Modern Solutions for Functional Coatings in CVD Processes
Author Contributions
Funding
Conflicts of Interest
References
- Thakare, J.; Mahapatra, M.; Mulik, R. Thermal barrier coatings—A state of the art review. Met. Mater. Int. 2020, 27, 1947–1968. [Google Scholar] [CrossRef]
- Di Girolamo, G. Current Challenges and Future Perspectives in the Field of Thermal Barrier Coatings; IGI Global: Hershey, PA, USA, 2018. [Google Scholar]
- Rudolphi, M.; Galetz, M.C.; Schütze, M.; Frommherz, M.; Scholz, A.; Oechsner, M.; Bakan, E.; Vaßen, R.; Stamn, W. Mechanical stability limits of bi-layer thermal barrier coatings. Proc. Therm. Barrier Coat. IV 2014. [Google Scholar]
- Qdrak, P.; DychtpD, K.; Drajewicz, M.; Góral, M. Synthesis of Gd2Zr2O7 Coatings Using the Novel Reactive PS-PVD Process. Coatings 2021, 11, 1208. [Google Scholar]
- Miller, R.A. Current status of thermal barrier coatings—An overview. Surf. Coat. Technol. 1987, 30, 1–11. [Google Scholar] [CrossRef]
- Subramanian, R.B.; Burns, A.J.; Stamm, W. Advanced Multi-Functional Coatings for Land-Based Industrial Gas Turbines. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008. [Google Scholar]
- Mahamood, R.M.; Akinlabi, E.T. Laser-Assisted Additive Fabrication of Micro-Sized Coatings; Woodhead Publishing: Suston, UK, 2018. [Google Scholar]
- Wang, Q.; Zhang, Y.; Gao, D. Theoretical study on the fabrication of a microlens using the excimer laser chemical vapor deposition technique. Thin Solid Films 1996, 287, 243–246. [Google Scholar] [CrossRef]
- Piqué, A.; Auyeung, R.C.Y.; Kim, H.; Charipar, N.A.; Mathews, S.A. Laser 3D micro-manufacturing. J. Phys. D Appl. Phys. 2016, 49, 223001. [Google Scholar] [CrossRef]
- Wanke, M.C.; Lehmann, O.; Müller, K.; Wen, Q.; Stuke, M. Laser Rapid Prototyping of Photonic Band-Gap Microstructures. Science 1997, 275, 1284–1286. [Google Scholar] [CrossRef]
- Williams, K.L.; Köhler, J.; Boman, M. Fabrication and mechanical characterization of LCVD-deposited carbon micro-springs. Sens. Actuators A Phys. 2006, 130–131, 358–364. [Google Scholar] [CrossRef]
- Williams, K.; Maxwell, J.; Larsson, K.; Boman, M. Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high-pressure laser chemical vapor deposition. In Proceedings of the Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291), Orlando, FL, USA, 21 January 1999. [Google Scholar]
- Stuke, M.; Mueller, K.; Mueller, T.; Hagedorn, R.; Jaeger, M.; Fuhr, G. Laser-direct-write creation of three-dimensional OREST microcages for contact-free trapping, handling and transfer of small polarizable neutral objects in solution. Appl. Phys. A 2005, 81, 915–922. [Google Scholar] [CrossRef]
- Burgt, Y.B. Laser-Assisted Growth of Carbon Nanotubes. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2014. [Google Scholar]
- Maeda, S.; Minami, K.; Esashi, M. Excimer laser induced CVD and its application to selective non-planar metallization. J. Micromech. Microeng. 1995, 5, 237–242. [Google Scholar] [CrossRef]
- Krumdieck, S. Pulsed-Pressure MOCVD Science, Materials and Technology. ECS Trans. 2009, 25, 1209–1219. [Google Scholar] [CrossRef]
- Suchtelen, J.V.; Hogenkamp, J.E.M.; Sark, W.G.J.H.M.V.; Giling, L.J. The pulse reactor—A high-efficiency, high-precision low-pressure MOCVD machine. J. Cryst. Growth 1988, 93, 201–206. [Google Scholar] [CrossRef]
- Choi, J.-H.; Ha, M.J.; Park, J.C.; Park, T.J.; Kim, W.; Lee, M.-J.; Ahn, J. A Strategy for Wafer-Scale Crystalline MoS2 Thin Films with Controlled Morphology Using Pulsed Metal–Organic Chemical Vapor Deposition at Low Temperature. Adv. Mater. Interfaces 2021, 9, 2101785. [Google Scholar] [CrossRef]
- Gorthy, R.; Krumdieck, S.; Bishop, C. Process-Induced Nanostructures on Anatase Single Crystals via Pulsed-Pressure MOCVD. Materials 2020, 13, 1668. [Google Scholar] [CrossRef] [PubMed]
- Grodzicki, A.; Łakomska, I.; Piszczek, P.; Szymańska, I.; Szłyk, E. Copper(I), silver(I) and gold(I) carboxylate complexes as precursors in chemical vapour deposition of thin metallic films. Coord. Chem. Rev. 2005, 249, 2232–2258. [Google Scholar] [CrossRef]
- Emslie, D.J.H.; Chadha, P.; Price, J.S. Metal ALD and pulsed CVD: Fundamental reactions and links with solution chemistry. Coord. Chem. Rev. 2013, 257, 3282–3296. [Google Scholar] [CrossRef]
