Wear-Resistant Hydrophobic Coatings from Low Molecular Weight Polytetrafluoroethylene Formed on a Polyester Fabric
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, S.; Kim, J.; Park, C.H. Superhydrophobic Textiles: Review of Theoretical Definitions, Fabrication and Functional Evaluation. J. Eng. Fiber Fabr. 2015, 10, 1–18. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Chen, Z.; Chena, G.; Lai, Y. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A 2017, 5, 31–55. [Google Scholar] [CrossRef]
- Jeevahan, J.; Chandrasekaran, M.; Joseph, G.B.; Durairaj, R.B.; Mageshwaran, G. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Ramaratnam, K.; Iyer, S.K.; Kinnan, M.K.; Chumanov, G.; Brown, P.J.; Luzinov, I. Ultrahydrophobic Textiles Using Nanoparticles: Lotus Approach. J. Eng. Fiber Fabr. 2008, 3, 1–14. [Google Scholar] [CrossRef]
- Latthe, S.S.; Gurav, A.B.; Maruti, C.S.; Vhatkar, R.S. Recent Progress in Preparation of Superhydrophobic Surfaces: A Review. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 76–94. [Google Scholar]
- Boinovich, L.; Emelyanenko, A. The prediction of wettability of curved surfaces on the basis of the isotherms of the disjoining pressure. Colloids Surf. A Physicochem. Eng. Asp. 2011, 383, 10–16. [Google Scholar] [CrossRef]
- Gao, L.C.; McCarthy, T.J. Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 2008, 24, 9183–9188. [Google Scholar] [CrossRef]
- Prorokova, N.P.; Kumeeva, T.Y.; Novikov, V.V.; Holodkov, I.V. Regulation of the tribological characteristics of polyester fabrics by surface modification using tetrafluoroethylene telomeres. J. Frict. Wear 2018, 39, 121–128. [Google Scholar] [CrossRef]
- Halimatul, M.J.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Ilyas, R.A. Water absorption and water solubility properties of sago starch biopolymer composite films filled with sugar palm particles. Polimery 2019, 64, 27–35. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Atiqah, A.; Rushdan, I.; Hairul, A.; Ishak, M.R.; Zainudin, E.S.; Nurazzi, N.M.; Atikah, M.S.N.; Ansari, M.N.M.; et al. Sugarpalm (Arengapinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym. Compos. 2019, 41, 459–467. [Google Scholar] [CrossRef]
- Prorokova, N.P.; Kumeeva, T.Y.; Kiryukhin, D.P.; Kichigina, G.A.; Kushch, P.P. Coatings based on tetrafluoroethylene telomeres synthesized in trimethylchlorsilane for obtaining highly hydrophobic polyester fabrics. Prog. Org. Coat. 2020, 139, 105485. [Google Scholar] [CrossRef]
- Petrie, E.M. Handbook of Adhesives and Sealants, 2nd ed.; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Armitage, J.M.; MacLeod, M.; Cousins, I.T. Comparative Assessment of the Global Fate and Transport Pathways of Long-Chain Perfluorocarboxylic Acids (PFCAs) and Perfluorocarboxylates (PFCs) Emitted from Direct Sources. Environ. Sci. Technol. 2009, 43, 5830–5836. [Google Scholar] [CrossRef]
- Xue, C.-H.; Zhang, P.; Ma, J.-Z.; Ji, P.-T.; Li, Y.-R.; Jia, S.-T. Long-lived superhydrophobic colorful surfaces. Chem. Commun. 2013, 49, 3588. [Google Scholar] [CrossRef] [PubMed]
- Schondelmaier, D.; Cramm, S.; Klingeler, R.; Morenzin, J.; Zilkens, C.; Eberhardt, W. Orientation and self-assembly of hydrophobic fluoroalkylsilanes. Langmuir 2002, 18, 6242–6245. [Google Scholar] [CrossRef]
- Oner, D.; McCarthy, J.T. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 2000, 16, 7777–7782. [Google Scholar] [CrossRef]
- Minko, S.; Müller, M.; Motornov, M.; Nitschke, M.; Grundke, K.; Stamm, M. Two-level structured self-adaptive surfaces with reversibly tunable properties. J. Am. Chem. Soc. 2003, 125, 3896–3900. [Google Scholar] [CrossRef]
