Bifunctional Electrocatalysts Materials for Non-Aqueous Li–Air Batteries
Abstract
:1. Introduction
2. Li–Air Batteries (LABs)
3. Bifunctional Catalysts for LABs Air Electrodes
3.1. Carbon Materials
3.1.1. Carbon Powders
3.1.2. Carbon Nanotubes/Fibers (CNTs/CNFs)
3.1.3. Graphene and Graphene-Like Carbon Materials
3.2. Noble Metals
3.3. Transition Metal Oxides
3.3.1. Single Metal Oxides
NiO
Cobalt Oxides
Manganese Oxides
3.3.2. Polymetallic Oxides
Spinel Oxides
Perovskite Oxides
3.4. Other Kind of Transition Metal Compounds
4. Conclusions, Progress and Outlook
- (I).
- Enhance the activity and the stability/durability of the cathode catalysts. Some new concepts on the design, synthesis, and fabrication for the catalysts/electrode should be implemented, such as designing some special structure to expose more active sites, synthesizing the porous structured material to obtain larger surface area, and optimizing the pore size and distribution to get the performance. With the morphology and micro/nanostructure-controlled synthesis strategies, the electrocatalytic performance can be improved.
- (II).
- A thorough and systematic study should be operated to understand the electrocatalytic mechanism of the bifunctional composite catalysts for the air cathode of the LABs. The detailed experimental results should be used to verify the correctness of the theoretical calculation and correct its deviation. Here, the experimental results should be combined with molecular/atomic dynamics models and thermodynamic models, demonstrating the tight connection between the catalytic ORR/OER mechanism and the electronic structure/composition of the catalyst. With the right mechanism, the design/synthesis strategy of electrode catalysts could be the most reasonable, and the performance of ORR/OER for the LABs should be improved greatly.
- (III).
- Introduce a new, simple, and highly efficient synthesis method with low-cost green materials to fabricate the catalyst materials with high-performing and cost-effective bifunctional composite catalysts as the cathode of the LABs. The multi-compound/doping can possess synergistic activity interactions, enhancing the electrochemical catalytic activity and loops-stability of the composited catalysts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Lee, J.; Liu, M.; Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2012, 2, 816–829. [Google Scholar] [CrossRef]
- Girishkumar, G.; McCloskey, B.; Luntz, A.C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Faghri, A. A critical review of macroscopic modeling studies on LiO2 and Li-air batteries using organic electrolyte: Challenges and opportunities. J. Power Sources 2016, 332, 420–446. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Gasteiger, H.A.; Parent, M.C.; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-Oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69. [Google Scholar] [CrossRef]
- Shao, Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J.; Wang, Y.; Liu, J. Making Li-air batteries rechargeable: Material challenges. Adv. Funct. Mater. 2013, 23, 987–1004. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Xu, Z.; Gasteiger, H.A.; Chen, S.; Hamad-Schifferili, K.; Shao-Horn, Y. Platinum-gold Nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171. [Google Scholar] [CrossRef]
- Liu, Y.; He, P.; Zhou, H. Rechargeable Solid-State Li–Air and Li–S Batteries: Materials, Construction, and Challenges. Adv. Energy Mater. 2018, 8, 1701602. [Google Scholar] [CrossRef]
- Gorlin, Y.; Jaramillo, T.F. A bifunctional nonprecious metal catalyst for oxygen reduction and water Oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614. [Google Scholar] [CrossRef]
- Fu, G.; Cui, Z.; Chen, Y.; Li, Y.; Tang, Y.; Goodenough, J.B. Ni3Fe-N Doped Carbon Sheets as a Bifunctional Electrocatalyst for Air Cathodes. Adv. Energy Mater. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Lu, J.; Li, L.; Park, J.; Sun, Y.; Wu, F.; Amine, K. Aprotic and Aqueous Li-O2 Batteries. Chem. Rev. 2014, 114, 5611–5640. [Google Scholar] [CrossRef] [PubMed]
- Laoire, C.O.; Mukerjee, S.; Abraham, K.M.; Plichta, E.J.; Hendrickson, M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C 2010, 114, 9178–9186. [Google Scholar] [CrossRef]
- Sharon, D.; Hirsberg, D.; Afri, M.; Chesneau, F.; Lavi, R.; Frimer, A.A.; Sun, Y.; Aurbach, D. Catalytic Behavior of Lithium Nitrate in Li-O2 Cells. ACS Appl. Mater. Interfaces 2015, 7, 16590–16600. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, B.D.; Speidel, A.; Scheffler, R.; Miller, D.C.; Viswanathan, V.; Hummelshøj, J.S.; Nørskov, J.K.; Luntz, A.C. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Freunberger, S.A.; Chen, Y.; Peng, Z.; Griffin, J.M.; Hardwick, L.J.; Bardé, F.; Novák, P.; Bruc, P.G. Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047. [Google Scholar] [CrossRef] [PubMed]
- Balaish, M.; Peled, E.; Golodnitsky, D.; Ein-Eli, Y. Liquid-Free Lithium–Oxygen Batteries. Angew. Chem. Int. Ed. 2015, 54, 436–440. [Google Scholar]
- Yi, J.; Guo, S.; He, P.; Zhou, H. Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries. Energy Environ. Sci. 2017, 10, 860–884. [Google Scholar] [CrossRef]
- Gao, X.; Chen, Y.; Johnson, L.; Bruce, P.G. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 2016, 15, 882–888. [Google Scholar] [CrossRef]
- Gowda, S.R.; Brunet, A.; Wallraff, G.M.; McCloskey, B.D. Implications of CO2 Contamination in Rechargeable Nonaqueous Li-O2 Batteries. J. Phys. Chem. Lett. 2013, 4, 276–279. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Lyu, Y.; Li, H.; Chen, L. Rechargeable Li/CO2-O2 (2 : 1) battery and Li/CO2 battery. Energy Environ. Sci. 2014, 7, 677–681. [Google Scholar] [CrossRef]
- Lim, H.-K.; Lim, H.-D.; Park, K.-Y.; Seo, D.-H.; Gwon, H.; Hong, J.; Goddard, W.A.; Kim, H.; Kang, L. Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell. J. Am. Chem. Soc. 2013, 135, 9733. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Metzger, M.; Antonietti, M. Vertically aligned two-dimensional graphene-metal hydroxide hybrid arrays for Li-O2 batteries. ACS Appl. Mater. Interfaces 2016, 8, 26041–26050. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.D.; Black, R.; Radtke, C.; Williams, Z.; Mehdi, B.L.; Browning, N.D.; Nazar, L.F. The importance of nanometric passivating films on cathodes for Li–air batteries. ACS Nano 2014, 8, 12483–12493. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Li, X.; Wang, C.; Zeng, Y.; Yue, G.H.; Chen, Q. CuCr2O4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries. Nano-Micro Lett. 2018, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Xue, H.; Wang, T. High-loading nickel cobaltate nanoparticles anchored on three-dimensional N-doped graphene as an efficient bifunctional catalyst for lithium–oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 18060–18068. [Google Scholar] [CrossRef] [PubMed]
