Preparation and Application of Graphene and Derived Carbon Materials in Supercapacitors: A Review
Abstract
:1. Introduction
2. Electric Double-Layer Capacitor
2.1. Research Progress of Activated Carbon Based on Waste Sugar Solution
2.2. Research Progress of Hollow Carbon Spheres
2.3. Research Progress of Graphene
3. Graphene–Polymer Composite Pseudo-Capacitor
4. Graphene–Transition Metal Oxide Composite Pseudo-Capacitor
4.1. Preparation of the PGO-Ni Electrode and the Application of Graphene
4.2. The Effect of Vanadium Oxide on Graphene
4.3. The Effect of Polyoxometalate-Based Complexes on Graphene
5. Asymmetric Super Capacitors Based on Graphene
6. Summary and Outlook
- (1)
- Improving the uniformity of the distribution of nanoparticles on the surface of graphene, controlling the morphology and structure of the nanoparticles, and increasing the specific capacitance need further study.
- (2)
- We should improve the synergistic effect of graphene composites, prevent graphene agglomeration, and improve the wettability of composite electrode materials and electrolytes without affecting the conductivity of graphene.
- (3)
- We should simplify the electrode material synthesis process, improve its production efficiency, and reduce its production costs.
- (4)
- The general graphene-based composite electrode materials only discuss mass-to-capacitance capacitance, and there is very little research on volume-to-capacitance.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, X.; Kang, Y.; Park, H.S. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing Super capacitor performance. Carbon 2016, 101, 49–56. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, T.; Qian, F.; Han, T.Y.J.; Duoss, E.B.; Kuntz, J.D.; Spadaccini, C.M.; Worsley, M.A.; Li, Y. Super capacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yang, W.; Wang, J.; Song, N.; Li, X. Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric Super capacitors with an exceptional combination of electrochemical properties. Nano Energy 2015, 13, 306–317. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.; Wang, L. Graphene-based materials for flexible Super capacitors. Chem. Soc. Rev. 2015, 44, 3639–3665. [Google Scholar] [CrossRef]
- Yan, J.; Li, S.; Lan, B.; Wu, Y.; Lee, P.S. Rational Design of Nanostructured Electrode Materials toward Multifunctional Super capacitors. Adv. Funct. Mater. 2019, 30, 1902564. [Google Scholar] [CrossRef]
- Liu, L.; Feng, Y.; Liang, J.; Li, S.; Tian, B.; Yao, W.; Wu, W. Structure-designed fabrication of all-printed flexible in-plane solid-state Super capacitors for wearable electronics. J. Power Sources 2019, 425, 195–203. [Google Scholar] [CrossRef]
- Jang, S.; Kang, J.; Kwak, S.; Seol, M.L.; Meyyappan, M.; Nam, I. Methodologies for Fabricating Flexible Super capacitors. Micromachines 2021, 12, 163. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, M.; Ge, M.H.; Zhang, H.; Li, S.K.; Li, C.H. Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance Super capacitors. J. Power Sources 2016, 306, 593–601. [Google Scholar] [CrossRef]
- Sun, H.; Mei, L.; Liang, J.; Zhao, Z.; Lee, C.; Fei, H.; Ding, M.; Lau, J.; Li, M.; Wang, C.; et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604. [Google Scholar] [CrossRef]
- Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562. [Google Scholar] [CrossRef]
- Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and Super capacitors. ACS Nano 2015, 9, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, T.; Ji, X.; Zhang, Z.; Yang, W.; Gao, J.; Li, H.; Xiong, C.; Dang, A. Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole Super capacitor electrode. Electrochim. Acta 2017, 252, 306–314. [Google Scholar] [CrossRef]