- Prorokova, N.P.; Kumeeva, T.Y.; Kiryukhin, D.P.; Nikitin, L.N.; Buznik, V.M. Imparting enhanced hydrophobicity to polyester fabrics: Formation of ultrathin water-repelling coatings on the fiber surface. Russ. J. Gen. Chem. 2012, 82, 2259–2269. [Google Scholar] [CrossRef]
- Nikitin, L.N.; Said-Galiev, E.E.; Gallyamov, M.O.; Khokhlov, A.R.; Buznik, V.M. Supercritical carbon dioxide: A reactive medium for chemical processes involving fluoropolymers. Russ. J. Gen. Chem. 2009, 79, 578–588. [Google Scholar] [CrossRef]
- Kiryuhin, D.P.; Kim, I.P.; Buznik, V.M.; Ignat’eva, L.N.; Kuryavyi, V.G.; Sakharov, S.G. Radiation-chemical synthesis of tetrafluoroethylene telomers and their use of thin protective fluoropolymer coatings. Russ. J. Gen. Chem. 2009, 79, 589–595. [Google Scholar] [CrossRef]
- Buznik, V.M.; Kuryavyi, V.G. Morfology and structure of micro- and nanosize polytetrafluoroethylene powders prepared by the gas-phase method. Russ. J. Gen. Chem. 2009, 79, 666–676. [Google Scholar] [CrossRef]
- Vopilov, Y.E.; Kharitonova, E.P.; Khokhlov, A.R.; Nikitin, L.N.; Buzin, M.I.; Zaikov, G.E.; Yurkov, G.Y.; Buznik, V.M. Properties of fractions of ultradisperse polytetrafluoroethylene soluble in supercritical carbon dioxide. Polym. Sci. A 2012, 54, 443–450. [Google Scholar] [CrossRef]
- Knittel, D.; Saus, W.; Schollmeyer, E. Application of Supercritical Carbon Dioxide in Finishing Processes. J. Text. Inst. 1993, 84, 534–552. [Google Scholar] [CrossRef]
- Banchero, M. Supercritical fluid dyeing of synthetic and natural textiles—A review. Color. Technol. 2013, 129, 2–17. [Google Scholar] [CrossRef]
- Sorour, H.; Elmaaty, T.A.; Mousa, A.; Gaafar, H.; Hebeish, A. Development of textile dyeing using the green supercritical fluid technology: A Review. Mater. Int. 2020, 3, 373–390. [Google Scholar]
- Pestrikova, A.A.; Gorbatyuk, E.D.; Nikolaev, A.Y.; Dyachenko, V.I.; Chashchin, I.S.; Serenko, O.A.; Igumnov, S.M. Hydrophobic properties study of fluorinecontaining ultra-thin coatings of polyester materials obtained in the supercritical carbon dioxide. Fluor. Notes 2019, 127, 5–6. [Google Scholar] [CrossRef]
- Xu, Y.-Y.; Zheng, L.-J.; Ye, F.; Qian, Y.-F.; Yan, J.; Xiong, X.-Q. Water/Oil Repellent Property of Polyester Fabrics after Supercritical Carbon Dioxide Finishing. Therm. Sci. 2015, 19, 1273–1277. [Google Scholar] [CrossRef]
- Ameduri, B.; Boutevin, B. Architectured Fluoropolymers: Synthesis, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2004; 480p. [Google Scholar]
- Bouznik, V.M.; Ignatieva, L.N.; Kaidalova, T.A.; Kuryavyi, V.G.; Savchenko, N.N.; Slobodyuk, A.B.; Kim, I.P.; Kiryukhin, D.P. Structure of fluoropolymer products prepared from solutions of tetrafluoroethylene telomers. Polym. Sci. A 2008, 50, 965–970. [Google Scholar] [CrossRef]
- Kiryukhin, D.P.; Kichigina, G.A.; Bouznik, V.M. Tetrafluoroethylene telomers: Radiation-initiated chemical synthesis, properties, and application prospects. Polym. Sci. A 2013, 55, 631–642. [Google Scholar] [CrossRef]
- Kuryavyi, V.G.; Bouznik, V.M.; Kim, I.P.; Kiryukhin, D.P. Morphology and thermal treatment-induced transitions in submicron films deposited from colloidal solutions tetrafluoroethelene-acetone telomers. Mendeleev Commun. 2009, 19, 172–174. [Google Scholar] [CrossRef]
- Kumeeva, T.Y.; Prorokova, N.P.; Kichigina, G.A. Hydrophobization of polyester textile materials with solutions of tetrafluoroethylene telomeres synthesized in acetone and butyl chloride: Properties and structure of coatings. Prot. Met. Phys. Chem. Surf. 2015, 51, 579–586. [Google Scholar] [CrossRef]
