Moisture Sorption of Wood Surfaces Modified by One-Sided Carbonization as an Alternative to Traditional Façade Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Water Vapor Uptake, Permeability and Moisture Exclusion Efficiency
2.3. Liquid Water Uptake
2.4. Dimensional Changes during Sorption
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Permeability and Moisture Exclusion Efficiency
3.2. Liquid Water Uptake
3.3. Dimensional Changes in Sorption
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasburgh, L.E.; Zelinka, S.L.; Bishell, A.B.; Kirker, G.T. Durability and fire performance of charred wood siding (shou sugi ban). Forests 2021, 21, 1262. [Google Scholar] [CrossRef]
- Ebner, D.H.; Barbu, M.-C.; Klaushofer, J.; Čermák, P. Surface modification of spruce and fir sawn-timber by charring in the traditional Japanese method–yakisugi. Polymers 2021, 13, 1662. [Google Scholar] [CrossRef]
- Ebner, D.H.; Barbu, M.-C.; Gryc, V.; Čermák, P. Surface charring of silver fir wood cladding using an enhanced traditional Japanese yakisugi method. BioResources 2022, 17, 2031–2042. [Google Scholar] [CrossRef]
- Kampe, A.; Pfriem, A. A note on artificial weathering of spruce (Picea abies) with a carbonised layer. Int. Wood Prod. J. 2018, 9, 86–89. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Lourençon, T.V.; Lillqvist, K. Natural weathering of soft- and hardwoods modified by contact charring and flame. Eur. J. Wood Prod. 2022. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Hautamäki, S.; Lillqvist, K.; Segerholm, K.; Rautkari, L. Surface modification of solid wood by charring. J. Mater. Sci. 2017, 52, 6111–6119. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Turunen, H.; Čermák, P.; Hautamäki, S.; Rautkari, L. Sorption-related characteristics of surface charred spruce wood. Materials 2018, 11, 2083. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Turunen, H.; Rautkari, L. Effect of weathering on surface functional groups of charred Norway spruce cladding panels. Forests 2020, 11, 1373. [Google Scholar] [CrossRef]
- Čermák, P.; Dejmal, A.; Paschová, Z.; Kymäläinen, M.; Dömený, J.; Brabec, M.; Hess, D.; Rautkari, L. One-sided surface charring of beech wood. J. Mater. Sci. 2019, 54, 9497–9506. [Google Scholar] [CrossRef]
- Machová, D.; Oberle, A.; Zárybnická, L.; Dohnal, J.; Šeda, V.; Dömény, J.; Vacenovská, V.; Kloiber, M.; Pěnčík, J.; Tippner, J.; et al. Surface characteristics of one-sided charred beech wood. Polymers 2021, 13, 1551. [Google Scholar] [CrossRef]
- Šeda, V.; Machová, D.; Dohnal, J.; Dömény, J.; Zárybnická, L.; Oberle, A.; Vacenovská, V.; Čermák, P. Effect of one-sided surface charring of beech wood on density profile and surface wettability. Appl. Sci. 2021, 11, 4086. [Google Scholar] [CrossRef]
- Richard, J.; Mignaud, C.; Wong, K. Water vapour permeability, diffusion and solubility on latex filma. Polym. Int. 1993, 30, 431–439. [Google Scholar] [CrossRef]
- de Meijer, M.; Militz, H. Sorption behaviour and dimensional changes of wood–coating composites. Holzforschung 1999, 53, 553–560. [Google Scholar] [CrossRef]
- Feist, W.C.; Little, J.K.; Wennesheimer, J.M. The Moisture Excluding Effectiveness of Finishes on Wood Surfaces; Research paper FPL 462; Forest Products Laboratory, U.S. Department of Agriculture: Madison, WI, USA, 1985; 38p. [Google Scholar]
- Grüll, G.; Truskaller, M.; Podgorski, L.; Bollmus, S.; DeWindt, I.; Suttie, E. Moisture conditions in coated wood panels during 24 months natural weathering at five sites in Europe. Wood Mater. Sci. Eng. 2013, 8, 95–110. [Google Scholar] [CrossRef]
- Hýsek, Š.; Fidan, H.; Panek, M.; Böhm, M.; Trgala, K. Water permeability of exterior wood coatings: Waterborne acrylate dispersions for windows. J. Green Build. 2018, 13, 1–16. [Google Scholar] [CrossRef]
