Influence of Electrostatic Field on Mixed Aqueous Solution of Calcium and Ferrous Ions: Insights from Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Model and Simulation Details
3. Results and Discussion
3.1. Structural Parameters
3.2. Self-Diffusion Coefficients of Ca2+ and Fe2+ and Water Molecule
3.3. Viscosity of the CaCl2 Aqueous Solution
3.4. Effect of Fe2+ and Electric Field on Hydrogen Bonds
4. Conclusions
- (1)
- Compared to Ca2+, the hydrated structure of Fe2+ is more stable. The EF may raise the first water coordination number for Ca2+ and reduce the radius of hydrated Ca2+. The EF has the ability to reduce the first water coordination number for hydrated Fe2+ and expand its radius. The presence of Fe2+ has no discernible impact on the radius of hydrated Ca2+; however, it can lower the first water coordination number of Ca2+.
- (2)
- The viscosity of CaCl2 in an aqueous solution can be efficiently raised by Fe2+. The presence of an EF can make the mixed aqueous solution less viscous.
- (3)
- The self-diffusion coefficient of Ca2+ can be lowered by Fe2+. Ca2+, Fe2+, and water molecules’ self-diffusion coefficients can all be increased by an EF.
- (4)
- An EF can enhance the hydrogen structure of the water molecules in the aqueous solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiner, S.; Sagi, I.; Addadi, L. Choosing the crystallization path less traveled. Science 2005, 309, 1027–1028. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.Q.; Guo, R.; Wang, Y.; Liu, X.W.; Chan, H.L.W. Electric field-controlled crystallizing CaCO3 nanostructures from solution. Nanoscale Res. Lett. 2016, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Liu, Z.F.; Gao, Y.H.; Zhang, L.H.; Li, X.H. Influence of electrostatic water treatment on crystallization behavior of CaCO3 and synergistic scale inhibition with a green scale inhibitor. CIESC J. Chem. Ind. Eng. 2013, 64, 1736–1742. [Google Scholar] [CrossRef]
- Lin, D.; Dai, N.; Chen, Y.; Ni, Q.; Zhang, X.; Zhang, J. Effect of direct current electric field on initial corrosion of steel exposed to simulated marine environment. Corros. Sci. Protetion Technol. 2017, 29, 63–67. [Google Scholar] [CrossRef]
- Sarin, P.; Snoeyink, V.L.; Lytle, D.A.; Kriven, W.M. Iron corrosion scales: Model for scale growth, iron release, and colored water formation. J. Environ. Eng. 2004, 130, 364–373. [Google Scholar] [CrossRef]
- Finan, M.A.; Harris, A.; Marshall, A. Ecologically acceptable method of preventing corrosion/scale problems by control of water conditions. Natl. Assoc. Corros. Eng. 1980, 204, 24–29. [Google Scholar]
- de Leeuw, N.H. Molecular dynamics simulations of the growth inhibiting effect of Fe2+, Mg2+, Cd2+, and Sr2+ on calcite crystal growth. J. Phys. Chem. B 2002, 106, 5241–5249. [Google Scholar] [CrossRef]
- Zhao, G.-J.; Liu, J.-Y.; Zhou, L.-C.; Han, K.-L. Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: A new fluorescence quenching mechanism. J. Phys. Chem. B 2007, 111, 8940–8945. [Google Scholar] [CrossRef]
- Zhao, G.J.; Han, K.L. Hydrogen bonding in the electronic excited state. Accounts. Chem. Res. 2012, 45, 404. [Google Scholar] [CrossRef]
- Chen, J.S.; Yuan, M.H.; Wang, J.P.; Yang, Y.; Chu, T.S. Sensing mechanism for biothiols chemosensor DCO: Roles of excited-state hydrogen-bonding and intramolecular charge transfer. J. Phys. Chem. A 2014, 118, 8986–8995. [Google Scholar] [CrossRef]
- Zhu, L.; Han, Y.; Zhang, C.; Zhao, R.; Tang, S. Molecular dynamics simulation for the impact of an electrostatic field and impurity Mg2+ ions on hard water. RSC Adv. 2017, 7, 47583. [Google Scholar] [CrossRef]