- Wang, X.; Ma, X.; Zhang, L.; Jiang, G.; Yang, M. Dielectric and optical properties of porous graphenes with uniform pore structures. J. Mol. Model. 2019, 25, 266. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, G.; Li, Y.; Chu, W.; Wang, L.W. Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: A theoretical study. Phys. Chem. Chem. Phys. 2019, 21, 3024–3032. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Zhu, S.; Yang, G.; Zhang, Z.; Li, P. Theoretical studies on the structures and properties of doped graphenes with and without an external electrical field. RSC Adv. 2019, 9, 11939–11950. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, C.; Jiang, J.; Zhu, X.; Zhou, J.; Ni, J.; Zhang, J.; Pang, J.; Rummeli, M.H.; Zhou, W.; et al. Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides. Sol. RRL. 2021, 5, 2000800. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, X.; Tong, X.; Zhou, J.; Ni, J.; Zhang, J.; Pang, J. Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion. Front. Chem. Sci. Eng. 2020, 14, 997–1005. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, J.; Cheng, Q.; Han, L.; Li, Y.; Meng, X.; Ibarlucea, B.; Zhao, H.; Yang, F.; Liu, H.; et al. Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics. Nano-Micro Lett. 2021, 13, 143. [Google Scholar] [CrossRef]
- Sun, B.; Pang, J.; Cheng, Q.; Zhang, S.; Li, Y.; Zhang, C.; Sun, D.; Ibarlucea, B.; Li, Y.; Chen, D.; et al. Synthesis of Wafer-Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. ADV. Mater. Technol. 2021, 6, 2000744. [Google Scholar] [CrossRef]
- Cui, Z.; Kang, L.; Li, L.; Wang, L.; Wang, K. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF. Energy 2022, 259, 124933. [Google Scholar] [CrossRef]
- Liu, C.; Li, D.; Wang, L.; Li, L.; Wang, K. Strong Robustness and High Accuracy Remaining Useful Life Prediction on Supercapacitors. APL Mater. 2022, 10, 061106. [Google Scholar] [CrossRef]
- Cui, Z.; Dai, J.; Sun, J.; Li, D.; Wang, L.; Wang, K. Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium-ion battery. Math. Probl. Eng. 2022, 2022, 9616124. [Google Scholar] [CrossRef]
- Yi, Z.; Zhao, K.; Sun, J.; Wang, L.; Wang, K.; Ma, Y. Prediction of the Remaining Useful Life of Supercapacitors. Math. Probl. Eng. 2022, 2022, 7620382. [Google Scholar] [CrossRef]
- Sun, H.; Sun, J.; Zhao, K.; Wang, L.; Wang, K. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Math. Probl. Eng. 2022, 2022, 9645892. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Duan, C.; Li, Q.; Wang, K. Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review. Int. J. Energy Res. 2022, 46, 10372–10388. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Zhang, S.; Sun, J.; Wang, L.; Wang, K. Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine. Energy 2022, 250, 123773. [Google Scholar] [CrossRef]
- Hao, Z.; Cao, J.; Zhao, X.; Wu, Y.; Zhu, J.; Dang, Y.; Zhuang, Q.; Wei, X. Preparation of porous carbon spheres from 2-keto-l-gulonic acid mother liquor by oxidation and activation for electric double-layer capacitor application. J. Colloid Interface Sci. 2017, 513, 20–27. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, Y.; Yu, T.; Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291. [Google Scholar] [CrossRef]
- Hao, Z.; Cao, J.; Wu, Y.; Zhao, X.; Zhou, L.; Fan, X.; Zhao, Y.; Wei, X. Preparation of porous carbons from waste sugar residue for high performance electric double-layer capacitor. Fuel Process Technol. 2017, 162, 45–54. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, J.; Zhou, Z.; Zhao, X.; Zhuang, Q.; Wei, Y.; Zhao, M.; Zhao, Y.; Bai, H. Transforming waste sugar solution into N-doped hierarchical porous carbon for high performance Super capacitors in aqueous electrolytes and ionic liquid. Int. J. Hydrog. Energy 2020, 45, 31367–31379. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Z.; Yu, C.; Zhong, W. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance Super capacitors. ACS Sustain. Chem. Eng. 2019, 7, 3389–3403. [Google Scholar] [CrossRef]