- Hämäläinen, J. Atomic Layer Deposition of Noble Metal Oxide and Noble Metal Thin Films. Ph.D. Thesis, Helsingin Yliopisto, Helsinki, Finland, 2013. [Google Scholar]
- Golrokhi, Z.; Chalker, S.; Sutcliffe, C.J.; Potter, R.J. Self-limiting atomic layer deposition of conformal nanostructured silver films. Appl. Surf. Sci. 2016, 364, 789–797. [Google Scholar] [CrossRef]
- Mäkelä, M.; Hatanpää, T.; Mizohata, K.; Meinander, K.; Niinistö, J.; Räisänen, J.; Ritala, M.; Leskelä, M. Studies on thermal atomic layer deposition (ALD) of silver thin films. Chem. Mater. 2017, 29, 2040–2045. [Google Scholar] [CrossRef]
- Garcia, J.R.V.; Goto, T. Chemical Vapor Deposition of Iridium, Platinum, Rhodium and Palladium. Mater. Trans. 2003, 44, 1717–1728. [Google Scholar] [CrossRef]
- Igumenov, I.K.; Gelfond, N.V.; Morozova, N.B.; Nizard, H. Overview of Coating Growth Mechanisms in MOCVD Processes as Observed in Pt Group Metals. Chem. Vap. Depos. 2007, 13, 633–637. [Google Scholar] [CrossRef]
- Vasilyev, V.Y.; Morozova, N.B.; Basova, T.V.; Igumenov, I.K.; Hassan, A.K. Chemical Vapor Deposition of Ir-Based Coatings: Chemistry, Processes and Applications. ChemInform 2015, 46, 32034–32063. [Google Scholar] [CrossRef]
- Vila-Comamala, J.; Romano, L.; Guzenko, V.A.; Kagias, M.; Stampanoni, M.; Jefimovs, K. Towards sub-micrometer high aspect ratio X-ray gratings by atomic layer deposition of iridium. Microelectron. Eng. 2018, 192, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Lien, C.; Sun, H.; Qin, X.; Zaera, F. Platinum atomic layer deposition on metal substrates: A surface chemistry study. Surf. Sci. 2018, 677, 161–166. [Google Scholar] [CrossRef]
- Kemell, M.L.; Pore, V.; Ritala, M.; Leskelä, M. Ir/Oxide/Cellulose Composites for Catalytic Purposes Prepared by Atomic Layer Deposition. Chem. Vap. Depos. 2006, 12, 419–422. [Google Scholar] [CrossRef]
- Baklanova, N.I.; Morozova, N.; Kriventsov, V.V.; Titov, A.T. Synthesis and microstructure of iridium coatings on carbon fibers. Carbon 2013, 56, 243–254. [Google Scholar] [CrossRef]
- Vaartstra, B.A. Methods for Forming Iridium and Platinum Containing Films on Substrates. Patent US6426292B2, 30 July 2002. [Google Scholar]
- Vikulova, E.S.; Kal’nyi, D.B.; Shubin, Y.V.; Kokovkin, V.V.; Morozova, N.; Hassan, A.K.; Basova, T.V. Metal Ir coatings on endocardial electrode tips, obtained by MOCVD. Appl. Surf. Sci. 2017, 425, 1052–1058. [Google Scholar] [CrossRef]
- Cheimarios, N.; Kokkoris, G.; Boudouvis, A.G. Multiscale Modeling in Chemical Vapor Deposition Processes: Models and Methodologies. Arch. Comput. Methods Eng. 2021, 28, 637–672. [Google Scholar] [CrossRef]
- Cave, H.M.; Krumdieck, S.P.; Jermy, M.C. Development of a model for high precursor conversion efficiency pulsed-pressure chemical vapor deposition (PP-CVD) processing. Chem. Eng. J. 2008, 135, 120–128. [Google Scholar] [CrossRef]
- Bernard, C.; Blanquet, E.; Pons, M. Chemical vapor deposition of thin films and coatings: Evaluation and process modeling. Surf. Coat. Technol. 2007, 202, 790–797. [Google Scholar] [CrossRef]
- Cheimarios, N.; Koronaki, E.D.; Boudouvis, A.G. Enabling a commercial computational fluid dynamics code to perform certain nonlinear analysis tasks. Comput. Chem. Eng. 2011, 35, 2632–2645. [Google Scholar] [CrossRef]
- Koronaki, E.D.; Gkinis, P.A.; Beex, L.; Bordas, S.P.A.; Theodoropoulos, C.; Boudouvis, A.G. Classification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity. Comput. Chem. Eng. 2019, 121, 148–157. [Google Scholar] [CrossRef]
- Lukashov, V.V.; Turgambaeva, A.E.; Igumenov, I.K. An alytical Model of the Process of Thermal Barrier Coating by the MO CVD Method. Coatings 2021, 11, 1390. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igumenov, I.K.; Lukashov, V.V. Modern Solutions for Functional Coatings in CVD Processes. Coatings 2022, 12, 1265. https://doi.org/10.3390/coatings12091265
Igumenov IK, Lukashov VV. Modern Solutions for Functional Coatings in CVD Processes. Coatings. 2022; 12(9):1265. https://doi.org/10.3390/coatings12091265
Chicago/Turabian StyleIgumenov, Igor K., and Vladimir V. Lukashov. 2022. "Modern Solutions for Functional Coatings in CVD Processes" Coatings 12, no. 9: 1265. https://doi.org/10.3390/coatings12091265
APA StyleIgumenov, I. K., & Lukashov, V. V. (2022). Modern Solutions for Functional Coatings in CVD Processes. Coatings, 12(9), 1265. https://doi.org/10.3390/coatings12091265