Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis Methods
2.2. Characterization Techniques
2.3. Gas Sensor Set-Up
3. Results and Discussions
3.1. Structural Elucidation (SEM and TEM)
Elemental Mapping
3.2. Powder X-ray Diffraction and Fourier-Transform Infrared Spectroscopy
3.3. Surface Area and Porosity Analysis
3.4. X-ray Photoelectron Spectroscopy
3.5. Magnetic Properties (VSM)
4. Gas Sensor
4.1. Sensor Mechanism
4.2. Gas Sensor Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dippong, T.; Levei, E.A.; Cadar, O. Recent Advances in Synthesis and Applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles. Nanomaterials 2021, 11, 1560. [Google Scholar] [CrossRef] [PubMed]
- Luchechko, A.; Zhydachevskyy, Y.; Ubizskii, S.; Kravets, O.; Popov, A.I.; Rogulis, U.; Elsts, E.; Bulur, E.; Suchocki, A. Afterglow, TL and OSL Properties of Mn2+-Doped ZnGa2O4 Phosphor. Sci. Rep. 2019, 9, 9544. [Google Scholar] [CrossRef] [PubMed]
- Lushchik, A.; Feldbach, E.; Kotomin, E.A.; Kudryavtseva, I.; Kuzovkov, V.N.; Popov, A.I.; Seeman, V.; Shablonin, E. Distinctive Features of Diffusion-Controlled Radiation Defect Recombination in Stoichiometric Magnesium Aluminate Spinel Single Crystals and Transparent Polycrystalline Ceramics. Sci. Rep. 2020, 10, 7810. [Google Scholar] [CrossRef]
- Beji, Z.; Hanini, A.; Smiri, L.S.; Gavard, J.; Kacem, K.; Villain, F.; Grenèche, J.-M.; Chau, F.; Ammar, S. Magnetic Properties of Zn-Substituted MnFe2O4 Nanoparticles Synthesized in Polyol as Potential Heating Agents for Hyperthermia. Evaluation of Their Toxicity on Endothelial Cells. Chem. Mater. 2010, 22, 5420–5429. [Google Scholar] [CrossRef]
- Rana, K.; Thakur, P.; Sharma, P.; Tomar, M.; Gupta, V.; Thakur, A. Improved Structural and Magnetic Properties of Cobalt Nanoferrites: Influence of Sintering Temperature. Ceram. Int. 2015, 41, 4492–4497. [Google Scholar] [CrossRef]
- Thakur, P.; Taneja, S.; Chahar, D.; Ravelo, B.; Thakur, A. Recent Advances on Synthesis, Characterization and High Frequency Applications of Ni-Zn Ferrite Nanoparticles. J. Magn. Magn. Mater. 2021, 530, 167925. [Google Scholar] [CrossRef]
- Cross, W.B.; Affleck, L.; Kuznetsov, M.V.; Parkin, I.P.; Pankhurst, Q.A. Self-Propagating High-Temperature Synthesis of Ferrites MFe2O4 (M = Mg{,} Ba{,} Co{,} Ni{,} Cu{,} Zn); Reactions in an External Magnetic Field. J. Mater. Chem. 1999, 9, 2545–2552. [Google Scholar] [CrossRef]
- Grimes, R.W.; Anderson, A.B.; Heuer, A.H. Predictions of Cation Distributions in AB2O4 Spinels from Normalized Ion Ener-gies. J. Am. Chem. Soc. 1989, 111, 1–7. [Google Scholar] [CrossRef]
- Blanco-Gutiérrez, V.; Torralvo-Fernández, M.J.; Sáez-Puche, R. Magnetic Behavior of ZnFe2O4 Nanoparticles: Effects of a Solid Matrix and the Particle Size. J. Phys. Chem. C. 2010, 114, 1789–1795. [Google Scholar] [CrossRef]
- Jang, J.; Nah, H.; Lee, J.-H.; Moon, S.H.; Kim, M.G.; Cheon, J. Critical Enhancements of MRI Contrast and Hyperthermic Ef-fects by Dopant-Controlled Magnetic Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 1234–1238. [Google Scholar] [CrossRef]