- Li, D.; Yang, D.; Li, L.; Wang, L.; Wang, K. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. Energies 2022, 15, 6665. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Zhao, K.; Wang, L.; Wang, K. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. J. Energy Storage 2022, 50, 104215. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. Int. J. Energy Res. 2022, 46, 5423–5440. [Google Scholar] [CrossRef]
- Li, S.; Pasc, A.; Fierro, V.; Celzard, A. Hollow carbon spheres, synthesis and applications—A review. J. Mater. Chem. A 2016, 4, 12686. [Google Scholar] [CrossRef]
- Portet, C.; Yang, Z.; Korenblit, Y.; Gogotsi, Y.; Mokaya, R.; Yushin, G. Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte. J. Electrochem. Soc. 2009, 156, A1–A6. [Google Scholar] [CrossRef]
- Murali, S.; Dreyer, D.R.; Valle-Vigón, P.; Stoller, M.D.; Zhu, Y.; Morales, C.; Fuertes, A.B.; Bielawski, C.W.; Ruoff, R.S. Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 2011, 13, 2652–2655. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Sun, J.; Cui, Z.; Wang, K. Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor. Int. J. Energy Res. 2022, 46, 3034–3043. [Google Scholar] [CrossRef]
- Liu, C.; Li, Q.; Wang, K. State-of-charge estimation and remaining useful life prediction of supercapacitors. Renew. Sustain. Energy Rev. 2021, 150, 111408. [Google Scholar] [CrossRef]
- Kang, L.; Du, H.; Deng, J.; Jing, X.; Zhang, S.; Zhang, Y. Synthesis and Catalytic Performance of a New V-doped CeO2-supported Alkali-activated-steel-slag-based Photocatalyst. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2021, 36, 209–214. [Google Scholar] [CrossRef]
- Xu, H.; Du, H.; Kang, L.; Cheng, Q.; Feng, D.; Xia, S. Constructing Straight Pores and Improving Mechanical Properties of Gangue-Based Porous Ceramics. J. Renew. Mater. 2021, 9, 2129–2141. [Google Scholar] [CrossRef]
- Matsumoto, H.; Imaizumi, S.; Konosu, Y.; Ashizawa, M.; Minagawa, M.; Tanioka, A.; Lu, W.; Tour, J.M. Electrospun composite nanofiber yarns containing oriented graphene nanoribbons. ACS Appl. Mater. Interfaces 2013, 5, 6225–6231. [Google Scholar] [CrossRef] [PubMed]
- Vivekchand, S.; Rout, C.; Subrahmanyam, K.; Govindaraj, A. Graphene-based electrochemical Super capacitors. J. Chem. Sci. 2008, 120, 9–13. [Google Scholar] [CrossRef]
- Stoller, M.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y. Super capacitor devicesbased on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Deng, S.; Chen, G.; Li, Q.; Han, B. Graphene-tungsten oxides composite for Super capacitor electrode. Ceram. Int. 2014, 40, 4109–4116. [Google Scholar] [CrossRef]
- Ran, H.; Du, H.; Ma, C.; Zhao, Y.; Feng, D.; Xu, H. Effects of A/B-Site Co-Doping on Microstructure and Dielectric Thermal Stability of AgNbO3 Ceramics. Sci. Adv. Mater. 2021, 13, 741–747. [Google Scholar] [CrossRef]
- Ma, C.; Du, H.; Liu, J.; Kang, L.; Du, X.; Xi, X.; Ran, H. High-temperature stability of dielectric and energy-storage properties of weakly-coupled relaxor (1-x)BaTiO3-xBi(Y1/3Ti1/2)O3 ceramics. Ceram. Int. 2021, 47, 25029–25036. [Google Scholar] [CrossRef]
- Cai, X.; Sun, K.; Qiu, Y.; Jiao, X. Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. Crystals 2021, 11, 947. [Google Scholar] [CrossRef]
- Zhou, W.; Du, H.; Kang, L. Microstructure Evolution and Improved Permeability of Ceramic Waste-Based Bricks. Materials 2022, 15, 1130. [Google Scholar] [CrossRef]
- Feng, D.; Du, H.; Ran, H.; Lu, T.; Xia, S.; Xu, L.; Wang, Z.; Ma, C. Antiferroelectric stability and energy storage properties of Co-doped AgNbO3 ceramics. J. Solid State Chem. 2022, 310, 123081. [Google Scholar] [CrossRef]