- Ottakam Thotiyl, M.M.; Freunberger, S.A.; Peng, Z.; Bruce, P.G. The Carbon Electrode in Nonaqueous Li-O2 Cells. J. Am. Chem. Soc. 2013, 135, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Hashimoto, K.; Nakanishi, S. Efficient Li2O2 formation via aprotic oxygen reduction reaction mediated by quinone derivatives. J. Phys. Chem. C 2014, 118, 18397–18400. [Google Scholar] [CrossRef]
- Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Core–shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem. Int. Ed. 2014, 53, 442–446. [Google Scholar] [CrossRef]
- Chang, Z.W.; Xu, J.-J.; Liu, Q.-C. Recent progress on stability enhancement for cathode in rechargeable non-aqueous lithium–oxygen battery. Adv. Energy Mater. 2015, 5, 1500633. [Google Scholar] [CrossRef]
- Freunberger, S.A.; Chen, Y.; Drewett, N.E. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 2011, 50, 8609–8613. [Google Scholar] [CrossRef]
- Liu, Q.-C.; Xu, J.-J.; Yuan, S. Artificial protection film on lithium metal anode toward long-cycle-life lithium–oxygen batteries. Adv. Mater. 2015, 27, 5241–5247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, L.; Chen, X.; He, X.; Wang, X.; Dong, S.; Han, P.; Zhang, C.; Wang, S.; Gu, L.; et al. Mesoporous cobalt molybdenum nitride: A highly active bifunctional electrocatalyst and its application in lithium–O2 batteries. J. Phys. Chem. C 2012, 117, 858–865. [Google Scholar] [CrossRef]
- Hu, C.; Xiao, Y.; Zou, Y.; Dai, L. Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 2018, 1, 1–29. [Google Scholar]
- Yue, G.H.; Liu, J.; Han, J.; Qin, D.; Chen, Q.; Shao, J. Amorphous CoSnO3@rGO nanocomposite as an efficient cathode catalyst for long-life Li-O2 batteries. Chin. J. Catal. 2018, 39, 1951–1959. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L. Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. Adv. Mater. 2017, 29, 1604942. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Hou, Y.; Chen, J.; Liu, H.; Wang, J.; Wu, Y. Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small 2015, 12, 602–611. [Google Scholar] [CrossRef] [Green Version]
- Shui, J.; Lin, Y.; Connell, J.; Xu, J.; Fan, X.; Dai, L. Nitrogen-doped holey graphene for high-performance rechargeable Li-O2 batteries. ACS Energy Lett. 2016, 1, 260–265. [Google Scholar] [CrossRef]
- Beattie, S.D.; Manolescu, D.M.; Blair, S.L. High-capacity lithium–air cathodes. J. Electronchem. Soc. 2009, 156, A44–A47. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Li, Q.L.; Saito, N. Hierarchical meso–macro structure porous carbon black as electrode materials in Li–air battery. J. Power Sources 2014, 261, 156–161. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.B.; Liao, C.B. Enhanced performance of Li-O2 battery based on CFx/C composites as cathode materials. Electrochim. Acta 2015, 186, 631–641. [Google Scholar] [CrossRef]
- Xia, J.; Wang, D.; Wu, W. Optimization of air electrode for Li/Air batteries. J. Electrochem. Soc. 2010, 157, A487–A492. [Google Scholar] [CrossRef]
- Ding, N.; Chien, S.W.; Hor, T.S.A. Influence of carbon pore size on the discharge capacity of Li-O2 batteries. J. Mater. Chem. A 2014, 2, 12433–12441. [Google Scholar] [CrossRef]
- Tans, S.J.; Devoret, M.H.; Dai, H.; Thess, A.; Smalley, R.E.; Geerligs, L.J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.-F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelley, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637. [Google Scholar] [CrossRef] [Green Version]
- Karousis, N.; Tagmatarchis, N.; Tasis, D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 2010, 110, 5366–5397. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.X.; Kogut, T.; Jin, L.; Reisner, D. Carbon nanotube electrode materials for Li-air cells. ECS Trans. 2008, 6, 381–387. [Google Scholar] [CrossRef]
- Liua, S.; Wang, Z.; Yua, C.; Zhaoa, Z.; Fana, X.; Linga, Z.; Qiu, J. Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li-O2 batteries. J. Mater. Chem. A 2013, 1, 12033–12037. [Google Scholar] [CrossRef]
- Zhu, Q.-C.; Du, F.-H.; Xu, S.-M.; Wang, Z.-K.; Wang, K.-X.; Chen, J.-S. Hydroquinone Resin Induced Carbon Nanotubes on Ni Foam as Binder-Free Cathode for Li-O2 Batteries. ACS Appl. Mater. Interfaces 2016, 8, 3868–3873. [Google Scholar] [CrossRef]
- Lim, H.; Park, K.; Song, H.; Jang, E.Y.; Gwon, H.; Kim, J.; Kim, Y.H.; Lima, M.D.; Robles, R.O.; Lepró, X.; et al. Enhanced Power and Rechargeability of a Li-O2 Battery Based on a Hierarchical-Fibril CNT Electrode. Adv. Mater. 2013, 25, 1348–1352. [Google Scholar] [CrossRef]
- Huang, S.; Fan, W.; Guo, X.; Meng, F.; Liu, X. Positive Role of Surface Defects on Carbon Nanotube Cathodes in Overpotential and Capacity Retention of Rechargeable Lithium-Oxygen Batteries. ACS Appl. Mater. Interfaces 2014, 6, 21567–21575. [Google Scholar] [CrossRef]
- Li, J.; Peng, B.; Zhou, G.; Zhang, Z.; Lai, Y.; Jia, M. Partially Cracked Carbon Nanotubes as Cathode Materials for Lithium-Air Batteries. ECS Electrochem. Lett. 2013, 2, A25–A27. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, D.; Yu, L.; Zhang, W.; Shang, Y.; Tang, H.; Wu, J.; Cao, A.; Huang, Y. A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air. Carbon 2013, 62, 288–295. [Google Scholar] [CrossRef]
- Thomas, M.L.; Yamanaka, K.; Ohta, T.; Byon, H.R. A perfluorinated moiety-grafted carbon nanotube electrode for the non-aqueous lithium–oxygen battery. Chem. Commun. 2015, 51, 3977–3980. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Park, Y.J. Polyimide-wrapped carbon nanotube electrodes for long cycle Li–air batteries. Chem. Commun. 2015, 51, 1210–1213. [Google Scholar] [CrossRef]
- Kitaura, H.; Zhou, H. Electrochemical Performance of Solid-State Lithium–Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode. Adv. Energy Mater. 2012, 2, 889–894. [Google Scholar] [CrossRef]
- Cui, Z.H.; Fan, W.G.; Guo, X.X. Lithium–oxygen cells with ionic-liquid-based electrolytes and vertically aligned carbon nanotube cathodes. J. Power Sources 2013, 235, 251–255. [Google Scholar] [CrossRef]
- Nie, H.; Xu, C.; Zhou, W.; Wu, B.; Li, X.; Liu, T.; Zhang, H. Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable Li-O2 batteries. ACS Appl. Mater. Interfaces 2016, 8, 1937–1942. [Google Scholar] [CrossRef]
- Mitchell, R.R.; Gallant, B.M.; Thompsona, C.V.; Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, J.; Liu, Q.; Zhang, X. Macroporous Interconnected Hollow Carbon Nanofibers Inspired by Golden-Toad Eggs toward a Binder-Free, High-Rate, and Flexible Electrode. Adv. Mater. 2016, 28, 7494–7500. [Google Scholar] [CrossRef]