- Abd-Elkader, O.; Al-Enizi, A.M.; Shaikh, S.F.; Ubaidullah, M.; Abdelkader, M.O.; Mostafa, N.Y. The Structure, Magnetic, and Gas Sensing Characteristics of W-Substituted Co-Ferrite Nanoparticles. Crystals. 2022, 12, 393. [Google Scholar] [CrossRef]
- El-Shobaky, G.A.; Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. Effect of Preparation Conditions on Physicochemical, Surface and Catalytic Properties of Cobalt Ferrite Prepared by Coprecipitation. J. Alloys Compd. 2010, 493, 415–422.e16. [Google Scholar] [CrossRef]
- Heiba, Z.K.; Mostafa, N.Y.; Abd-Elkader, O.H. Structural and Magnetic Properties Correlated with Cation Distribution of Mo-Substituted Cobalt Ferrite Nanoparticles. J. Magn. Magn. Mater. 2014, 368, 246–251. [Google Scholar] [CrossRef]
- Hemeda, O.M.; Mostafa, N.Y.; Abd Elkader, O.H.; Ahmed, M.A. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions. J. Magn. Magn. Mater. 2014, 364, 39–46. [Google Scholar] [CrossRef]
- Mohsen, Q.; Abd-Elkader, O.H.; Farouk, A.E.A.; Hassan, H.M.A.; Mostafa, N.Y. Influence of Tungsten Substitution on Structure, Optical, Vibrational and Magnetic Properties of Hydrothermally Prepared NiFe2O4. Appl. Phys. A Mater. Sci. Process. 2021, 127, 296. [Google Scholar] [CrossRef]
- Hemeda, O.M.; Mostafa, N.Y.; Abd Elkader, O.H.; Hemeda, A.; Tawfik, A. Electrical and Morphological Properties of Magnetocaloric Nano ZnNi Ferrite. J. Magn. Magn. Mater. 2015, 394, 96–104. [Google Scholar] [CrossRef]
- Mostafa, N.Y.; Hessien, M.M.; Shaltout, A.A. Hydrothermal Synthesis and Characterizations of Ti Substituted Mn-Ferrites. J. Alloys Compd. 2012, 529, 29–33. [Google Scholar] [CrossRef]
- Mostafa, N.Y.; Zaki, Z.; Hessien, M.M.; Shaltout, A.A.; Alsawat, M. Enhancing Saturation Magnetization of Mg Ferrite Nanoparticles for Better Magnetic Recoverable Photocatalyst. Appl. Phys. A Mater. Sci. Process 2018, 124, 12. [Google Scholar] [CrossRef]
- Manikandan, A.; Kennedy, L.J.; Bououdina, M.; Vijaya, J.J. Synthesis, Optical and Magnetic Properties of Pure and Co-Doped ZnFe2O4 Nanoparticles by Microwave Combustion Method. J. Magn. Magn. Mater. 2014, 349, 249–258. [Google Scholar] [CrossRef]
- Mostafa, N.Y.; Zaki, Z.I.; Heiba, Z.K. Structural and Magnetic Properties of Cadmium Substituted Manganese Ferrites Prepared by Hydrothermal Route. J. Magn. Magn. Mater. 2013, 329, 71–76. [Google Scholar] [CrossRef]
- Salem, B.I.; Hemeda, O.M.; Henaish, A.M.A.; Mostafa, N.Y.; Mostafa, M. Modified Copper Zinc Ferrite Nanoparticles Doped with Zr Ions for Hyperthermia Applications. Appl. Phys. A Mater. Sci. Process 2022, 128, 264. [Google Scholar] [CrossRef]
- Fu, X.; Ge, H.; Xing, Q.; Peng, Z. Effect of W Ion Doping on Magnetic and Dielectric Properties of Ni–Zn Ferrites by “One-Step Synthesis”. Mater. Sci. Eng. B 2011, 176, 926–931. [Google Scholar] [CrossRef]
- Rani, B.J.; Ravi, G.; Yuvakkumar, R.; Ganesh, V.; Ravichandran, S.; Thambidurai, M.; Rajalakshmi, A.P.; Sakunthala, A. Pure and Cobalt-Substituted Zinc-Ferrite Magnetic Ceramics for Supercapacitor Applications. Appl. Phys. A 2018, 124, 511. [Google Scholar] [CrossRef]