- Nedyalkova, M.; Madurga, S.; Pisov, S.; Pastor, I.; Vilaseca, E.; Mas, F. Molecular dynamics simulation of the spherical electrical double layer of a soft nanoparticle: Effect of the surface charge and counterion valence. J. Chem. Phys. 2012, 137, 174701. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Duan, Z.; Zhang, Z.; Zhang, C.; Weare, J. The structure, dynamics and solvation mechanisms of ions in water from long time molecular dynamics simulations: A case study of CaCl2 (Aq) aqueous solutions. Mol. Phys. 2008, 106, 2685–2697. [Google Scholar] [CrossRef]
- Chialvo, A.A.; Simonson, J.M. The structure of CaCl2 aqueous solutions over a wide range of concentration. Interpretation of diffraction experiments via molecular simulation. J. Chem. Phys. 2003, 119, 8052–8061. [Google Scholar] [CrossRef]
- Isele-Holder, R.E.; Mitchell, W.; Ismail, A.E. Development and application of a particle-particle particle-mesh ewald method for dispersion interactions. J. Chem. Phys. 2012, 137, 174107. [Google Scholar] [CrossRef] [PubMed]
- Gunsteren, W.F.V.; Billeter, S.R.; Eising, A.A.; Hünenberger, P.H.; Krüger, P.K.H.C.; Mark, A.E.; Scott, W.R.P.; Tironi, I.G. Biomolecular Simulation: The GROMOS96 Manual and User Guide; Vdf Hochschulverlag AG an der ETH Zürich: Zürich, Switzerland, 1996; Volume 86, pp. 1–1044. [Google Scholar]
- Duarte, F.; Bauer, P.; Barrozo, A.; Amrein, B.A.; Purg, M.; Åqvist, J.; Kamerlin, S.C.L. Force field independent metal parameters using a nonbonded dummy model. J. Phys. Chem. B 2014, 118, 4351–4362. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhao, Y. Influence to the structure and dynamics of hydrated Ca2+ and water molecules in CaCl2 aqueous solution caused by external AC electric field: A mechanism study by molecular dynamics simulation. Int. J. Electrochem. Sci. 2012, 7, 10008–10026. [Google Scholar]
- Lopez-Berganza, J.A.; Diao, Y.; Pamidighantam, S.; Espinosa-Marzal, R.M. Ab initio studies of calcium carbonate hydration. J. Phys. Chem. A 2015, 119, 11591–11600. [Google Scholar] [CrossRef]
- Raiteri, P.; Gale, J.D. Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 2010, 132, 17623–17634. [Google Scholar] [CrossRef]
- Dorvee, J.R.; Veis, A. Water in the formation of biogenic minerals: Peeling away the hydration layers. J. Struct. Biol. 2013, 183, 278–303. [Google Scholar] [CrossRef]
- York, D.M.; Darden, T.A.; Pedersen, L.G.; Anderson, M.W. Molecular dynamics simulation of HIV-1 protease in a crystalline environment and in solution. Biochemistry 1993, 32, 3196. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, X.; Zhou., J.; Zhao, H.F.; Chu, W.S.; Zheng, X.S.; Marcelli, A.; Wu, Z.Y. Local hydrated structure of an Fe2+/Fe3+ aqueous solution: An investigation using a combination of molecular dynamics and X-ray absorption fine structure methods. Chin. Phys. C 2013, 37, 118–123. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, L.; Zhang, Y. Molecular dynamics simulation for the impact of external electric fields on CaCl2 aqueous solution. Chem. Res. Chin. Univ. 2016, 32, 641–646. [Google Scholar] [CrossRef]
- Cunningham, A.B.; Phillips, A.J.; Troyer, E.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Spangler, L. Wellbore leakage mitigation using engineered biomineralization. Energy Procedia 2014, 63, 4612–4619. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Gu, A.; Ding, J.; Shen, Z. Investigation of calcium carbonate scaling inhibition and scale morphology by AFM. J. Colloid. Interf. Sci. 2001, 240, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, C.; Wu, L.; Zhang, Q.; Zhu, L.; Zhao, R. Influence of alternating electromagnetic field and ultrasonic on calcium carbonate crystallization in the presence of magnesium ions. J. Cryst. Growth 2018, 499, 67–76. [Google Scholar] [CrossRef]
- Floris, F.; Persico, M.; Tani, A.; Tomasi, J. Ab Initio effective pair potentials for simulations of the liquid state, based on the polarizable continuum model of the solvent. Chem. Phys. Lett. 1992, 199, 518–524. [Google Scholar] [CrossRef]