- Elowson, T.; Bergström, M.; Hämäläinen, M. Moisture dynamics in Norway spruce and Scots pine during outdoor exposure in relation to different surface treatments and handling conditions. Holzforschung 2005, 57, 219–227. [Google Scholar] [CrossRef]
- Blanchet, P.; Pepin, S. Trends in chemical wood surface improvements and modifications: A review of the last five years. Coatings 2021, 11, 1514. [Google Scholar] [CrossRef]
- Jones, F.N.; Nichols, M.E.; Pappas, S.P. Organic Coatings: Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal degradation of wood: Emerging data, new insights and changing perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Zicherman, J.B.; Williamson, R.B. Microstructure of wood char. Wood Sci. Technol. 1981, 15, 237–249. [Google Scholar] [CrossRef]
- Miller, E.R. Wood substrate–The foundation. Surf. Coat Int. Part B Coat. Trans. 2005, 88, 157–230. [Google Scholar] [CrossRef]
- de Meijer, M.; Creemers, K.; Cobben, W. Relationship between the performance of low-VOC wood coatings and dimensional changes of the wooden substrate. Surf. Coat Int. Part B Coat. Trans. 2001, 84, 1–90. [Google Scholar] [CrossRef]
- Avramidis, S. Bound water migration in wood. In Fundamentals of Wood Drying; Perré, P., Ed.; A.R.BO.LOR: Nancy, France, 2007; pp. 105–124. [Google Scholar]
- Hozjan, T.; Svensson, S. Theoretical analysis of moisture transport in wood as an open porous hygroscopic material. Holzforschung 2011, 65, 97–102. [Google Scholar] [CrossRef]
- Engelund, E.T.; Thygesen, L.G.; Svensson, S.; Hill, C.A.S. A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 2013, 47, 124–161. [Google Scholar] [CrossRef]
- Allegretti, O.; Raffaelli, F. Barrier effect to water vapour of early European painting materials on wood panels. Stud. Conserv. 2008, 53, 187–197. [Google Scholar] [CrossRef]
- Gosselink, R.J.A.; Krosse, A.M.A.; van der Putten, J.C.; van der Kolken, J.C.; de Klerk-Engels, B.; van Dam, J.E.G. Wood preservation by low-temperature carbonisation. Ind. Crop. Prod. 2004, 19, 3–12. [Google Scholar] [CrossRef]
- Gomez-Serrano, V.; Pastor-Villegas, J.; Perez-Florindo, A.; Duran-Valle, C.; Valenzuela-Calahorro, C. FT-IR study of rockrose and of char and activated carbon. J. Anal. Appl. Pyrol. 1996, 36, 71–80. [Google Scholar] [CrossRef]
- Labbé, N.; Harper, D.; Rials, T.; Elder, T. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis. J. Agric. Food Chem. 2006, 54, 3492–3497. [Google Scholar] [CrossRef]
- MacBeath, A.V.; Smernik, R.J.; Schneider, M.P.W.; Schmidt, M.W.I.; Plant, E.L. Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Org. Geochem. 2011, 42, 1194–1202. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Rautkari, L.; Hill, C.A.S. Sorption behaviour of torrefied wood and charcoal determined by dynamic vapour sorption. J. Mater. Sci. 2015, 50, 7673–7680. [Google Scholar] [CrossRef]
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. Bioresources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Rautkari, L.; Hill, C.A.S.; Curling, S.; Jalaludin, Z.; Ormondroyd, G. What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J. Mater. Sci. 2013, 48, 6352–6356. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Ben Mlouka, S.; Belt, T.; Merk, V.; Liljetsröm, V.; Hänninen, T.; Uimonen, T.; Kostiainen, M.; Rautkari, L. Chemical, water vapor sorption and ultrastructure analysis of Scots pine wood thermally modified in high-pressure reactor under saturated steam. J. Mater. Sci. 2018, 53, 3027–3037. [Google Scholar] [CrossRef]
- Altgen, M.; Willems, W.; Housseinpourpia, R.; Rautkari, L. Hydroxyl accessibility and dimensional changes of Scots pine sapwood affected by alterations in the cell wall ultrastructure during heat-treatment. Polym. Degrad. Stabil. 2018, 152, 244–252. [Google Scholar] [CrossRef]
