018, 131, 2893–2912. [Google Scholar] [CrossRef]
- Maleki, H.; Safaei, M.R.; Togun, H.; Dahari, M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J. Therm. Anal. Calorim. 2019, 135, 1643–1654. [Google Scholar] [CrossRef]
- Riahi, N. Non-linear convection in a porous medium with internal heat sources. Int. J. Non-Linear Mech. 1984, 19, 469–478. [Google Scholar] [CrossRef]
- Rionero, S.; Straughan, B. Convection in a porous medium with internal heat source and variable gravity effects. Int. J. Eng. Sci. 1990, 28, 497–503. [Google Scholar] [CrossRef]
- Du, Z.G.; Bilgen, E. Natural convection in vertical cavities with internal heat generating porous medium. Heat Mass Transf. 1992, 27, 149–155. [Google Scholar] [CrossRef]
- Hewitt, G.F.; Shires, G.L.; Bott, T.R. Process Heat Transfer; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Choi, E.; Chamkha, A.; Nandakumar, K. A bifurcation study of natural convection in porous media with internal heat sources: The non-Darcy effects. Int. J. Heat Mass Transf. 1998, 41, 383–392. [Google Scholar] [CrossRef]
- Yadav, D.; Lee, J.; Cho, H.H. Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a nanofluid. Powder Technol. 2015, 286, 592–601. [Google Scholar] [CrossRef]
- Yadav, D.; Bhargava, R.; Agrawal, G.S. Boundary and internal heat source effects on the onset of Darcy–Brinkman convection in a porous layer saturated by nanofluid. Int. J. Therm. Sci. 2012, 60, 244–254. [Google Scholar] [CrossRef]
- Barletta, A.; Celli, M.; Rees, D.A. The onset of convection in a porous layer induced by viscous dissipation: A linear stability analysis. Int. J. Heat Mass Transf. 2009, 52, 337–344. [Google Scholar] [CrossRef]
- Sphaier, L.A.; Barletta, A.; Celli, M. Unstable mixed convection in a heated inclined porous channel. J. Fluid Mech. 2015, 778, 428–450. [Google Scholar] [CrossRef]
- Vanishree, R.K. Effects of throughflow and internal heat generation on a thermo convective instability in an anisotropic porous medium. J. Appl. Fluid Mech. 2014, 7, 581–590. [Google Scholar]
- Barletta, A.; Rossi di Schio, E.; Storesletten, L. Convective roll instabilities of vertical throughflow with viscous dissipation in a horizontal porous layer. Transp. Porous Media 2010, 81, 461–477. [Google Scholar] [CrossRef] [Green Version]
Q | Gasser and Kazimi [31] | Present Study |
---|---|---|
0 | 39.48 | 39.4788 |
5 | 34.59 | 34.5953 |
10 | 27.02 | 27.0162 |
15 | 21.45 | 21.4436 |
20 | 17.63 | 17.6267 |
25 | 14.92 | 14.9165 |
30 | 12.91 | 12.9117 |
40 | 10.16 | 10.1606 |
50 | 8.37 | 8.3690 |
60 | 7.11 | 7.1121 |
80 | 5.47 | 5.4670 |
100 | 4.44 | 4.4391 |
Pe | Barletta et al. [48] | Present Study | Pe | Barletta et al. [48] | Present Study |
---|---|---|---|---|---|
−0.001 | 39.4784 | 39.47842 | 0.001 | 39.4784 | 39.47842 |
−0.01 | 39.4786 | 39.47856 | 0.01 | 39.4786 | 39.47856 |
−0.1 | 39.4924 | 39.49237 | 0.1 | 39.4924 | 39.49237 |
−1 | 40.8751 | 40.87507 | 1 | 40.8751 | 40.87507 |
−2 | 45.0776 | 45.07761 | 2 | 45.0776 | 45.07761 |
−3 | 52.0684 | 52.06842 | 3 | 52.0684 | 52.06842 |
−4 | 61.6664 | 61.66642 | 4 | 61.6664 | 61.66642 |
−5 | 73.4146 | 73.41456 | 5 | 73.4146 | 73.41456 |
−6 | 86.6192 | 86.61920 | 6 | 86.6192 | 86.61920 |
−7 | 100.581 | 100.58085 | 7 | 100.581 | 100.58085 |
−8 | 114.833 | 114.83260 | 8 | 114.833 | 114.83260 |
−9 | 129.167 | 129.16685 | 9 | 129.167 | 129.16685 |