- Shui, J.; Du, F.; Xue, C.; Li, Q.; Dai, L. Vertically Aligned N-Doped Coral-like Carbon Fiber Arrays as Efficient Air Electrodes for High-Performance Nonaqueous Li-O2 Batteries. ACS Nano 2014, 8, 3015–3022. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, A.R.; Dai, L.; Cheng, H.M.; Liu, J. Graphene based energy devices. Nanoscale 2015, 7, 6881–6882. [Google Scholar] [CrossRef]
- Dai, L. Functionalization of Graphene for Efficient Energy Conversion and Storage. Acc. Chem. Res. 2013, 46, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Mei, D.; Li, X.; Xu, W.; Wang, D.; Graff, G.L.; Bennett, W.D.; Nie, Z.; Saraf, L.V.; Aksay, I.A.; et al. Hierarchically Porous Graphene as a Lithium Air Battery Electrode. Nano Lett. 2011, 11, 5071–5078. [Google Scholar] [CrossRef]
- Yoo, E.; Zhou, H. Li-Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts. ACS Nano 2011, 5, 3020–3026. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, D.; Xu, J.; Zhang, L.; Zhang, X. Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries. Adv. Funct. Mater. 2012, 22, 3699–3705. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, M.; Kim, D.W.; Suk, J.; Park, O.O.; Kang, Y. Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon 2015, 93, 625–635. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, C.T.; Liu, S.H.; Fan, X.; Yang, J.; Zhang, M.; Qiu, J. Polystyrene sphere-mediated ultra-thin graphene sheet-assembled frameworks for high-power density Li-O2 batteries. Chem. Commun. 2015, 51, 13233–13236. [Google Scholar] [CrossRef]
- Sun, B.; Huang, X.; Chen, S.; Munroe, P.; Wang, G. Porous graphene nanoarchi-tectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium–oxygen batteries. Nano Lett. 2014, 14, 3145–3152. [Google Scholar] [CrossRef]
- Lin, Y.; Moitoso, O.; Martinez-Martinez, C.; Walsh, E.D.; Lacey, S.D.; Kim, J.; Dai, L.; Hu, L.; Connell, O.W. Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes. Nano Lett. 2017, 17, 3252–3260. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, H.; Nie, H.; Ma, Y.; Zhang, Y.; Zhang, H. Hierarchical Micron-Sized Mesoporous/Macroporous Graphene with Well-Tuned Surface Oxygen Chemistry for High Capacity and Cycling Stability Li−O2 Battery. ACS Appl. Mater. Interfaces 2015, 7, 3389–3397. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Lin, Y.; Su, D. N-doped onion-like carbon as an efficient oxygen electrode for long-life Li-O2 battery. J. Mater. Chem. A 2016, 4, 2128–2136. [Google Scholar] [CrossRef]
- Wu, F.; Xing, Y.; Li, L.; Qian, J.; Qu, W.; Wen, J.; Miller, D.; Ye, Y.; Chen, R.; Amine, K.; et al. Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li−O2 Batteries. ACS Appl. Mater. Interfaces 2016, 8, 23635–23645. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Chou, S.; Wang, J.; Zhai, Y.; Liu, H. A Metal-Free, Free-Standing, Macroporous Graphene@g-C3N4 Composite Air Electrode for High-Energy Lithium Oxygen Batteries. Small 2015, 11, 2817–2824. [Google Scholar] [CrossRef]
- Han, J.; Guo, X.; Ito, Y.; Liu, P.; Hojo, D.; Aida, T.; Hirata, A.; Fujita, T.; Adschiri, T.; Zhou, H.; et al. Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Li-O2 Batteries. Adv. Energy Mater. 2016, 6, 1501870. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, C.; Liu, S.; Yang, J.; Fan, X.; Huang, H.; Qiu, J. 3D Porous N-Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahigh-Rate and Long-Life Li-O2 Batteries. Adv. Funct. Mater. 2015, 25, 6913–6920. [Google Scholar] [CrossRef]
- Ren, X.; Wang, B.; Zhu, J.; Liu, J.; Zhang, W.; Wen, Z. Doping Effect on Catalytic Activity of Graphene for Oxygen Evolution Reaction in Lithium−Air Battery: A First-Principles Study. Phys. Chem. Chem. Phys. 2015, 17, 14605–14612. [Google Scholar] [CrossRef]
- Ma, S.; Wu, Y.; Wang, J.; Zhang, Y.; Zhang, Y.; Yan, X.; Wei, Y.; Liu, P.; Wang, J.; Jiang, K.; et al. Reversibility of Noble Metal-Catalyzed Aprotic Li-O2 Batteries. Nano Lett. 2015, 15, 8084–8090. [Google Scholar] [CrossRef]
- Ye, S.J.; Kim, D.Y.; Kim, D.W.; Park, O.; Kang, Y. Facile synthesis of palladium nanodendrites supported on graphene nanoplatelets: An efficient catalyst for low overpotentials in lithium–oxygen batteries. J. Mater. Chem. A 2016, 4, 578–586. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; Xu, D.; Zhang, L.; Zhang, X. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Yin, Y.; Zhang, L.; Huang, S.; Xi, L.; Liu, L.; Oswald, S.; Schmidt, O.G. 3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li-O2 batteries. Energy Storage Mater. 2019, 16, 155–162. [Google Scholar] [CrossRef]
- Lu, X.; Deng, J.; Si, W.; Sun, X.; Liu, X.; Liu, B.; Liu, L.; Oswald, S.; Baunack, S.; Grafe, H.J.; et al. High-Performance Li-O2 Batteries with Trilayered Pd/MnOx/Pd Nanomembranes. Adv. Sci. 2015, 2, 1500113. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Li, J.; Zeng, X.; Song, H.; Shu, T.; Wang, H.; Liao, S. Enhancing the cyclability of Li2O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst. J. Power Sources 2017, 337, 173–179. [Google Scholar] [CrossRef]
- Kang, Y.; Jung, S.C.; Kim, H.; Han, Y.; Oh, S.H. Maximum catalytic activity of Pt3M in Li-O2 batteries: M = group V transition metals. Nano Energy 2016, 27, 1–7. [Google Scholar] [CrossRef]
- Yao, L.; Lin, J.; Li, S.; Wu, Y.; Ding, H.; Zheng, H.; Xu, W.; Xie, T.; Yue, G.H.; Peng, D.-L. Metal-organic frameworks-derived hollow dodecahedral carbon combined with FeNx moieties and ruthenium nanoparticles as cathode electrocatalyst for lithium oxygen batteries. J. Colloid Interface Sci 2021, 596, 1–11. [Google Scholar] [CrossRef]
- Jung, H.; Jeong, Y.S.; Park, J.; Sun, Y.; Scrosati, B.; Lee, Y.J. Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-Air Batteries. ACS Nano 2013, 7, 3532–3539. [Google Scholar] [CrossRef]
- Sun, B.; Munroe, P.; Wang, G. Ruthenium nanocrystals as cathode catalysts for lithium–oxygen batteries with a superior performance. Sci. Rep. 2013, 3, 2247. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, C.; He, H.; Yu, Y.; Wang, L.; Zhang, J. Electrochemical Synthesis of Catalytically Active Ru/RuO2 Core−Shell Nanoparticles without Stabilizer. Chem. Mater. 2010, 22, 4056–4061. [Google Scholar] [CrossRef]
- Su, D.; Seo, D.H.; Ju, Y.; Han, Z.; Ostrikov, K.; Dou, S.; Ahn, H.; Peng, Z.; Wang, G. Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries. NPG Asia Mater. 2016, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Rolison, D.R.; Hagans, P.L.; Swider, K.E.; Long, J.W. Role of hydrous ruthenium oxide in Pt–Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity. Langmuir 1999, 15, 774–779. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, J.; Zou, L.; Li, X.; Gong, Y.; Chi, B.; Pu, J.; Li, J. In-Situ Growth of CeO2 Nanoparticles on N-doped Reduced Graphene Oxide for Anchoring Li2O2 Formation in Lithium-Oxygen Batteries. Electrochim. Acta 2016, 210, 712–719. [Google Scholar] [CrossRef]