- de Meijer, M.; Militz, H. Moisture transport in coated wood. Part 2: Influence of coating type, film thickness, wood species, temperature and moisture gradient on kinetics of sorption and dimensional change. Holz. Roh. Werkst. 2001, 58, 467–475. [Google Scholar] [CrossRef]
- van Meel, P.A.; Erich, S.J.F.; Huinink, H.P.; Kopinga, K.; de Jong, J.; Adan, O.C.G. Moisture transport in coated wood. Prog. Org. Coat. 2011, 72, 686–694. [Google Scholar] [CrossRef]
- Ekstedt, J.; Östberg, G. Liquid water permeability of exterior wood coatings–testing according to proposed European standard method. J. Coat. Technol. 2001, 73, 53–59. [Google Scholar] [CrossRef]
- Arminger, B.; Jaxel, J.; Bacher, M.; Gindl-Altmutter, W. On the drying behavior of natural oils used for solid wood finishing. Prog. Org. Coat. 2020, 148, 105–831. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Kymäläinen, M.; Rautkari, L. Review on the use of solid wood as an external cladding material in the built environment. J. Mater. Sci. 2022, 57, 9031–9076. [Google Scholar] [CrossRef]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass Bioener. 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y. The preliminary study of water-retention related properties of biochar produced from various feedstock at different pyrolysis temperatures. Materials 2019, 12, 1732. [Google Scholar] [CrossRef] [Green Version]
- Pulido-Novicio, L.; Hata, T.; Kurimoto, Y.; Doi, S.; Ishihara, S.; Imamura, Y. Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci. 2001, 47, 48–57. [Google Scholar] [CrossRef]
- Shafizadeh, F. Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrol. 1982, 3, 283–305. [Google Scholar] [CrossRef]
- De Backer, L.; Laverge, J.; Janssens, A.; De Paepe, M. Evaluation of the diffusion coefficient and sorption isotherm of the different layers of early Netherlandish wooden panel paintings. Wood Sci. Technol. 2018, 52, 149–166. [Google Scholar] [CrossRef]
- Virta, J. Cupping of wooden boards in cyclic conditions–a study of heat-treated and non-heat-treated boards. Build. Environ. 2005, 40, 1395–1399. [Google Scholar] [CrossRef]
- Sjökvist, T.; Niklewski, J.; Blom, Å. Effect of density and cracks on the moisture content of coated Norway spruce (Picea abies (L.) Karst.). Wood Fiber Sci. 2019, 51, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Skaar, C. Water in Wood, 1st ed.; Syracuse University Press: Syracuse, NY, USA, 1972; 218p. [Google Scholar]
Wood Species | Wood Species Code | Modification | Modification Code |
---|---|---|---|
Aspen | A | Unmodified/+ oiled | R/R-O |
Birch | B | Painted | P |
Pine | P | Contact-charred/+ oiled | CC/CC-O |
Spruce | S | Flame-charred/+ oiled | F/F-O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kymäläinen, M.; Dömény, J.; Rautkari, L. Moisture Sorption of Wood Surfaces Modified by One-Sided Carbonization as an Alternative to Traditional Façade Coatings. Coatings 2022, 12, 1273. https://doi.org/10.3390/coatings12091273
Kymäläinen M, Dömény J, Rautkari L. Moisture Sorption of Wood Surfaces Modified by One-Sided Carbonization as an Alternative to Traditional Façade Coatings. Coatings. 2022; 12(9):1273. https://doi.org/10.3390/coatings12091273
Chicago/Turabian StyleKymäläinen, Maija, Jakub Dömény, and Lauri Rautkari. 2022. "Moisture Sorption of Wood Surfaces Modified by One-Sided Carbonization as an Alternative to Traditional Façade Coatings" Coatings 12, no. 9: 1273. https://doi.org/10.3390/coatings12091273
APA StyleKymäläinen, M., Dömény, J., & Rautkari, L. (2022). Moisture Sorption of Wood Surfaces Modified by One-Sided Carbonization as an Alternative to Traditional Façade Coatings. Coatings, 12(9), 1273. https://doi.org/10.3390/coatings12091273