−10 | 143.518 | 143.51849 | 10 | 143.518 | 143.51849 |
−15 | 215.283 | 215.28280 | 15 | 215.283 | 215.28280 |
Q | Da = 0.01 | Da = 0.1 | ||||
---|---|---|---|---|---|---|
Pe = 0.001 | Pe = 0.01 | Pe = 0.1 | Pe = 0.001 | Pe = 0.01 | Pe = 0.1 | |
1 | 470.7949 | 470.8283 | 471.2445 | 360.2181 | 360.2767 | 360.9591 |
2 | 456.8040 | 456.8651 | 457.5531 | 353.1931 | 353.3036 | 354.5031 |
3 | 436.5979 | 436.6802 | 437.5732 | 342.6116 | 342.7646 | 344.3875 |
4 | 413.2066 | 413.3041 | 414.3438 | 329.7012 | 329.8865 | 331.8297 |
5 | 389.0000 | 389.1083 | 390.2508 | 315.5820 | 315.7903 | 317.9600 |
6 | 365.4518 | 365.5675 | 366.7803 | 301.1062 | 301.3299 | 303.6501 |
7 | 343.3180 | 343.4387 | 344.6974 | 286.8434 | 287.0766 | 289.4889 |
8 | 322.8993 | 323.0231 | 324.3092 | 273.1351 | 273.3735 | 275.8350 |
9 | 304.2439 | 304.3692 | 305.6686 | 260.1618 | 260.4023 | 262.8818 |
10 | 287.2738 | 287.3996 | 288.7016 | 247.9998 | 248.2401 | 250.7157 |
11 | 271.8562 | 271.9817 | 273.2784 | 236.6618 | 236.9005 | 239.3566 |
12 | 257.8414 | 257.9660 | 259.2515 | 226.1242 | 226.3602 | 228.7861 |
13 | 245.0812 | 245.2044 | 246.4745 | 216.3440 | 216.5764 | 218.9648 |
14 | 233.4375 | 233.5590 | 234.8107 | 207.2690 | 207.4974 | 209.8434 |
15 | 222.7858 | 222.9053 | 224.1365 | 198.8445 | 199.0685 | 201.3693 |
16 | 213.0155 | 213.1329 | 214.3422 | 191.0165 | 191.2360 | 193.4896 |
17 | 204.0293 | 204.1446 | 205.3312 | 183.7335 | 183.9484 | 186.1542 |
18 | 195.7422 | 195.8553 | 197.0187 | 176.9479 | 177.1581 | 179.3200 |
19 | 188.0798 | 188.1907 | 189.3307 | 170.6157 | 170.8213 | 172.9315 |
20 | 180.9771 | 181.0857 | 182.2025 | 164.6970 | 164.8982 | 166.9615 |
Q | Da = 0.01 | Da = 0.1 | ||||
---|---|---|---|---|---|---|
Pe = −0.001 | Pe = −0.01 | Pe = −0.1 | Pe = −0.001 | Pe = −0.01 | Pe = −0.1 | |
1 | 470.7877 | 470.7561 | 470.5231 | 360.2053 | 360.1488 | 359.6803 |
2 | 456.7906 | 456.7312 | 456.2149 | 353.1688 | 353.0604 | 352.0715 |
3 | 436.5798 | 436.4992 | 435.7636 | 342.5778 | 342.4269 | 341.0094 |
4 | 413.1850 | 413.0890 | 412.1932 | 329.6602 | 329.4769 | 327.7328 |
5 | 388.9761 | 388.8691 | 387.8591 | 315.5359 | 315.3296 | 313.3517 |
6 | 365.4262 | 365.3117 | 364.2219 | 301.0567 | 300.8349 | 298.6994 |
7 | 343.2913 | 343.1717 | 342.0281 | 286.7918 | 286.5603 | 284.3257 |
8 | 322.8720 | 322.7493 | 321.5716 | 273.0823 | 272.8456 | 270.5550 |
9 | 304.2162 | 304.0919 | 302.8952 | 260.1085 | 259.8696 | 257.5545 |
10 | 287.2460 | 287.1211 | 285.9168 | 247.9465 | 247.7077 | 245.3905 |
11 | 271.8285 | 271.7039 | 270.5004 | 236.6089 | 236.3718 | 234.0684 |
12 | 257.8139 | 257.6902 | 256.4938 | 226.0720 | 225.8375 | 223.5590 |
13 | 245.0539 | 244.9316 | 243.7470 | 216.2925 | 216.0615 | 213.8155 |
14 | 233.4106 | 233.2900 | 232.1205 | 207.2184 | 206.9914 | 204.7831 |
15 | 222.7593 | 222.6405 | 221.4885 | 198.7949 | 198.5722 | 196.4048 |
16 | 212.9894 | 212.8727 | 211.7397 | 190.9678 | 190.7496 | 188.6251 |
17 | 204.0038 | 203.8892 | 202.7763 | 183.6859 | 183.4722 | 181.3917 |
18 | 195.7171 | 195.6047 | 194.5126 | 176.9012 | 176.6922 | 174.6559 |
19 | 188.0552 | 187.9450 | 186.8739 | 170.5701 | 170.3656 | 168.3734 |
20 | 180.9530 | 180.8450 | 179.7950 | 164.6525 | 164.4525 | 162.5039 |
Ta | Da = 0.01 | Da = 0.1 | ||||
---|---|---|---|---|---|---|
Pe = 0.001 | Pe = 0.01 | Pe = 0.1 | Pe = 0.001 | Pe = 0.01 | Pe = 0.1 | |
5 | 111.6703 | 111.7037 | 112.0815 | 148.2322 | 148.3047 | 149.0853 |