- Zhao, Y.; Arowo, M.; Wu, W.; Zou, H.; Chen, J.; Chu, G. Polyaniline/graphene nanocomposites synthesized by in situ high gravity chemical oxidative polymerization for Super capacitor. J. Ind. Eng. Chem. 2015, 25, 280–287. [Google Scholar] [CrossRef]
- Xu, Y.; Schwab, M.G.; Strudwick, A.J.; Hennig, I.; Feng, X.; Wu, Z.; Mellen, K. Screen-Printable Thin Film Super capacitor Device Utilizing Graphene/Polyaniline Inks. Adv. Energy Mater. 2013, 3, 1035–1040. [Google Scholar] [CrossRef]
- Xue, M.; Li, F.; Zhu, J.; Song, H.; Zhang, M.; Cao, T. Structure-Based Enhanced Capacitance: In Situ Growth of Highly Ordered Polyaniline Nanorods on Reduced Graphene Oxide Patterns. Adv. Funct. Mater. 2012, 22, 1284–1290. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, K.; Zhang, Y.; Wei, Z. Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Super capacitors. Adv. Mater. 2013, 25, 6985–6990. [Google Scholar] [CrossRef]
- Liu, L.; Niu, Z.; Zhang, L.; Zhou, W.; Chen, X.; Xie, S. Nanostructured Graphene Compsite Papers for Highly Flexible and Foldable Super capacitors. Adv. Mater. 2014, 26, 4855–4862. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Z.; Parvez, K.; Feng, X.; Mellen, K. Ultrathin Printable Graphene Superca pacitors with AC Line-Filtering Performance. Adv. Mater. 2015, 27, 3669–3675. [Google Scholar] [CrossRef]
- Park, J.; Park, S.; Kwon, O.; Lee, C.; Jang, J.; Jang, J.; Park, J.; Park, S.; Lee, C.; Kwon, O. In Situ Synthesis of Graphene/Polyselenophene Nanohybrid Materials as Highly Flexible Energy Storage Electrodes. Chem. Mater. 2014, 26, 2354–2360. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; Liu, X.; Wu, L.; Li, Y.; Zhang, X. Improved Electrochemical Performances of Graphene Hybrids Embedded with Silica as the Functional Connection Layer for Super capacitors. J. Energy Storage 2021, 36, 102315. [Google Scholar] [CrossRef]
- Dywili, N.R.; Ntziouni, A.; Ikpo, C.; Ndipingwi, M.; Hlongwa, N.; Yonkeu, A.; Masikini, M.; Kordatos, K.; Iwuoha, E. Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Super capacitors. Micromachines 2019, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, Z.; Yin, H.; Hou, S.; Lin, H.; Zhou, J.; Zhuo, S. Investigation on the role of different conductive polymers in Super capacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv. 2020, 10, 3122–3129. [Google Scholar] [CrossRef] [PubMed]
- Golkhatmi, S.; Sedghi, A.; Miankushki, H.; Khalaj, M. Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/Polyaniline hybrid ternary nanocomposite in aqueous and organic electrolytes. Energy 2021, 214, 118950. [Google Scholar] [CrossRef]
- Azizi, E.; Salimi, J.A.A.; Lee, J. Fabrication of an asymmetric Super capacitor based on reduced graphene oxide/polyindole/gamma—Al2O3 ternary nanocomposite with high-performance capacitive behavior. Polymer 2020, 195, 122429. [Google Scholar] [CrossRef]
- Ramesh, S.; Yadav, H.; Bathula, C.; Shinde, S.; Sivasamy, A.; Kim, H.; Kim, J. Cubic nanostructure of Co3O4@nitrogen doped graphene oxide/polyindole composite efficient electrodes for high performance energy storage applications. J. Mater. Res. Technol. 2020, 9, 11464–11475. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Zhou, J.; Zhou, H.; Chen, X.; Tang, T. The in situ construction of three-dimensional core-shell-structured TiO2@PPy/rGO nanocomposites for improved Super capacitor electrode performance. New J. Chem. 2021, 45, 1092–1099. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, C.; Tang, S.; Wang, Z.; Sun, Q.; Zhang, X.; Jiao, T.; Zhang, Q. Ferric ion-ascorbic acid complex catalyzed calcium peroxide for organic wastewater treatment: Optimized by response surface method. Chin. Chem. Lett. 2021, 32, 3387–3392. [Google Scholar] [CrossRef]