- Busch, K.W.; Busch, M.A.; Parker, D.H.; Darling, R.E.; McAtee, J.L. Studies of a water treatment device that uses magnetic fields. Corrosion 1986, 42, 211–221. [Google Scholar] [CrossRef]
- Tsuzuki, S.; Shinoda, W.; Saito, H.; Mikami, M.; Tokuda, H.; Watanabe, M. Molecular dynamics simulations of ionic liquids: Cation and anion dependence of self-diffusion coefficients of ions. J. Phys. Chem. B 2009, 113, 10641–10649. [Google Scholar] [CrossRef]
- Henritzi, P.; Bormuth, A.; Klameth, F.; Vogel, M. A molecular dynamics simulations study on the relations between dynamical heterogeneity, structural relaxation, and self-diffusion in viscous liquids. J. Chem. Phys. 2015, 143, 164502. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. Assoc. Comput. 1981, 24, 381. [Google Scholar] [CrossRef]
- Guo, B.; Han, H.; Chai, F. Influence of magnetic field on microstructural and dynamic properties of sodium, magnesium and calcium ions. Trans. Nonferrous Met. Soc. China 2011, 21, s494–s498. [Google Scholar] [CrossRef]
- Wei, S.; Zhong, C.; Su-Yi, H. Molecular dynamics simulation of liquid water under the influence of an external electric field. Mol. Simulat. 2005, 31, 555–559. [Google Scholar] [CrossRef]
- Bruneval, F.; Donadio, D.; Parrinello, M. Molecular dynamics study of the solvation of calcium carbonate in water. J. Phys. Chem. B 2007, 111, 12219–12227. [Google Scholar] [CrossRef]
- Ying, T.Y.; Yang, K.L.; Yiacoumi, S.; Tsouris, C. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J. Colloid. Interf. Sci. 2002, 250, 18–27. [Google Scholar] [CrossRef]
- Morimoto, T.; Hiratsuka, K.; Sanada, Y. Development and current status of electric double-layer capacitors. MRS Proc. 1995, 393, 397. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Qi, Z.-P.; Yao, W.; Wan, J.-J.; Shao, M.; Zhang, C.-C. Synthesis of calcium carbonate crystals by using bacteria. Synth. React. Inorg. Met. Nano-Metal Chem. 2012, 42, 972–975. [Google Scholar] [CrossRef]
- Pach, L.; Hrabe, Z.; Komarneni, S.; Roy, R. Controlled crystallization of vaterite from viscous solutions of organic colloids. J. Mater. Res. 1990, 5, 2928–2932. [Google Scholar] [CrossRef]
- Ricciardiello, F.; Roitti, S. The corrosion of Fe and Ag in S liquid at lowtemperature. Effect of S viscosity. Corros. Sci. 1972, 12, 651–659. [Google Scholar] [CrossRef]
- Jada, A.; Verraes, A. Preparation and microelectrophoresis characterisation of calcium carbonate particles in the presence of anionic polyelectrolyte. Colloids Surf. A Physicochem. Eng. Asp. 2003, 219, 7–15. [Google Scholar] [CrossRef]
- Domingo, C.; García-Carmona, J.; Loste, E.; Fanovich, A.; Fraile, J.; Gómez-Morales, J. Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media. J. Cryst. Growth 2004, 271, 268–273. [Google Scholar] [CrossRef]
- Xie, A.J.; Zhang, C.Y.; Shen, Y.H.; Qiu, L.-G.; Xiao, P.P.; Hu, Z.Y. Morphologies of calcium carbonate crystallites grown from aqueous solutions containing polyethylene glycol. Cryst. Res. Technol. 2006, 41, 967–971. [Google Scholar] [CrossRef]
- Hess, B. Determining the shear viscosity of model liquids from molecular dynamics simulations. J. Chem. Phys. 2002, 116, 209. [Google Scholar] [CrossRef]
- Bakker, H.J. Structural dynamics of aqueous salt solutions. Chem. Rev. 2008, 108, 1456–1473. [Google Scholar] [CrossRef] [PubMed]
- Jiao, D.; King, C.; Grossfield, A.; Darden, T.A.; Ren, P. Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J. Phys. Chem. B 2006, 110, 18553–18559. [Google Scholar] [CrossRef]
- Ohtaki, H.; Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 1993, 93, 1157–1204. [Google Scholar] [CrossRef]
- Han, G.; Fang, Z.; Chen, M. Modified Eyring viscosity equation and calculation of activation energy based on the liquid quasi-lattice model. Sci. China Phys. Mech. Astron. 2010, 53, 1853–1860. [Google Scholar] [CrossRef]