- Tu, F.; Hu, J.; Xie, J.; Cao, G.; Zhang, S.; Yang, S.A.; Zhao, X.; Yang, H.Y. Au-Decorated Cracked Carbon Tube Arrays as Binder-Free Catalytic Cathode Enabling Guided Li2O2 Inner Growth for High-Performance Li-O2 Batteries. Adv. Funct. Mater. 2016, 26, 7725–7732. [Google Scholar] [CrossRef]
- Man, I.C.; Su, H.Y.; Calle-Vallejo, F.; Hansen, H.A.; MartÍnez, J.I.; Inoglu, N.G.; Kitchin, J.; Jaramillo, T.F.; Nørskov, J.K.; Rossmeisl, J. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCat-Chem 2011, 3, 1159–1165. [Google Scholar] [CrossRef]
- Zhu, J.; Ren, X.; Liu, J.; Zhang, W.; Wen, Z. Unraveling the Catalytic Mechanism of Co3O4 for the Oxygen Evolution Reaction in a Li−O2 Battery. ACS Catal. 2015, 5, 73–81. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Y.; Liu, J.; Gong, P.; Li, X.; Zhao, Y.; Yue, G.H.; Zhou, Z. Highly hierarchical porous structures constructed from NiO nanosheets act as Li ion and O2 pathways in long cycle life, rechargeable Li-O2 batteries. Chem. Commun. 2016, 52, 11772–11774. [Google Scholar] [CrossRef]
- Salehi, M.; Shariatinia, Z. An optimization of MnO2 amount in CNT-MnO2 nanocomposite as a high rate cathode catalyst for the rechargeable Li-O2 batteries. Electrochim. Acta 2016, 188, 428–440. [Google Scholar]
- Tong, S.; Zheng, M.; Lu, Y.; Lin, Z.; Li, J.; Zhang, X.; Shi, Y.; He, P.; Zhou, H. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries. J. Mater. Chem. A 2015, 3, 16177–16182. [Google Scholar] [CrossRef]
- Hong, M.; Choi, H.C.; Byon, H.R. Nanoporous NiO Plates with a Unique Role for Promoted Oxidation of Carbonate and Carboxylate Species in the Li−O2 Battery. Chem. Mater. 2015, 27, 2234–2241. [Google Scholar] [CrossRef]
- Débart, A.; Bao, J.; Armstrong, G.; Bruce, P.G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 2007, 174, 1177–1182. [Google Scholar] [CrossRef]
- Pan, J.; Tian, X.L.; Zaman, S.; Dong, Z.; Liu, H.; Park, H.S.; Xia, B.Y. Recent Progress on Transition Metal Oxides as Bifunctional Catalysts for Lithium-Air and Zinc-Air Batteries. Batter. Supercaps 2019, 2, 336–347. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.; Liu, L.; Xu, S.; Yan, X. Advances in Manganese-Based Oxides Cathodic Electrocatalysts for Li–Air Batteries. Adv. Funct. Mater. 2018, 28, 1704973. [Google Scholar] [CrossRef]
- Song, K.; Ai, W.; Zhang, Y.; Zeng, Y.; Yu, Y.; Qiao, H. Three-dimensional self-supported CuCo2O4 nanowires@NiO nanosheets core/shell arrays as an oxygen electrode catalyst for Li-O2 batteries. J. Mater. Chem. A 2021, 9, 3007–3017. [Google Scholar] [CrossRef]
- Li, X.; Wen, C.; Yuan, M.; Sun, Z.; Wei, Y.; Ma, L. Nickel oxide nanoparticles decorated highly conductive Ti3C2 MXene as cathode catalyst for rechargeable Li-O2 battery. J. Alloys Compd. 2020, 824, 153803. [Google Scholar] [CrossRef]
- Li, H.C.; Zhang, Y.J.; Hu, X.; Liu, W.J.; Chen, J.J.; Yu, H.Q. Metal–Organic Framework Templated Pd@PdO–Co3O4 Nanocubes as an Efficient Bifunctional Oxygen Electrocatalyst. Adv. Energy Mater. 2018, 8, 1702734. [Google Scholar] [CrossRef]
- Gao, R.; Zhu, J.; Xiao, X.; Hu, Z.; Liu, J.; Liu, X. Facet-Dependent Electrocatalytic Performance of Co3O4 for Rechargeable Li-O2 Battery. J. Phys. Chem. C 2015, 119, 4516–4523. [Google Scholar] [CrossRef]
- Ryu, W.; Yoon, T.; Song, S.H.; Jeon, S.; Park, Y.; Kim, I. Bifunctional Composite Catalysts Using Co3O4 Nanofibers Immobilized on Nonoxidized Graphene Nanoflakes for HighCapacity and Long-Cycle Li−O2 Batteries. Nano Lett. 2013, 13, 4190–4197. [Google Scholar] [CrossRef]
- Yang, W.; Salim, J.; Ma, C.; Ma, Z.; Sun, C.; Li, J.; Chen, L.; Kim, Y. Flowerlike Co3O4 microspheres loaded with copper nanoparticle as an efficient bifunctional catalyst for lithium–air batteries. Electrochem. Commun. 2013, 28, 13–16. [Google Scholar] [CrossRef]
- Song, M.J.; Kim, I.T.; Kim, Y.B.; Shin, M.W. Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries. Electrochim. Acta 2015, 182, 289–296. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, J.; Zhang, X.; Zan, Y.; Wu, X.; He, Z.; Wang, H.; Li, Q. Three-dimensional Co3O4/CNTs/CFP composite as binder-free cathode for rechargeable Li-O2 batteries. Chem. Eng. J. 2016, 296, 28–34. [Google Scholar] [CrossRef]
- Sun, C.; Li, F.; Ma, C.; Wang, Y.; Ren, Y.; Yang, W.; Ma, Z.; Li, J.; Chen, Y.; Kim, Y.; et al. Graphene–Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium–air batteries. J. Mater. Chem. A 2014, 2, 7188–7196. [Google Scholar] [CrossRef]
- Black, R.; Lee, J.; Adams, B.; Mims, C.A.; Nazar, L.F. The Role of Catalysts and Peroxide Oxidation in Lithium–Oxygen Batteries. Angew. Chem. Int. Ed. 2013, 52, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, R.; Zhou, D.; Chen, Z.; Wu, Z.; Schumacher, G.; Hu, Z.; Liu, X. Boosting the Electrocatalytic Activity of Co3O4 Nanosheets for a Li-O2 Battery through Modulating Inner Oxygen Vacancy and Exterior Co3+/Co2+ Ratio. ACS Catal. 2017, 7, 6533–6541. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Zhang, P.; Xu, S.; Yan, X. Morphology Engineering of Co3O4 Nanoarrays as Free-Standing Catalysts for Lithium−Oxygen Batteries. ACS Appl. Mater. Interfaces 2016, 8, 23713–23720. [Google Scholar] [CrossRef]
- Tomon, C.; Krittayavathananon, A.; Sarawutanukul, S.; Duangdangchote, S.; Phattharasupakun, N.; Homlamai, K. Enhancing bifunctional electrocatalysts of hollow Co3O4 nanorods with oxygen vacancies towards ORR and OER for Li-O2 batteries. Electrochim. Acta 2021, 367, 137490. [Google Scholar] [CrossRef]
- Jiang, Z.-L.; Xu, G.-L.; Yu, Z.; Zhou, T.-H.; Shi, W.-K.; Luo, C.-S. High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower. Nano Energy 2019, 64, 103896. [Google Scholar] [CrossRef]
- Zhao, G.; Lv, J.; Xu, Z.; Zhang, L.; Sun, K. Carbon and binder free rechargeable Li-O2 battery cathode with Pt/Co3O4 flake arrays as catalyst. J. Power Sources 2014, 248, 1270–1274. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, J.; Tour, J.M. Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon 2018, 139, 880–887. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, J.; Chang, Z.; Xu, D.; Yin, Y.; Yang, X.; Liu, T.; Jiang, Y.; Yan, J.; Zhang, X. Growth of Ru-Modifi ed Co3O4 Nanosheets on Carbon Textiles toward Flexible and Effi cient Cathodes for Flexible Li-O2 Batteries. Part. Part. Syst. Charact. 2016, 33, 500–505. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, S.; Li, H.; Wei, X.; Xing, Y. Mesoporous Pd/Co3O4 nanosheets nanoarrays as an efficient binder/carbon free cathode for rechargeable Li-O2 batteries. Appl. Surf. Sci. 2017, 420, 222–232. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, D.H.; Kang, T.; Ko, Y.; Kang, K.; Lee, Y.J. Bifunctional MnO2-Coated Co3O4 Hetero-structured Catalysts for Reversible Li-O2 Batteries. Chem. Mater. 2017, 29, 10542–10550. [Google Scholar] [CrossRef]
- Yua, Q.; Yub, Q.; Sun, W.; Wu, H.; Wang, Z.; Rooney, D.; Sun, K. Novel Ni@Co3O4 Web-like Nanofiber Arrays as Highly Effective Cathodes for Rechargeable Li-O2 Batteries. Electrochim. Acta 2016, 220, 654–663. [Google Scholar] [CrossRef]