- Wang, G.; Gao, E.; Dai, Z. Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading. Compos. Sci. Technol. 2017, 149, 220–227. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Wang, C. Hierarchical porous graphene carbon-based Super capacitors. Chem. Mater. 2015, 27, 2107–2113. [Google Scholar] [CrossRef]
- Kandasamy, M.; Sahoo, S.; Nayak, S.; Chakraborty, B.; Rout, C. Recent ADVances in engineered metal oxide nanostructures for supercapacitor applications: Experimental and theoretical aspects. J. Mater. Chem. A 2021, 9, 17643. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, C.; Liu, J.; Chen, T.; Yang, H.; Li, C. CeO2 nanoparticles/graphene nanocomposite-based high performance Super capacitor. Dalton Trans. 2011, 40, 6388–6391. [Google Scholar] [CrossRef]
- Dong, X.; Xu, H.; Wang, X.; Huang, Y.; Chan, M.; Zhang, H. 3D Graphene-Cobalt Oxide Electrode for High-Performance Super capacitor and Enzymeless Glucose Detection. ACS Nano 2012, 6, 3206–3213. [Google Scholar] [CrossRef]
- He, G.; Li, J.; Chen, H. Hydrothermal Preparation of Co3O4@graphene Nanocom posite for Super capacitor with Enhanced Capacitive Performance. Mater. Lett. 2012, 82, 61–63. [Google Scholar] [CrossRef]
- Qu, Q.; Yang, S.; Feng, X. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for Super capacitors. Adv. Mater. 2011, 23, 5574–5580. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, C.; Wang, H.; Liu, Z.; Hao, Z. Facilely synthesized Fe2O3–graphene nano composite as novel electrode materials for Super capacitors with high performance. J. Alloys Compd. 2013, 552, 486–491. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, L.; Du, H.; Wang, Y.; Yuan, H. Fe3O4 nanoparticles grown on graphene as Advanced electrode materials for Super capacitors. J. Power Sources 2014, 245, 101–106. [Google Scholar] [CrossRef]
- Peng, L.; Peng, X.; Liu, B.; Wu, C.; Xie, Y.; Yu, G. Ultrathin Two-Dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Super capacitors. Nano Lett. 2013, 13, 2151–2157. [Google Scholar] [CrossRef]
- Zhao, K.; Lyu, K.; Liu, S.; Gan, Q.; He, Z.; Zhou, Z. Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal-organic frameworks for Super capacitor electrodes. J. Mater. Sci. 2017, 52, 446–457. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Yuen, M. Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudo capacitors. Adv. Funct. Mater. 2014, 24, 6372–6380. [Google Scholar] [CrossRef]
- Wang, W.; Guo, S.; Guo, I. Hydrous Ruthenium Oxide Nanoparticles An chored to Graphene and Carbon Nanotube Hybrid Foam for Super capacitors. Sci. Rep. 2015, 4, 4452. [Google Scholar] [CrossRef]
- Li, F.; Song, J.; Yang, H. One-step synthesis of graphene/SnO2 nanocompo sites and its application in electrochemical Super capacitors. Nanotechnology 2009, 20, 455602. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Z.; Xiao, X.F.; Guo, G.Y.; Wang, W.S.; Liu, L.Y. One-Pot Self-Assembled Three-Di mensional TiO2-Graphene Hydrogel with Improved Adsorption Capacities and Photocatalytic and Electrochemical Activities. ACS Appl. Mater. Interfaces 2013, 5, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yi, H.; Chen, X.; Wang, X. One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance Super capacitors. J. Mater. Chem. A 2014, 2, 1165–1173. [Google Scholar] [CrossRef]
- Perera, S.; Liyanage, A.; Nijem, N.; Ferraris, J.; Chabal, Y.; Balkus, K. Vanadium oxide nanowire-Graphene binder free nanocomposite paper electrodes for Super capacitors: A facile green approach. J. Power Sources 2013, 230, 130–137. [Google Scholar] [CrossRef]
- Zhang, C.; Dang, F.; Chen, Y. Vibration-to-electric energy conversion with porous graphene oxide-nickel electrode. J. Power Sources 2017, 368, 73–77. [Google Scholar] [CrossRef]
- Derkaoui, I.; Khenfouch, M.; Mothudi, B. PH effect on the optoelectronic properties of graphene vanadium oxides nanocomposites. J. Mater. Sci. Mater. Electron. 2017, 28, 17710–17718. [Google Scholar] [CrossRef]