- Madake, S.B.; Patil, A.R.; Pedanekar, R.S.; Narewadikar, N.A.; Thorat, J.B.; Rajpure, K.Y. The Influence of Nickel Substitu-tion on the Structural and Gas Sensing Properties of Sprayed ZnFe2O4 Thin Films. J. Mater. Sci. Mater. Electron. 2022, 33, 6273–6282. [Google Scholar] [CrossRef]
- Xing, Q.K.; Peng, Z.J.; Wang, C.B.; Fu, Z.Q.; Fu, X.L. Doping Effect of W6+ Ions on Microstructural and Magnetic Properties of Mn-Zn Ferrites. Key Eng. Mater. 2012, 512, 1408–1411. [Google Scholar] [CrossRef]
- Srinivas, C.; Ranjith Kumar, E.; Tirupanyam, B.V.; Singh Meena, S.; Bhatt, P.; Prajapat, C.L.; Chandrasekhar Rao, T.V.; Sastry, D.L. Study of Magnetic Behavior in Co-Precipitated Ni–Zn Ferrite Nanoparticles and Their Potential Use for Gas Sensor Applications. J. Magn. Magn. Mater. 2020, 502, 166534. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.-M.; Niu, H.-L.; Mao, C.-J.; Zhang, S.-Y.; Shen, Y.-H. ZnFe2O4 Nanoparticles: Synthesis, Characterization, and Enhanced Gas Sensing Property for Acetone. Sens. Actuators B Chem. 2015, 221, 55–62. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–Gel Based Materials for Biomedical Applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Chuan Lim, E.W.; Feng, R. Agglomeration of Magnetic Nanoparticles. J. Chem. Phys. 2012, 136, 124109. [Google Scholar] [CrossRef]
- Jangam, K.; Patil, K.; Balgude, S.; Patange, S.; More, P. Magnetically Separable Zn1−xCo0.5xMg0.5xFe2O4 Ferrites: Stable and Efficient Sunlight-Driven Photocatalyst for Environmental Remediation. RSC Adv. 2020, 10, 42766–42776. [Google Scholar] [CrossRef]
- Rumble, J.R. CRC Handbook of Chemistry and Physics, 97th ed.; Haynes, W.M., Lide, D.R., Bruno, T.J., Eds.; Taylor & Francis Group, CRC Press: Boca Raton, FL, USA, 2017; p. 2088. [Google Scholar]
- Song, F.; Shen, X.; Xiang, J.; Song, H.-J. Formation and Magnetic Properties of MSr Ferrite Hollow Fibers via Organic Gel-Precursor Transformation Process. Mater. Chem. Phys. 2010, 120, 213–216. [Google Scholar] [CrossRef]
- Abozaid, R.; Lazarevic, Z.; Radojevic, V.; Rabasovic, M.; Sevic, D.; Rabasovic, M.; Romcevic, N. Characterization of Neo-dymium Doped Calcium Tungstate Single Crystal by Raman, IR and Luminescence Spectroscopy. Sci. Sinter. 2018, 50, 445–455. [Google Scholar] [CrossRef]
- Al-Enizi, A.M.; Ubaidullah, M.; Ahmed, J.; Ahamad, T.; Ahmad, T.; Shaikh, S.F.; Naushad, M. Synthesis of NiOx@NPC Composite for High-Performance Supercapacitor via Waste PET Plastic-Derived Ni-MOF. Compos. Part B Eng. 2020, 183, 107655. [Google Scholar] [CrossRef]
- Ubaidullah, M.; Al-Enizi, A.M.; Shaikh, S.; Ghanem, M.A.; Mane, R.S. Waste PET Plastic Derived ZnO@NMC Nanocompo-site via MOF-5 Construction for Hydrogen and Oxygen Evolution Reactions. J. King Saud Univ.-Sci. 2020, 32, 2397–2405. [Google Scholar] [CrossRef]
- Peng, D.-L.; Sumiyama, K.; Oku, M.; Konno, T.; Wagatsuma, K.; Suzuki, K. X-Ray Diffraction and X-Ray Photoelectron Spectra of Fe-Cr-N Films Deposited by DC Reactive Sputtering. J. Mater. Sci. 1999, 34, 4623–4628. [Google Scholar] [CrossRef]