- Prorokova, N.P.; Kumeeva, T.Y.; Khorev, A.V.; Buznik, V.M.; Kiryukhin, D.P.; Bol’shakov, A.I.; Kichigina, G.A. Giving polyester textile materials high water repellency by treating them with a solution of tetrafluoroethylene telomeres. Fibre Chem. 2010, 42, 103–108. [Google Scholar] [CrossRef]
- Prorokova, N.P.; Kumeeva, T.Y.; Kiryukhin, D.P.; Buznik, V.M. Hydrophobization of polyester textile materials with telomeric tetrafluoroethylene solutions. Russ. J. Appl. Chem. 2013, 86, 69–75. [Google Scholar] [CrossRef]
- Kiryukhin, D.P.; Prorokova, N.P.; Kumeeva, T.Y.; Kichigina, G.A.; Bol’shakov, A.I.; Kushch, P.P.; Buznik, V.M. Radiation-chemical synthesis of tetrafluoroethylene telomeres in butyl chloride and their use for imparting superhydrophobic properties to a polyester fabric. Inorg. Mater. Appl. Res. 2014, 5, 173–178. [Google Scholar] [CrossRef]
- Kichigina, G.A.; Kushch, P.P.; Kiryukhin, D.P. Radiation synthesis of tetrafluoroethilene telomers in chlorosilanes and their use for modification of aluminoborosilicate glass fabric. High Energy Chem. 2017, 51, 96–100. [Google Scholar] [CrossRef]
- Kichigina, G.A.; Kushch, P.P.; Prorokova, N.P.; Kumeeva, T.Y. Use of radiation-synthesized tetrafluoroethylene telomers with silane and groups for hydrophobization of polyester fabric. High Energy Chem. 2020, 54, 123–129. [Google Scholar] [CrossRef]
- Bol’shakov, A.I.; Kichigina, G.A.; Kiryukhin, D.P. Radiation synthesis of telomers at a constant tetrafluoroethylene concentration in acetone. High Energy Chem. 2009, 43, 456–459. [Google Scholar] [CrossRef]
- Kim, I.P.; Shulga, Y.M.; Shestakov, A.F. Application of infrared spectroscopy to investigation of the structure of tetrafluoroethylene telomers in acetone and their intermolecular interaction. High Energy Chem. 2011, 45, 43–47. [Google Scholar] [CrossRef]
- Kichigina, G.A.; Kiryukhin, D.P.; Kushch, P.P.; Bol’shakov, A.I. Radiation telomerization of tetrafluoroethylene in butyl chloride solution. High Energy Chem. 2011, 45, 37–42. [Google Scholar] [CrossRef]
- Tsvetnikov, A.K.; Bouznik, V.M.; Ignatieva, L.N.; Kuryavyi, V.G. Gas-phase synthesis of polytetrafluoroethylene ultradispersed powders. KONA Powder Part. J. 2008, 28, 98–108. [Google Scholar]
- Gallyamov, M.O.; Obraztsov, A.N.; Nikitin, L.N.; Nikolaev, A.Y.; Bouznik, V.M.; Khokhlov, A.R. Formation of superhydrophobic surfaces by the deposition of coatings from supercritical carbon dioxide. Colloid. J. 2007, 69, 411–424. [Google Scholar] [CrossRef]
- Prorokova, N.P.; Kumeeva, T.Y.; Zavadskii, A.E.; Nikitin, L.N. Modification of the surface of poly(ethylene terephthalate) fabrics by application of a water-repellent coating in supercritical carbon dioxide medium. Fibre Chem. 2009, 41, 29–33. [Google Scholar] [CrossRef]
- Prorokova, N.P.; Kumeeva, T.Y.; Khorev, A.V.; Buznik, V.M.; Nikitin, L.N. Ensuring a high degree of water repellency of polyester textile materials by treating them with supercritical carbon dioxide. Fibre Chem. 2010, 42, 109–113. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Prorokova, N.; Vavilova, S. Properties of polypropylene yarns with a polytetrafluoroethylene coating containing stabilized magnetite particles. Coatings 2021, 11, 830. [Google Scholar] [CrossRef]
- Prorokova, N.; Kumeeva, T.; Kholodkov, I. Formation of Coatings Based on Titanium Dioxide Nanosols on Polyester Fibre Materials. Coatings 2020, 10, 82. [Google Scholar] [CrossRef]