- Xu, K.; Yang, J.; Hu, J. Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric Super capacitors. J. Colloid Interface Sci. 2018, 511, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Neethu, B.; Kella, T.; Shee, D.; Das, P.; Mal, S. Activated carbon- supported Vanado-nickelate (IV) based hybrid materials for energy application. J. Energy Storage 2021, 40, 102727. [Google Scholar] [CrossRef]
- Maity, S.; Vannathan, A.; Kella, T.; Shee, D.; Das, P.; Mal, S. Electrochemical performance of activated carbon-supported vanadomolybdates electrodes for energy conversion. Ceram. Int. 2021, 47, 27132–27141. [Google Scholar] [CrossRef]
- Maity, S.; Das, P.; Mal, S. Decavanadate-graphene oxide nanocomposite as an electrode material for electrochemical capacitor. Mater. Technol. 2022, 37, 1129–1139. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, P.; Zhu, C.; Zhao, K.; Wang, L.; Wang, K. A state-of-health estimation method considering capacity recovery of lithium batteries. Int. J. Energy Res. 2022. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, X.; Meng, M.H. Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance Super capacitors. ACS Appl. Mater. Interfaces 2016, 9, 4577–4586. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ran, W.; He, J. High-performance asymmetric Super capacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Small 2015, 11, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cheng, J.; Wang, J. The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for super capacitor. Electrochim. Acta. 2016, 206, 108–115. [Google Scholar] [CrossRef]
- Sangermano, M.; Chiolerio, A.; Veronese, G. Graphene-epoxy flexible transparent capacitor obtained by graphene-polymer transfer and UV-induced bonding. Macromol Rapid Commun. 2014, 35, 355–359. [Google Scholar] [CrossRef]
- Rehmen, J.; Pathirana, T.; Garcia-Quintana, L. Structuring PEDOT Hollow Nanosphere Electrodes for High Specific Energy Li-Metal|Polymer Thin-Film Batteries. ACS Appl. Nano Mater. 2020, 3, 3820–3828. [Google Scholar] [CrossRef]
- Cui, Z.; Kang, L.; Li, L.; Wang, L.; Wang, K. A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renew. Energy 2022, 98, 1328–1340. [Google Scholar] [CrossRef]
- Sun, H.; Yang, D.; Wang, L.; Wang, K. A method for estimating the aging state of lithiumion batteries based on a multi-linear integrated model. Int. J. Energy Res. 2022. [Google Scholar] [CrossRef]
Researchers | Research Technique | Research Results |
---|---|---|
Zhu C et al. [2] | Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores | Power densities (>4 kW kg−1) |
Shao YL et al. [4] | Micro-Super capacitors and fiber-type Super capacitors | Proved that graphene material in wearable super capacitor application prospect |
Yan J et al. [5] | Integrating Super capacitors with other applications | Developed multi-functional super capacitor |
Liu L et al. [6] | Structure-designed fabrication of all-printed flexible | Higher energy density of asymmetric Super capacitors can be achieved (from 0.00177 mWh cm−2 to 0.00687 mWh cm−2) |
Zhu S et al. [8] | Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures | Energy density of 126.8 Wh kg−1 with a power density of 114.2 kW kg−1 at a current density of 1.0 A g−1 |
Sun HT et al. [9] | Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage | The highly interconnected graphene network in the 3D architecture provides excellent electron transport properties |
Yu DS et al. [10] | Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres | Energy density of similar to 6.3 mWh cm−3 |
Zhang L et al. [12] | Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole Super capacitor electrode | Power density of 13.5 kW kg−1 |