- Gao, R.; Yang, Z.; Zheng, L.; Gu, L.; Liu, L.; Lee, Y.; Hu, Z.; Liu, X. Enhancing the Catalytic Activity of Co3O4 for Li−O2 Batteries through the Synergy of Surface/Interface/Doping Engineering. ACS Catal. 2018, 8, 1955–1963. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Qian, R.; We, Z. Atomic-Thick TiO2(B) Nanosheets Decorated with Ultrafine Co3O4 Nanocrystals as a Highly Efficient Catalyst for Lithium−Oxygen Battery. ACS Appl. Mater. Interfaces 2018, 10, 41398–41406. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Mohamed, Z.; Huang, Q.; Chen, T.; Hou, Y. A free-standing CeO2/Co3O4 nanowires electrode featuring a controllable discharge/charge product evolution route with enhanced catalytic performance for Li-O2 batteries. Appl. Mater. Today 2020, 19, 100603. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Ma, J.; Huang, A.; Yuan, M.; Li, Y. Oxygen Vacancy-Rich RuO2-Co3O4 Nanohybrids as Improved Electrocatalysts for Li-O2 Batteries. ACS Appl. Mater. Interfaces 2021, 13, 39239–39247. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Peng, Y.; Zhang, C.; Yin, F. Co3O4@3D ordered macro-/mesoporous TiO2 as an excellent cathode catalyst for rechargeable Li-O2 batteries. Microporous Mesoporous Mater. 2021, 314, 110866. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, W.; Chen, N.; Sun, C. Porous Urchin-like Co3O4 Microspheres as an Efficient Bifunctional Catalyst for Nonaqueous and Solid-State Li-O2 Batteries. ChemElectroChem 2018, 5, 2181–2185. [Google Scholar] [CrossRef]
- Gao, R.; Liu, L.; Hu, Z.; Zhang, P.; Cao, X.; Wang, B.; Liu, X. The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li-O2 batteries. J. Mater. Chem. A 2015, 3, 17598–17605. [Google Scholar] [CrossRef]
- Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance athode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, H.; Zhou, W.; Wang, M.; Li, X.; Zhang, H. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries. ACS Appl. Mater. Interfaces 2015, 7, 23182–23189. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Dong, S.; Hu, P.; Guan, J.; Xiao, D.; Chen, X.; Zhang, L.; Gu, L.; Cui, G.; Chen, L. Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Sci. Rep. 2015, 5, 8335. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.; Shanmugam, S. Mesoporous Co-CoO/N-CNR nanostructures as high-performance air cathode for lithium-oxygen batteries. J. Power Sources 2017, 354, 48–56. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Cheng, S.H.; Yu, S.; Nan, B.; Bian, H.; Md, K.; Wang, M.; Chung, C.Y.; Lu, Z. Conformal Coating of Heterogeneous CoO/Co Nanocomposites on Carbon Nanotubes as Efficient Bifunctional Electrocatalyst for Li-Air Batteries. Electrochim. Acta 2016, 219, 560–567. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, R.; He, M.; Lang, J.; Xu, S.; Yan, X. 3D Hierarchical Co/CoO-Graphene-Carbonized Melamine Foam as a Superior Cathode toward Long-Life Lithium Oxygen Batteries. Adv. Funct.Mater. 2016, 26, 1354–1364. [Google Scholar] [CrossRef]
- Shang, C.; Zhang, X.; Shui, L.; Chen, Z.; Liao, H.; Li, M.; Wang, X.; Zhou, G. Fe3O4@CoO mesospheres with core-shell nanostructure as catalyst for Li-O2 batteries. Appl. Surf. Sci. 2018, 457, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Yi, S.; Liang, J.; Tao, Z.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905. [Google Scholar] [CrossRef]
- Surya, K.; Michael, M.S.; Prabaharan, S.R.S. A review on advancement in non-noble metal-based oxides as bifunctional catalysts for rechargeable non-aqueous Li/air battery. Solid State Ion. 2018, 317, 89–96. [Google Scholar] [CrossRef]
- Debart, A.; Paterson, A.J.; Bao, J.; Bruce, P.G. α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angew. Chem., Int. Ed. 2008, 47, 4521. [Google Scholar] [CrossRef]
- Truong, T.T.; Liu, Y.; Ren, Y.; Trahey, L.; Sun, Y. Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium–Air Batteries. ACS Nano 2012, 6, 8067–8077. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, H.; Hu, H. The Effect of Different Carbon Materials on Manganese Oxide-Based Lithium–Air Batteries in Ambient Environment. Energy Technol. 2016, 4, 510–516. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Xu, D.; Xu, J.; Zhang, X.; Wang, L. α-MnO2 hollow clews for rechargeable Li-air batteries with improved cyclability. Chin. Sci. Bull. 2012, 57, 4210–4214. [Google Scholar] [CrossRef] [Green Version]
- Oloniyo, O.; Kumar, S.; Scott, K. Performance of MnO2 Crystallographic Phases in Rechargeable Lithium-Air Oxygen Cathode. J. Electron. Mater. 2012, 41, 921–927. [Google Scholar] [CrossRef]
- Zahoor, A.; Jang, H.S.; Jeong, J.S.; Christy, M.; Hwang, Y.J.; Nahm, K.S. A comparative study of nanostructured α and δ MnO2 for lithium oxygen battery application. RSC Adv. 2014, 4, 8973–8977. [Google Scholar] [CrossRef]
- Song, K.; Jung, J.; Heo, Y.-U.; Lee, Y.C.; Cho, K.; Kang, Y.-M. α-MnO2 nanowire catalysts with ultra-high capacity and extremely low overpotential in lithium–air batteries through tailored surface arrangement. Phys. Chem. Chem. Phys. 2013, 15, 20075–20079. [Google Scholar] [CrossRef]
- Bi, R.; Liu, G.; Zeng, C.; Wang, X.; Zhang, L.; Qiao, S. 3D Hollow α-MnO2 Framework as an Efficient Electrocatalyst for Lithium–Oxygen Batteries. Small 2019, 15, 1804958. [Google Scholar] [CrossRef]
- Tu, F.; Wang, Q.; Xie, J.; Cao, G.; Zhang, S.; Wang, J.; Mao, S.X.; Zhao, X.; YingYang, H. Highly-efficient MnO2/carbon array-type catalytic cathode enabling confined Li2O2 growth for long-life Li-O2 batteries. Energy Storage Mater. 2017, 6, 164–170. [Google Scholar] [CrossRef]
- Al-Ogaili, A.W.M.; Cetinkaya, T.; Pakseresht, S.; Akbulut, H. Graphene-based nanocomposite cathodes architecture with palladium and alpha-MnO2 for high cycle life lithium-oxygen batteries. J. Alloys Compd. 2021, 854, 157293. [Google Scholar] [CrossRef]
- Jang, H.; Zahoor, A.; Jeon, J.S.; Kim, P.; Lee, Y.S.; Nahm, K.S. Sea Urchin Shaped α-MnO2/RuO2 Mixed Oxides Nanostructure as Promising Electrocatalyst for Lithium–Oxygen Battery. J. Electrochem. Soc. 2015, 162, A300. [Google Scholar] [CrossRef]