10 | 162.3775 | 162.4197 | 162.8861 | 180.1151 | 180.1960 | 181.0679 |
15 | 207.2615 | 207.3097 | 207.8364 | 207.7227 | 207.8099 | 208.7501 |
20 | 248.5374 | 248.5894 | 249.1605 | 232.6185 | 232.7106 | 233.7058 |
25 | 287.2261 | 287.2787 | 287.8852 | 255.5851 | 255.6815 | 256.7225 |
30 | 323.9144 | 323.9714 | 324.6015 | 277.0832 | 277.1830 | 278.2636 |
35 | 358.9829 | 359.0413 | 359.6915 | 297.4115 | 297.5145 | 298.6298 |
40 | 392.6975 | 392.7571 | 393.4230 | 316.7779 | 316.8836 | 318.0299 |
45 | 425.2544 | 425.3149 | 425.9932 | 335.3336 | 335.4418 | 336.6159 |
50 | 456.8040 | 456.8651 | 457.5531 | 353.1931 | 353.3036 | 354.5031 |
55 | 487.4646 | 487.5261 | 488.2217 | 370.4458 | 370.5583 | 371.7811 |
60 | 517.3322 | 517.3939 | 518.0952 | 387.1627 | 387.2771 | 388.5215 |
65 | 546.4853 | 546.5471 | 547.2528 | 403.4019 | 403.5180 | 404.7824 |
70 | 574.9901 | 575.0518 | 575.7605 | 419.2113 | 419.3290 | 420.6121 |
75 | 602.9020 | 602.9637 | 603.6743 | 434.6310 | 434.7502 | 436.0508 |
Ta | Da = 0.01 | Da = 0.1 | ||||
---|---|---|---|---|---|---|
Pe = −0.001 | Pe = −0.01 | Pe = −0.1 | Pe = −0.001 | Pe = −0.01 | Pe = −0.1 | |
5 | 111.6629 | 111.6289 | 111.3183 | 148.2162 | 148.1449 | 147.4869 |
10 | 162.3681 | 162.3262 | 161.9452 | 180.0972 | 180.0177 | 179.2843 |
15 | 207.2509 | 207.2037 | 206.7770 | 207.7035 | 207.6178 | 206.8289 |
20 | 248.5259 | 248.4750 | 248.0171 | 232.5982 | 232.5076 | 231.6749 |
25 | 287.2114 | 287.1590 | 286.6808 | 255.5639 | 255.4693 | 254.6004 |
30 | 323.9019 | 323.8463 | 323.3516 | 277.0612 | 276.9631 | 276.0635 |
35 | 358.9700 | 358.9130 | 358.4081 | 297.3889 | 297.2878 | 296.3616 |
40 | 392.6844 | 392.6263 | 392.1149 | 316.7546 | 316.6508 | 315.7013 |
45 | 425.2412 | 425.1823 | 424.6673 | 335.3097 | 335.2036 | 334.2333 |
50 | 456.7906 | 456.7312 | 456.2149 | 353.1688 | 353.0604 | 352.0715 |
55 | 487.4512 | 487.3915 | 486.8757 | 370.4210 | 370.3107 | 369.3048 |
60 | 517.3187 | 517.2588 | 516.7450 | 387.1375 | 387.0254 | 386.0041 |
65 | 546.4718 | 546.4120 | 545.9013 | 403.3764 | 403.2626 | 402.2272 |
70 | 574.9766 | 574.9167 | 574.4103 | 419.1854 | 419.0700 | 418.0217 |
75 | 602.8885 | 602.8289 | 602.3276 | 434.6048 | 434.4880 | 433.4276 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafeek, K.V.M.; Reddy, G.J.; Ragoju, R.; Reddy, G.S.K.; Sheremet, M.A. Impact of Throughflow and Coriolis Force on the Onset of Double-Diffusive Convection with Internal Heat Source. Coatings 2022, 12, 1096. https://doi.org/10.3390/coatings12081096
Rafeek KVM, Reddy GJ, Ragoju R, Reddy GSK, Sheremet MA. Impact of Throughflow and Coriolis Force on the Onset of Double-Diffusive Convection with Internal Heat Source. Coatings. 2022; 12(8):1096. https://doi.org/10.3390/coatings12081096
Chicago/Turabian StyleRafeek, Kallu Vetty Muhammed, Gudala Janardhana Reddy, Ravi Ragoju, Gundlapally Shiva Kumar Reddy, and Mikhail A. Sheremet. 2022. "Impact of Throughflow and Coriolis Force on the Onset of Double-Diffusive Convection with Internal Heat Source" Coatings 12, no. 8: 1096. https://doi.org/10.3390/coatings12081096
APA StyleRafeek, K. V. M., Reddy, G. J., Ragoju, R., Reddy, G. S. K., & Sheremet, M. A. (2022). Impact of Throughflow and Coriolis Force on the Onset of Double-Diffusive Convection with Internal Heat Source. Coatings, 12(8), 1096. https://doi.org/10.3390/coatings12081096