Wang X et al. [13] | Dielectric and optical properties of porous graphenes with uniform pore structures | Chemical synthesis for graphenes with uniform pore structures opens a new way for the precise modulation toward the performances of graphene-based materials. |
Zhou YA et al. [14] | Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers | The results shed light on the potential applications of TM and N co-doped graphenes as efficient single-atom bifunctional catalysts for water splitting |
Researchers | Method | Specific Capacitance |
---|---|---|
Hao et al. [29]. | Typical carbonation/activation method | 240 F/g |
Wu et al. [30]. | Nitrogen doping method | 342 F/g |
Lin et al. [31]. | Hydrothermal treatment | 406 F/g |
Hao et al. [29]. | Hydrothermal treatment | 296 F/g |
Researchers | Materials | Specific Capacitance |
---|---|---|
Y. Xu et al. [53]. | Nano graphene platelet/polyaniline | 269 F/g |
M. Xue et al. [54]. | Graphene oxide patterns | 970 F/g |
Y. Meng et al. [55]. | Graphene/polyaniline composite | 385 F/g |
L. Liu et al. [56]. | Nanostructured graphene composite | 224 F/g |
Z.-S. Wu et al. [57]. | Ultrathin printable grphene | 348 F/g |
J.W. Park et al. [58]. | Graphene/polyselephene | 293 F/g |
Researchers | Materials | Specific Capacitance |
---|---|---|
Dywili, N.R. et al. [60]. | Graphene Oxide Decorated Nanometal-Poly | 227.2 F/g |
Xu, Z. et al. [61]. | zinc sulfide/reduced graphene oxide/conductive polymer | 722 F/g |
Golkhatmi, S.Z. et al. [62]. | nickel oxide/graphene/Polyaniline hybrid | 970.85 F/g |
Azizi, E. et al. [63]. | reduced graphene oxide/polyindole/gamma—Al2O3 | 308 F/g |
Ramesh, S. et al. [64]. | Co3O4graphene oxide/polyindole composite | 680 F/g |
Li, S. et al. [65]. | TiO2@PPy/rGO | 462.1 F/g |
Wang, H. et al. [66]. | Graphene Hybrids Embedded with Silica | 727 F/g |
Researchers | Materials | Specific Capacitance |
---|---|---|
Wang Y et al. [70]. | CeO2 nanoparticles/graphene | 18 F/g |
Dong X et al. [71]. | 3D Graphene-Cobalt oxide | 1100 F/g |
He G et al. [72]. | Co3O4@graphene nanocomposite | 415 F/g |
Qu Q et al. [73]. | 2D sandwich-like sheets of iron oxide grown on graphene | 349 F/g |
Wang Z et al. [74]. | Fe2O3–graphene nano composite | 226 F/g |
Wang Q et al. [75]. | Fe3O4 nanoparticles grown on graphene | 220 F/g |
Peng L et al. [76]. | MnO2/Graphene | 267 F/g |
Zhao K et al. [77]. | Mn3O4@N-doped carbon/graphene | 456 F/g |
Wang C et al. [78]. | Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene | 1829 F/g |
Wang W et al. [79]. | Hydrous ruthenium oxide nanoparticles anchored to graphene | 502.78 F/g |
Li F et al. [80]. | Graphene/SnO2 | 43.4 F/g |
Zhang Z et al. [81]. | TiO2—Graphene | 206.7 F/g |
Wang H et al. [82]. | Three-dimensional Graphene/VO2 | 426 F/g |
Perera SD et al. [83]. | Vanadium oxide nanowire—Graphene | 80 F/g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, H.; Yang, D.; Su, Z.; Sun, X.; Ren, J.; Li, L.; Wang, K. Preparation and Application of Graphene and Derived Carbon Materials in Supercapacitors: A Review. Coatings 2022, 12, 1312. https://doi.org/10.3390/coatings12091312
Fang H, Yang D, Su Z, Sun X, Ren J, Li L, Wang K. Preparation and Application of Graphene and Derived Carbon Materials in Supercapacitors: A Review. Coatings. 2022; 12(9):1312. https://doi.org/10.3390/coatings12091312
Chicago/Turabian StyleFang, Haiqiu, Dongfang Yang, Zizhen Su, Xinwei Sun, Jiahui Ren, Liwei Li, and Kai Wang. 2022. "Preparation and Application of Graphene and Derived Carbon Materials in Supercapacitors: A Review" Coatings 12, no. 9: 1312. https://doi.org/10.3390/coatings12091312
APA StyleFang, H., Yang, D., Su, Z., Sun, X., Ren, J., Li, L., & Wang, K. (2022). Preparation and Application of Graphene and Derived Carbon Materials in Supercapacitors: A Review. Coatings, 12(9), 1312. https://doi.org/10.3390/coatings12091312