- Jung, K.-N.; Riaz, A.; Lee, S.-B.; Lim, T.-H.; Park, S.-J.; Song, R.-H.; Yoon, S.; Shin, K.-H.; Lee, J.-W. Urchin-like α-MnO2 decorated with Au and Pd as a bi-functional catalyst for rechargeable lithium–oxygen batteries. J. Power Sources 2013, 244, 328. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, S.; He, M.; Lang, J.; Ren, A.; Xu, S.; Yan, X. Realizing the Embedded Growth of Large Li2O2 Aggregations by Matching Different Metal Oxides for High-Capacity and High-Rate Lithium Oxygen Batteries. Adv. Sci. 2017, 4, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Tompsett, D.A.; Parker, S.C.; Islam, M.S. Rutile (β-)MnO2 Surfaces and Vacancy Formation for High Electrochemical and Catalytic Performance. J. Am. Chem. Soc. 2014, 136, 1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thapa, A.K.; Shin, T.H.; Ida, S.; Sumanasekera, G.U.; Sunkara, M.K.; Ishihara, T. Gold–Palladium nanoparticles supported by mesoporous β-MnO2 air electrode for rechargeable Li-Air battery. J. Power Sources 2012, 220, 211. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, M.; Cheng, J.; Gong, Y.; Li, X.; Chi, B.; Pu, J.; Jian, L. Silver decorated beta-manganese oxide nanorods as an effective cathode electrocatalyst for rechargeable lithium–oxygen battery. J. Alloys Compd. 2015, 626, 173–179. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Chen, Y.; Xu, G.-L.; Zhang, X.-R.; Chen, Z.; Li, J.-T.; Huang, L.; Amine, K.; Sun, S.-G. RuO2 nanoparticles supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery. Nano Energy 2016, 28, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shi, M.; Li, Y.-S.; Fu, Z.-W. MnO2-graphene composite air electrode for rechargeable Li-air batteries. J. Electrochem. Soc. 2012, 159, A1917. [Google Scholar] [CrossRef]
- Li, F.; Wu, S.; Li, D.; Zhang, T.; He, P.; Yamada, A.; Zhou, H. The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat. Commun. 2015, 6, 7843. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Han, X.; Hu, Y.; Cheng, F.; Chen, J. ε-MnO2 nanostructures directly grown on Ni foam: A cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 2014, 6, 3522. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, F.; Zhang, N.; Han, X.; Chen, J. Nanocomposite of Fe2O3@C@MnO2 as an Efficient Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries. Small 2015, 11, 5545. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Xie, J.; Huo, Y.; Yang, H.Y.; Zhu, T.; Cao, G.; Zhao, X.; Zhang, S. Direct Growth of Flower-Like δ-MnO2 on Three-Dimensional Graphene for High-Performance Rechargeable Li-O2 Batteries. Adv. Energy Mater. 2014, 4, 1301960. [Google Scholar] [CrossRef]
- Han, X.; Cheng, F.; Chen, C.; Hu, Y.; Chen, J. Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 2015, 8, 156. [Google Scholar] [CrossRef]
- Luo, W.-B.; Chou, S.-L.; Wang, J.-Z.; Zhai, Y.-C.; Liu, H.-K. A facile approach to synthesize stable CNTs@ MnO electrocatalyst for high energy lithium oxygen batteries. Sci. Rep. 2015, 5, 8012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadegari, H.; Banis, M.N.; Lushington, A.; Sun, Q.; Li, R.; Sham, T.-K.; Sun, X. A bifunctional solid state catalyst with enhanced cycling stability for Na and Li-O2 cells: Revealing the role of solid state catalysts. Energy Environ. Sci. 2017, 10, 286. [Google Scholar] [CrossRef]
- Yoon, K.R.; Lee, G.Y.; Jung, J.-W.; Kim, N.-H.; Kim, S.O.; Kim, I.-D. One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium–Oxygen Batteries. Nano Lett. 2016, 16, 2076. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, Y.; Noh, Y.; Kim, W.B. MnCo2O4 Nanowires Anchored on Reduced Graphene Oxide Sheets as Effective Bifunctional Catalysts for Li-O2 Battery Cathodes. ChemSusChem 2015, 8, 1752–1760. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Liang, Y.; Zheng, G.; Li, Y.; Cui, Y.; Dai, H. Rechargeable Li-O2 Batteries with a Covalently Coupled MnCo2O4-Graphene Hybrid as an Oxygen Cathode Catalyst. Energy Environ. Sci. 2012, 5, 7931–7935. [Google Scholar] [CrossRef]
- Mohamed, S.G.; Tsai, Y.; Chen, C.; Tsai, Y.; Hung, T.; Chang, W.; Liu, R. Ternary Spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium–O2 Batteries. ACS Appl. Mater. Interfaces 2015, 7, 12038–12046. [Google Scholar] [CrossRef]
- Li, Y.; Guo, K.; Li, J.; Dong, X.; Yuan, T.; Li, X.; Yang, H. Controllable Synthesis of Ordered Mesoporous NiFe2O4 with Tunable Pore Structure as a Bifunctional Catalyst for Li−O2 Batteries. ACS Appl. Mater. Interfaces 2014, 6, 20949–20957. [Google Scholar] [CrossRef]
- Wu, H.; Sun, W.; Wang, Y.; Wang, F.; Liu, J.; Yue, X.; Wang, Z.; Qiao, J.; Rooney, D.W.; Sun, K. Facile Synthesis of Hierarchical Porous Three-Dimensional Free-Standing MnCo2O4 Cathodes for Long-Life LiO2 Batteries. ACS Appl. Mater. Interfaces 2017, 9, 12355–12365. [Google Scholar] [CrossRef]
- Niu, F.; Wang, N.; Yue, J.; Chen, L.; Yang, J.; Qian, Y. Hierarchically Porous CuCo2O4 Microflowers: A Superior Anode Material for Li-ion Batteries and a Stable Cathode Electrocatalyst for Li-O2 Batteries. Electrochim. Acta 2016, 208, 148–155. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Zhang, K.; Xu, G.; He, X.; Dong, S.; Liu, Z.; Huang, C.; Guc, L.; Cui, G. Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries. Chem. Commun. 2013, 49, 3540–3542. [Google Scholar] [CrossRef] [PubMed]
- Palani, R.; Karuppiah, C.; Yang, C.-C.; Piraman, S. Metal-organic frameworks derived spinel NiCo2O4/graphene nanosheets composite as a bi-functional cathode for high energy density Li-O2 battery applications. Int. J. Hydrogen Energy 2021, 46, 14288–14300. [Google Scholar] [CrossRef]
- Ren, L.; Zheng, R.; Du, D.; Yan, Y.; He, M.; Ran, Z. Optimized orbital occupancy of transition metal in spinel Ni-Co oxides with heteroatom doping for Aprotic Li-O2 battery. Chem. Eng. J. 2022, 430, 132977. [Google Scholar] [CrossRef]
- Cao, X.; Wu, J.; Jin, C.; Tian, J.; Strasser, P.; Yang, R. MnCo2O4 Anchored on P-Doped Hierarchical Porous Carbon as an Electrocatalyst for High-Performance Rechargeable Li−O2 Batteries. ACS Catal. 2015, 5, 4890–4896. [Google Scholar] [CrossRef]
- Leng, L.; Li, J.; Zeng, X.; Song, H.; Shu, T.; Wang, H.; Ren, J.; Liao, S. Spinel LiMn2O4 Nanoparticles Grown in Situ on Nitrogen-Doped Reduced Graphene Oxide as an Efficient Cathode for a Li-O2/Li-Ion Twin Battery. ACS Sustain. Chem. Eng. 2019, 7, 430–439. [Google Scholar] [CrossRef]
- Karkera, G.; Chandrappa, S.G.; Prakash, A.S. Viable Synthesisof Porous MnCo2O4/Graphene Composite by Sonochemical Grafting: A High-Rate-Capable Oxygen Cathode for Li-O2 Batteries. Chem. Eur. J. 2018, 24, 17303–17310. [Google Scholar] [CrossRef]
- Guo, T.; Qin, X.; Hou, L.; Li, J.; Li, X.; Liang, Q. Waxberry-like hierarchical NiCo2O4-decorated carbon microspheres as efficient catalyst for Li-O2 batteries. J. Solid State Electrochem. 2019, 23, 1359–1369. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, J.; Zhao, Y.; Sun, B.; Liu, H.; Wang, G. Ultrathin Porous NiCo2O4 Nanosheets for Lithium−Oxygen Batteries: An Excellent Performance Deriving from an Enhanced Solution Mechanism. ACS Appl. Energy Mater. 2019, 2, 4215–4223. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, H.; Yang, T.; Xia, Y.; Zheng, H.; Wei, Q.; Han, J.; Peng, D.-L.; Yue, G.H. Composite NiCo2O4@CeO2 Microsphere as Cathode Catalyst for High-Performance Lithium-Oxygen Battery. Adv. Sci. 2022, 9, 2200523. [Google Scholar] [CrossRef]