- Dechant, J. Ultrarotspektroskopische Untersuchungen an Polymeren; Academie–Verlag: Berlin, Germany, 1972; 516p. [Google Scholar]
- Kumeeva, T.Y.; Prorokova, N.P.; Kholodkov, I.V.; Prorokov, V.N.; Buyanovskaya, A.G.; Kabaeva, N.M.; Gumileva, L.V.; Barakovskaya, I.G.; Takazova, R.U. Analysis of a polytetrafluoroethylene coating deposited onto polyester fibers from supercritical carbon dioxide. Russ. J. Appl. Chem. 2012, 85, 144–149. [Google Scholar] [CrossRef]
- Kumeeva, T.Y.; Prorokova, N.P. Ultrathin Hydrophobic Coatings Obtained on Polyethylene Terephthalate Materials in Supercritical Carbon Dioxide with Co-solvents. Russ. J. Phys. Chem. A 2018, 92, 346–351. [Google Scholar] [CrossRef]
- Magonov, S.N.; Elings, V.; Whangbo, M.-H. Phase Imaging and Stiffness in Tapping-Mode Atomic Force Microscopy. Surf. Sci. Lett. 1997, 375, L385–L391. [Google Scholar] [CrossRef]
- Ferreira, O.D.S.; Gelinck, E.; de Graaf, D.; Fisher, H.R. Adhesion experiments using an AFM—Parameters of influence. Appl. Surf. Sci. 2010, 257, 48–55. [Google Scholar] [CrossRef]
Times of Deposition | Contact Angle, ° | Water Absorption, % |
---|---|---|
0 | Water is absorbed immediately. | 38.0 ± 0.9 |
Fabric with a UPTFE FORUM® coating deposited from a solution in SC-CO2 | ||
1 | 137 ± 3 | 3.7 ± 0.2 |
Fabric with a FE/AC telomer coating | ||
2 | 127 ± 2 | 22.4 ± 0.2 |
3 | 127 ± 2 | 18.2 ± 0.2 |
Fabric with a TFE/BC telomer coating | ||
2 | 131 ± 2 | 10.3 ± 0.2 |
3 | 132 ± 2 | 4.9 ± 0.2 |
Fabric with a TFE/TMCS telomer coating | ||
2 | 125 ± 2 | 1.2 ± 0.1 |
3 | 123 ± 2 | 2.4 ± 0.2 |
Fabric with a Nuva TTH coating | ||
1 (30 g/L) | 132 ± 4 | 12.0 ± 0.2 |
Contact Angle before Processing, ° | Contact Angle after Processing, ° | ||
---|---|---|---|
100 Abrasion Cycles | 25 Washings | 25-Time Dry-Cleaning | |
Fabric with a UPTFE FORUM® coating deposited from a solution in SC-CO2 | |||
137 ± 3 | 129 ± 2 | 133 ± 2 | 134 ± 2 |
Fabric with a TFE/AC telomer coating | |||
127 ± 2 | 135 ± 2 | 124 ± 2 | 132 ± 2 |
Fabric with a TFE/BC telomer coating | |||
132 ± 2 | 138 ± 2 | 127 ± 2 | 132 ± 2 |
Fabric with a TFE/TMCS telomer coating | |||
123 ± 2 | 124 ± 2 | 124 ± 2 | 129 ± 2 |
Fabric with a Nuva TTH coating | |||
132 ± 4 | 111 ± 4 | 103 ± 5 | 120 ± 5 |
Method of Coating Formation from Low Molecular Weight PTFE | Coating Stiffness |
---|---|
Coating containing UPTFE FORUM® deposited from solutions in SC-CO2 | 0.054 |
Coating containing TFE/AC telomers | 0.015 |
Coating containing TFE/BC telomers | 0.024 |
Coating containing TFE/TMCS telomers | 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prorokova, N.P.; Kumeeva, T.Y.; Kholodkov, I.V. Wear-Resistant Hydrophobic Coatings from Low Molecular Weight Polytetrafluoroethylene Formed on a Polyester Fabric. Coatings 2022, 12, 1334. https://doi.org/10.3390/coatings12091334
Prorokova NP, Kumeeva TY, Kholodkov IV. Wear-Resistant Hydrophobic Coatings from Low Molecular Weight Polytetrafluoroethylene Formed on a Polyester Fabric. Coatings. 2022; 12(9):1334. https://doi.org/10.3390/coatings12091334
Chicago/Turabian StyleProrokova, Natalia P., Tatyana Yu. Kumeeva, and Igor V. Kholodkov. 2022. "Wear-Resistant Hydrophobic Coatings from Low Molecular Weight Polytetrafluoroethylene Formed on a Polyester Fabric" Coatings 12, no. 9: 1334. https://doi.org/10.3390/coatings12091334
APA StyleProrokova, N. P., Kumeeva, T. Y., & Kholodkov, I. V. (2022). Wear-Resistant Hydrophobic Coatings from Low Molecular Weight Polytetrafluoroethylene Formed on a Polyester Fabric. Coatings, 12(9), 1334. https://doi.org/10.3390/coatings12091334