- Ravi, K.R.; Pillai, R.M.; Amaranathan, K.R.; Pai, B.C.; Chakraborty, M. Fluidity of aluminum alloys and composites: A review. J. Alloy. Compd. 2008, 456, 201–210. [Google Scholar] [CrossRef]
- Lee, W.J.; Chang, J.G.; Ju, S.P. Hydrogen-Bond structure at the interfaces between Water/Poly(Methyl Methacrylate), Water/Poly(Methacrylic Acid), and Water/Poly(2-Aminoethylmethacrylamide). Langmuir 2010, 26, 12640–12647. [Google Scholar] [CrossRef]
- Pan, Z.; Chen, J.; Lü, G.; Geng, Y.Z.; Zhang, H.; Ji, Q. An Ab initio molecular dynamics study on hydrogen bonds between water molecules. J. Chem. Phys. 2012, 136, 164313. [Google Scholar] [CrossRef]
- Li, Y.X.; Wei, Z.D.; Zhao, Q.L.; Ding, W.; Zhang, Q.; Chen, S.G. Preparation of Pt/Graphene catalyst and its catalytic performance for oxygen reduction. Acta. Phys-Chim. Sin. 2011, 27, 858–862. [Google Scholar] [CrossRef]
- Lee, H.-S.; Tuckerman, M.E. Structure of liquid water at ambient temperature from ab initio molecular dynamics performed in the complete basis set limit. J. Chem. Phys. 2006, 125, 154507. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, A.; Choudhuri, J.R.; Yadav, V.K.; Mallik, B.S.; Chandra, A. A first principles simulation study of vibrational spectral diffusion in aqueous NaBr solutions: Dynamics of water in ion hydration shells. Chem. Phys. 2013, 412, 13–21. [Google Scholar] [CrossRef]
Sample | [H2O] | [Fe2+] | [Ca2+] | [Cl−] | [Total] |
---|---|---|---|---|---|
0F | 1110 | 0 | 80 | 160 | 1350 |
10F | 1110 | 10 | 80 | 180 | 1380 |
20F | 1110 | 20 | 80 | 200 | 1410 |
30F | 1110 | 30 | 80 | 220 | 1440 |
εii/(kj/mol) | σii/nm | |
---|---|---|
Ca2+ | 0.5069 | 0.2813 |
Fe2+ | 2.135 × 10−6 | 1.9129 |
Cl− | 1.2889 | 0.3470 |
O | 1.7250 | 0.2626 |
Sample | Average 10−5 cm2·s−1 | St.dev 10−5 cm2·s−1 | Average 10−5 cm2·s−1 | St.dev 10−5 cm2·s−1 |
---|---|---|---|---|
Without Electrostatic Field | Under Electrostatic Field | |||
Dca | ||||
0F | 0.0608 | 0.0003 | 0.0707 | 0.0001 |
10F | 0.0185 | 0.0005 | 0.0239 | 0.0001 |
20F | 0.0124 | 0.0003 | 0.0137 | 0.0007 |
30F | 0.0108 | 0.0005 | 0.0128 | 0.0001 |
Do | ||||
0F | 0.6626 | 0.0004 | 0.7276 | 0.0003 |
10F | 0.1837 | 0.0004 | 0.1870 | 0.0006 |
20F | 0.1573 | 0.0005 | 0.1596 | 0.0001 |
30F | 0.1283 | 0.0005 | 0.1343 | 0.0003 |
DFe | ||||
10F | 0.0188 | 0.0009 | 0.0195 | 0.0004 |
20F | 0.0158 | 0.0004 | 0.0180 | 0.0002 |
30F | 0.0142 | 0.0002 | 0.0172 | 0.0004 |
Without Electrostatic Field | Under Electrostatic Field | |||||||
---|---|---|---|---|---|---|---|---|
0F | 10F | 20F | 30F | 0F | 10F | 20F | 30F | |
f0(%) | 58.09 | 61.54 | 62.20 | 65.02 | 57.99 | 60.93 | 61.10 | 64.08 |
f1(%) | 31.17 | 29.75 | 29.16 | 28.39 | 31.08 | 29.88 | 29.80 | 29.36 |
f2(%) | 8.23 | 7.37 | 7.30 | 6.59 | 8.34 | 7.80 | 7.70 | 7.04 |
f3(%) | 1.56 | 1.29 | 1.28 | 1.18 | 1.63 | 1.34 | 1.36 | 1.27 |
nHB | 580.67 | 536.78 | 528.55 | 512.19 | 584.43 | 549.33 | 546.80 | 524.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Wei, B.; Guo, X.; Jiao, T. Influence of Electrostatic Field on Mixed Aqueous Solution of Calcium and Ferrous Ions: Insights from Molecular Dynamics Simulations. Coatings 2022, 12, 1165. https://doi.org/10.3390/coatings12081165
Han Y, Wei B, Guo X, Jiao T. Influence of Electrostatic Field on Mixed Aqueous Solution of Calcium and Ferrous Ions: Insights from Molecular Dynamics Simulations. Coatings. 2022; 12(8):1165. https://doi.org/10.3390/coatings12081165
Chicago/Turabian StyleHan, Yong, Bingjia Wei, Xiaoqiang Guo, and Tifeng Jiao. 2022. "Influence of Electrostatic Field on Mixed Aqueous Solution of Calcium and Ferrous Ions: Insights from Molecular Dynamics Simulations" Coatings 12, no. 8: 1165. https://doi.org/10.3390/coatings12081165
APA StyleHan, Y., Wei, B., Guo, X., & Jiao, T. (2022). Influence of Electrostatic Field on Mixed Aqueous Solution of Calcium and Ferrous Ions: Insights from Molecular Dynamics Simulations. Coatings, 12(8), 1165. https://doi.org/10.3390/coatings12081165