- Wu, H.; Sun, W.; Shen, J.; Mao, Z.; Wang, H.; Cai, H.; Wang, Z.; Sun, K. Electrospinning Derived Hierarchically Porous Hollow CuCo2O4 Nanotubes as an Effectively Bifunctional Catalyst for Reversible Li-O2 Batteries. ACS Sustain. Chem. Eng. 2018, 6, 15180–15190. [Google Scholar] [CrossRef]
- Wu, H.; Sun, W.; Shen, J.; Lu, C.; Wang, Y.; Wang, Z.; Sun, K. Improved structural design of single- and double-wall MnCo2O4 nanotube cathodes for long-life Li-O2 batteries. Nanoscale 2018, 10, 13149–13158. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Sun, Z.; Zheng, X.; Jin, C.; Tian, J.; Li, X.; Yang, R. MnCo2O4/MoO2 Nanosheets Grown on Ni foam as Carbon- and Binder-Free Cathode for Lithium–Oxygen Batteries. Chemsuschem 2018, 11, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, D.; Wang, Z.; Wang, H.; Zhang, L.; Zhang, X. Synthesis of Perovskite-Based Porous La0.75Sr0.25MnO3 Nanotubes as a Highly Efficient Electrocatalyst for Rechargeable Lithium–Oxygen Batteries. Angew. Chem. Int. Ed. 2013, 52, 3887–3890. [Google Scholar] [CrossRef] [PubMed]
- Suntivich, J.; Gasteiger, H.A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J.B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550. [Google Scholar] [CrossRef]
- Suntivich, J.; May, K.J.; Gasteiger, H.A.; Goodenough, J.B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334, 1383–1385. [Google Scholar] [CrossRef]
- Han, X.; Hu, Y.; Yang, J.; Cheng, F.; Chen, J. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries. Chem. Commun. 2014, 50, 1497–1499. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; Xu, D.; Meng, F.; Zhang, X. 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 2014, 7, 2213–2219. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Zhao, X.; Liu, Z.; Chen, W. Porous Perovskite LaNiO3 Nanocubes as Cathode Catalysts for Li-O2 Batteries with Low Charge Potential. Sci. Rep. 2014, 4, 6005. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.T.; Stoerzinger, K.A.; Lee, Y.-L.; Giordano, L.; Grimaud, A.; Johnson, A.M.; Hwang, J.; Crumlin, E.J.; Yang, W.; Shao-Horn, Y. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 2017, 10, 2190–2200. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, W.; Wu, S.; Yang, X.; Xia, W.; Shen, Y.; Huang, Y.; Cao, A.; Yuan, Q. Perovskite-Type LaSrMnO Electrocatalyst with Uniform Porous Structure for an Efficient Li−O2 Battery Cathode. ACS Nano 2016, 10, 1240–1248. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, Y.; Noh, Y.; Lee, S.; Kim, Y.; Kim, W.B. Bifunctional Hybrid Catalysts with Perovskite LaCo0.8Fe0.2O3 Nanowires and Reduced Graphene Oxide Sheets for an Efficient Li−O2 Battery Cathode. ACS Appl. Mater. Interfaces 2018, 10, 5429–5439. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zou, L.; Guo, S.; Sun, M.; Chen, Y.; Chi, B. Porous double-doped perovskite La0.6Ca0.4Fe0.8Ni0.2O3 nanotubes as highly efficient bifunctional catalysts for lithium-oxygen batteries. J. Power Sources 2020, 468, 228362. [Google Scholar] [CrossRef]
- Cong, Y.; Geng, Z.; Sun, Y.; Yuan, L.; Wang, X.; Zhang, X.; Wang, L.; Zhang, W.; Huang, K.; Feng, S. Cation Segregation of A-Site Deficiency Perovskite La0.85FeO3−δ Nanoparticles toward High-Performance Cathode Catalysts for Rechargeable Li-O2 Battery. ACS Appl. Mater. Interfaces 2018, 10, 25465–25472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gong, Y.; Li, S.; Sun, C. Porous Perovskite La0.6Sr0.4Co0.8Mn0.2O3 Nanofibers Loaded with RuO2 Nanosheets as an Efficient and Durable Bifunctional Catalyst for Rechargeable Li−O2 Batteries. ACS Catal. 2017, 7, 7737–7747. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Li, Z.; Wang, Z.; Sun, C.; Chen, L. Perovskite La0.6Sr0.4Co0.2Fe0.8O3 Nanofibers Decorated with RuO2 Nanoparticlesas an Efficient Bifunctional Cathode for Rechargeable Li-O2 Batteries. ChemNanoMat 2017, 3, 485–490. [Google Scholar] [CrossRef]
- Tan, P.; Liu, M.; Shao, Z.; Ni, M. Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium–Oxygen Batteries. Adv. Energy Mater. 2017, 7, 1602674. [Google Scholar] [CrossRef]
- Yoon, K.R.; Kim, D.S.; Ryu, W.; Song, S.H.; Youn, D.; Jung, J.; Jeon, S.; Park, Y.J.; Kim, I. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries. ChemSusChem 2016, 9, 2080. [Google Scholar] [CrossRef]
- Wang, Z.; You, Y.; Yuan, J.; Yin, Y.; Li, Y.; Xin, S.; Zhang, D. Nickel-Doped La0.8Sr0.2Mn1−xNixO3 Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium−Air Batteries. ACS Appl. Mater. Interfaces 2016, 8, 6520–6528. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, F.; Jin, C.; Wang, Y.; Yang, R.; Yang, C. NiCo2O4@La0.8Sr0.2MnO3 core–shell structured nanorods as efficient electrocatalyst for LiO2 battery with enhanced performances. J. Power Sources 2016, 319, 19. [Google Scholar] [CrossRef]
- Du, D.; Zheng, R.; Chen, X.; Xiang, W.; Zhao, C.; Zhou, B. Adjusting the Covalency of Metal-Oxygen Bonds in LaCoO3 by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium-Oxygen Batteries. ACS Appl. Mater. Interfaces 2021, 13, 33133–33146. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, Q.; Li, Y.; Tao, L.; Tan, H.; Yin, K. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries. Nano Lett. 2021, 21, 4861–4867. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jun, Y.; Lee, W.; Gerbec, J.A.; See, K.A.; Stucky, G.D. Bimodal Mesoporous Titanium Nitride/Carbon Microfibers as Efficient and Stable Electrocatalysts for Li−O2 Batteries. Chem. Mater. 2013, 25, 3779–3781. [Google Scholar] [CrossRef] [Green Version]
- Yoon, K.R.; Shin, K.; Park, J.; Cho, S.; Kim, C.; Jung, J.; Cheong, J.Y.; Byon, H.R.; Lee, H.M.; Kim, I. Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector Catalyst Integrated Cathode for Long Cycle Li−O2 Batteries. ACS Nano 2018, 12, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Chen, X.; Zhang, K.; Gu, L.; Zhang, L.; Zhou, X.; Li, L.; Liu, Z.; Han, P.; Xu, H.; et al. Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries. Chem. Commun. 2011, 47, 11291–11293. [Google Scholar] [CrossRef] [PubMed]
- Sennu, P.; Christy, M.; Aravindan, V.; Lee, Y.; Nahm, K.S.; Lee, Y. Two-Dimensional Mesoporous Cobalt Sulfide Nanosheets as a Superior Anode for a Li-Ion Battery and a Bifunctional Electrocatalyst for the Li-O2 System. Chem. Mater. 2015, 27, 5726–5735. [Google Scholar] [CrossRef]
- Ramakrishnan, P.; Shanmugam, S.; Kim, J.H. Dual Heteroatom-Doped Carbon Nanofoam-Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li-O2 Batteries. ChemSusChem 2017, 10, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lu, H.; Xu, B.; Yang, W.; Hong, Q. Nitrogen/sulfur dual-doped porous carbon nanofibers with Co9S8 nanoparticles encapsulated by graphitic shells: A highly active stable free-standing air electrode for rechargeable non-aqueous Li-O2 batteries and primary alkaline Al-air batteries. Chem. Eng. J. 2019, 378, 122247. [Google Scholar] [CrossRef]