- Shaikh, S.F.; Ghule, B.G.; Shinde, P.V.; Raut, S.D.; Gore, S.K.; Ubaidullah, M.; Mane, R.S.; Al-Enizi, A.M. Continuous Hydrothermal Flow-Inspired Synthesis and Ultra-Fast Ammonia and Humidity Room-Temperature Sensor Activities of WO3 Nanobricks. Mater. Res. Express. 2020, 7, 15076. [Google Scholar] [CrossRef]
- Gawas, S.G.; Verenkar, V.M.S. Selective Sensing of Oxidizing Gases on Co-Ni-Zn Ferrite: Mechanism and Response Characteristics. Mater. Sci. Eng. B 2021, 265, 114948. [Google Scholar] [CrossRef]
- Singh, J.P.; Dixit, G.; Srivastava, R.C.; Agrawal, H.M.; Reddy, V.R.; Gupta, A. Observation of Bulk Like Magnetic Ordering Below the Blocking Temperature in Nanosized Zinc Ferrite. J. Magn. Magn. Mater. 2012, 324, 2553–2559. [Google Scholar] [CrossRef]
- Cobos, M.A.; De la Presa, P.; Llorente, I.; García-Escorial, A.; Hernando, A.; Jiménez, J.A. Effect of Preparation Methods on Magnetic Properties of Stoichiometric Zinc Ferrite. J. Alloys Compd. 2020, 849, 156353. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Chen, J.; Gong, Y.; Han, N.; Chen, Y. Abnormal N-p-n Type Conductivity Transition of Hollow ZnO/ZnFe2O4 Nanostructures during Gas Sensing Process: The Role of ZnO-ZnFe2O4 Hetero-Interface. Sens. Actuators B Chem. 2017, 253, 144–155. [Google Scholar] [CrossRef]
- Šutka, A.; Döbelin, N. Study of Defects by Rietveld Technique and Gas Response of Excess-Iron Zinc Ferrite. J. Jpn. Soc. Powder Powder Metall. 2014, 61, S81–S84. [Google Scholar] [CrossRef] [Green Version]
Parameter | x = 0.0 | x = 0.05 | x = 0.1 | x = 0.15 |
---|---|---|---|---|
a (Å) | 8.437(2) | 8.438(4) | 8.443(3) | 8.435(4) |
Size (nm) | 82.39 | 73.05 | 58.31 | 32.56 |
Strain (ε) ×10−3 | 2.32 | 2.89 | 4.53 | 6.78 |
Metal Cation | A-Sites (Tetrahedral) | B-Sites (Octahedral) |
---|---|---|
Zn2+ | 0.60 | 0.74 |
Fe3+ | 0.49 | 0.55 |
W6+ | 0.42 | 0.60 |
Samples | ZnFe2O4 | 0.05 W | 0.10 W | 0.15 W |
---|---|---|---|---|
Ms (Am2/kg) | 1.9921 | 1.8901 | 1.7535 | 1.4308 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Enizi, A.M.; Abd-Elkader, O.H.; Shaikh, S.F.; Ubaidullah, M.; Abdelkader, M.O.; Mostafa, N.Y. Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications. Coatings 2022, 12, 1355. https://doi.org/10.3390/coatings12091355
Al-Enizi AM, Abd-Elkader OH, Shaikh SF, Ubaidullah M, Abdelkader MO, Mostafa NY. Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications. Coatings. 2022; 12(9):1355. https://doi.org/10.3390/coatings12091355
Chicago/Turabian StyleAl-Enizi, Abdullah M., Omar H. Abd-Elkader, Shoyebmohamad F. Shaikh, Mohd Ubaidullah, Mohamed O. Abdelkader, and Nasser Y. Mostafa. 2022. "Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications" Coatings 12, no. 9: 1355. https://doi.org/10.3390/coatings12091355
APA StyleAl-Enizi, A. M., Abd-Elkader, O. H., Shaikh, S. F., Ubaidullah, M., Abdelkader, M. O., & Mostafa, N. Y. (2022). Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications. Coatings, 12(9), 1355. https://doi.org/10.3390/coatings12091355