- Hyun, S.; Son, B.; Kim, H.; Sanetuntikul, J.; Shanmugam, S. The synergistic effect of nickel cobalt sulfide nanoflakes and sulfur-doped porous carboneous nanostructure as bifunctional electrocatalyst for enhanced rechargeable Li-O2 batteries. Appl. Catal. B Environ. 2020, 263, 118283. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Dong, S.; Ge, X.; Zhang, P.; Miao, X.; Wang, R.; Zhang, Z.; Yin, L. Hierarchical NiCo2S4@NiO Core–Shell Heterostructures as Catalytic Cathode for Long-Life Li-O2 Batteries. Adv. Energy Mater. 2019, 9, 1900788. [Google Scholar] [CrossRef]
- Sadighi, Z.; Liu, J.; Ciucci, F.; Kim, J. Mesoporous MnCo2S4 nanosheet arrays as an efficient catalyst for Li-O2 batteries. Nanoscale 2018, 10, 15588–15599. [Google Scholar] [CrossRef]
- Kundu, D.; Black, R.; Adams, B.; Harrison, K.; Zavadil, K.; Nazar, L.F. Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability. J. Phys. Chem. Lett. 2015, 6, 2252–2258. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Yang, Y.; Chen, R.; Luo, M.; Chen, N.; Qian, Y.Y.J.; Li, L.; Wu, F.; Guo, S. Strongly Coupled Carbon Nanosheets/Molybdenum Carbide Nanocluster Hollow Nanospheres for High-Performance Aprotic Li-O2 Battery. Small 2018, 14, 1704366. [Google Scholar] [CrossRef]
- Zhen, D.Y.; Chang, Z.; Zhang, Q.; Huang, K.; Xin, B.Z. Decorating carbon nanofibers with Mo2C nanoparticles towards hierarchically porous and highly catalytic cathode for high-performance Li-O2 batteries. Sci. Bull. 2018, 63, 433–440. [Google Scholar]
- Yang, Y.; Qin, Y.; Xue, X.; Wang, X.; Yao, M.; Huang, H. Intrinsic Properties Affecting the Catalytic Activity of 3d Transition-Metal Carbides in Li-O2 Battery. J. Phys. Chem. C 2018, 122, 17812–17819. [Google Scholar] [CrossRef]
- Wu, J.; Park, H.W.; Yu, A.; Higgins, D.; Chen, Z. Facile Synthesis and Evaluation of Nanofibrous Iron–Carbon Based Non-Precious Oxygen Reduction Reaction Catalysts for Li-O2 Battery Applications. J. Phys. Chem. C 2012, 116, 9427–9432. [Google Scholar] [CrossRef]
- Wei, M.; Luo, Y.; Jin, C.; Sui, J.; Wang, Z.; Li, C.; Yang, R. MoP Nanoflakes as Efficient Electrocatalysts for Rechargeable Li-O2 Batteries. ACS Appl. Energy Mater. 2018, 1, 331–335. [Google Scholar] [CrossRef]
- Huang, H.; Luo, S.; Liu, C.; Yi, T.; Zhai, Y. High-Surface-Area and Porous Co2P Nanosheets as Cost-Effective Cathode Catalysts for Li-O2 Batteries. ACS Appl. Mater. Interfaces 2018, 10, 21281–21290. [Google Scholar] [CrossRef]
- Hou, X.; Jiang, Y.; He, Y.; Ma, Z.; Yang, J.; Yuan, X. Low-Cost Nickel Phosphide as an Efficient Bifunctional Cathode Catalyst for Li-O2 Batteries. J. Electrochem. Soc. 2018, 165, A2904–A2908. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Dong, S.; Ge, X.; Zhang, P.; Miao, X.; Zhang, Z.; Wang, C.; Yin, L. One-Step Route Synthesized Co2P/Ru/N-Doped Carbon Nanotube Hybrids as Bifunctional Electrocatalysts for High-Performance Li-O2 Batteries. Small 2019, 15, 1900001. [Google Scholar] [CrossRef]
- Hwang, I.; Lee, G.; Tak, Y. Mesoporous Carbon Supported Cobalt and Iron Binary Hydroxide Catalyst for Cathode in Non-aqueous Li-air Batteries. Int. J. Electrochem. Sci. 2015, 10, 8982–8992. [Google Scholar]
- Chitravathi, S.; Kumara, S.; Munichandraiah, N. NiFe-layered double hydroxides: A bifunctional O2 electrode catalyst for non-aqueous Li-O2 batteries. RSC Adv. 2016, 6, 103106–103115. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, G.; Qiu, Z.; Wang, Y.; Xia, Y. High performance Li-O2 battery using γ-MnOOH nanorods as a catalyst in an ionic-liquid based electrolyte. Electrochem. Commun. 2012, 25, 26–29. [Google Scholar] [CrossRef]
- Chen, W.; Lai, Y.; Zhang, Z.; Gan, Y.; Jiang, S.; Li, J. β-FeOOH decorated high porous carbon aerogels composite as cathode material for rechargeable Li-O2 batteries. J. Mater. Chem. A 2015, 3, 6447–6454. [Google Scholar] [CrossRef]
- He, L.; Wang, G.; Wu, X.; Wen, Z.; Zhang, W. N-Doped Graphene Decorated with Fe/Fe3N/Fe4N Nanoparticles as a Highly Efficient Cathode Catalyst for Rechargeable Li-O2 Batteries. ChemElectroChem 2018, 5, 2435–2441. [Google Scholar] [CrossRef]
- Hou, Z.; Feng, S.; Hei, P.; Yang, T.; Ran, Z.; Zheng, R.; Liao, X.; Chaozhu, S.; Jianping, L. Morphology regulation of Li2O2 by flower-like ZnCo2S4 enabling high performance Li-O2 battery. J. Power Sources 2019, 441, 227168. [Google Scholar] [CrossRef]
- Hei, P.; Shu, C.Z.; Hou, Z.Q. Iron doped CoP nanowires on carbon cloth: An efficient and stable electrocatalyst for Li-O2 battery. J. Alloys Compd. 2020, 820, 153086. [Google Scholar] [CrossRef]
- Zhang, P.; Hui, X.B.; Wang, H.Y. Porous hollow ZnCo2S4 nanosheet arrays derived from metal-organic framework as efficient cathode for lithium oxygen batteries. J. Alloys Compd. 2021, 860, 157656. [Google Scholar] [CrossRef]
- Shu, C.; Liu, Y.; Long, J.; Chen, X.; Su, Y. 3D Array of Bi2S3 Nanorods Supported on Ni Foam as a Highly Efficient Integrated Oxygen Electrode for the Lithium-Oxygen Battery. Part. Part. Syst. Charact. 2018, 35, 1700433. [Google Scholar] [CrossRef]
- Ran, Z.Q.; Shu, C.Z.; Hou, Z.Q.; Zhang, W.B. Modulating electronic structure of honeycomb-like Ni2P/Ni12P5 heterostructure with phosphorus vacancies for highly efficient lithium-oxygen batteries. Chem. Eng. J. 2021, 413, 127404. [Google Scholar] [CrossRef]
- Cao, X.C.; Chen, Z.X.; Wang, N.; Han, Z.Y. Defected molybdenum disulfide catalyst engineered by nitrogen doping for advanced lithium-oxygen battery. Electrochim. Acta 2021, 383, 138369. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, H.; Liang, G.; Jin, Y.; Zeng, H.; Li, J.; Chen, J.; Zhang, W.; Xie, F.; Jin, Y.; et al. FeOOH Nanocubes Anchored on Carbon Ribbons for Use in Li/O2 Batteries. Chem. Eur. J. 2019, 25, 3112–3118. [Google Scholar] [PubMed]
- Zhou, Y.; Yan, D.; Gu, Q.; Zhu, S.; Wang, L.; Peng, H.; Zhao, Y. Implanting cation vacancies in Ni-Fe LDHs for efficient oxygen evolution reactions of lithium-oxygen batteries. Appl. Catal. B 2021, 285, 119792. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, G.; Hong, Z.; Xia, Y.; Yang, T.; Wu, Y. Bifunctional Electrocatalysts Materials for Non-Aqueous Li–Air Batteries. Coatings 2022, 12, 1227. https://doi.org/10.3390/coatings12081227
Yue G, Hong Z, Xia Y, Yang T, Wu Y. Bifunctional Electrocatalysts Materials for Non-Aqueous Li–Air Batteries. Coatings. 2022; 12(8):1227. https://doi.org/10.3390/coatings12081227
Chicago/Turabian StyleYue, Guanghui, Zheyu Hong, Yongji Xia, Tianlun Yang, and Yuanhui Wu. 2022. "Bifunctional Electrocatalysts Materials for Non-Aqueous Li–Air Batteries" Coatings 12, no. 8: 1227. https://doi.org/10.3390/coatings12081227
APA StyleYue, G., Hong, Z., Xia, Y., Yang, T., & Wu, Y. (2022). Bifunctional Electrocatalysts Materials for Non-Aqueous Li–Air Batteries. Coatings, 12(8), 1227. https://doi.org/10.3390/coatings12081227