Approach to the Modification of Carbon-Based Composite Conductive Ink for Silicone Keypads
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of SiO2@Ag Core-Shell Particle
2.2. Preparation of Modification of 3CI
2.3. Characterization
3. Results and Discussion
3.1. Structure and Morphology
3.2. Electrical Properties
3.3. Mechanical Properties
3.4. Thermal Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Htwe, Y.Z.N.; Mariatti, M. Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges. J. Sci. Adv. Mater. Devices 2022, 7, 100435. [Google Scholar] [CrossRef]
- Tian, J.; Yuan, J.; Chen, G.; Zhang, W. Preparation and Characterization of Carbon Based Composite Conductive Ink. In Advances in Graphic Communication, Printing and Packaging Technology and Materials; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 637–645. [Google Scholar] [CrossRef]
- Chen, X.; Ma, D.; Wang, S.; Luo, Z.; Wang, X.; Cai, M.; Yang, D. Modeling and analysis on the elastic performance of SMT silicone rubber keypad. In Proceedings of the 2017 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, China, 16–19 August 2017; pp. 1006–1010. [Google Scholar] [CrossRef]
- Mandhakini, M.; Chandramohan, A.; Jayanthi, K.; Alagar, M. Carbon black reinforced C8 ether linked bismaleimide toughened electrically conducting epoxy nanocomposites. Mater. Des. 2014, 64, 706–713. [Google Scholar] [CrossRef]
- Leemsuthep, A.; Zakaria, Z.; Lan, D.N.U. Morphology and Conductive Properties of Carbon Black- and Graphite- Filled Conductive E poxy Micro-porous. IOP Conf. Ser. Mater. Sci. Eng. 2020, 957, 012034. [Google Scholar] [CrossRef]
- Teplykh, A.E.; Bogdanov, S.G.; Dorofeev, Y.A.; Pirogov, A.N.; Skryabin, Y.N.; Makotchenko, V.G.; Nazarov, A.S.; Fedorov, V.E. Structural state of expanded graphite prepared from intercalation compounds. Crystallogr. Rep. 2006, 51, S62–S66. [Google Scholar] [CrossRef]
- Oh, Y.S.; Choi, H.; Lee, J.; Lee, H.; Choi, D.Y.; Lee, S.-U.; Yun, K.-S.; Yoo, S.; Kim, T.-S.; Park, I.; et al. Temperature-Controlled Direct Imprinting of Ag Ionic Ink: Flexible Metal Grid Transparent Conductors with Enhanced Electromechanical Durability. Sci. Rep. 2017, 7, 11220. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choi, C.S.; Hwang, K.T.; Han, K.S.; Kim, J.H.; Nahm, S.; Kim, B.S. Optimization of Hybrid Ink Formulation and IPL Sintering Process for Ink-Jet 3D Printing. Nanomaterials 2021, 11, 1295. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.; Ma, B.; Pei, Y.; Ai, C.; Yuan, L. Fabrication of micron-SiO2@nano-Ag based conductive line patterns through silk-screen printing. RSC Adv. 2014, 4, 47781–47787. [Google Scholar] [CrossRef]
- Kim, I.; Kim, Y.; Woo, K.; Ryu, E.-H.; Yon, K.Y.; Cao, G.; Moon, J. Synthesis of Oxidation-Resistant Core-Shell Copper Nanoparticles. RSC Adv. 2013, 3, 15169–15177. [Google Scholar] [CrossRef]
- Yuan, Y.; Xia, H.; Chen, Y.; Xie, D. One-step synthesis of oxidation-resistant Cu@Ag core-shell nanoparticles. Micro Nano Lett. 2018, 13, 171–174. [Google Scholar] [CrossRef]
- Kotthaus, S.; Gunther, B.H.; Hang, R.; Schafer, H. Study of isotropically conductive bondings filled with aggregates of nano-sited Ag-particles. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1997, 20, 15–20. [Google Scholar] [CrossRef]
- Klinkhammer, K.; Nolden, R.; Brendgen, R.; Niemeyer, M.; Zoll, K.; Schwarz-Pfeiffer, A. Coating of Silicone Monofilaments with Elastic Carbon Black-Silver-Silicone Layers and Their Characterization Especially with Regard to the Change of the Electrical Resistance in Dependence on Strain. Polymers 2022, 14, 806. [Google Scholar] [CrossRef]
- Wu, W.; Yang, S.; Zhang, S.; Zhang, H.; Jiang, C. Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core-shell nanoparticles. J. Colloid Interface Sci. 2014, 427, 15–19. [Google Scholar] [CrossRef]
- Flores, J.C.; Torres, V.; Popa, M.; Crespo, D.; Calderón-Moreno, J.M. Preparation of core-shell nanospheres of silica-silver: SiO2@Ag. J. Non-Cryst. Solids 2008, 354, 5435–5439. [Google Scholar] [CrossRef]
- Saber, D.; Abd El-baky, M.A.; Attia, M.A. Advanced Fiber Metal Laminates Filled with Silicon Dioxide Nanoparticles with Enhanced Mechanical Properties. Fibers Polym. 2021, 22, 2447–2463. [Google Scholar] [CrossRef]
- Sakthisabarimoorthi, A.; Dhas, S.A.M.B.; Jose, M. Fabrication and nonlinear optical investigations of SiO2@Ag core-shell nanoparticles. Mater. Sci. Semicond. Processing 2017, 71, 69–75. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Salgueiriño-Maceira, V.; Liz-Marzán, L.M. Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating. Chem. Mater. 2001, 13, 1630–1633. [Google Scholar] [CrossRef]
- Shen, D.; Yang, J.; Li, X.; Zhou, L.; Zhang, R.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Lett. 2014, 14, 923–932. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, K.L. Antibacterial properties of oral nano-silver inorganic antibacterial materials. Chin. J. Tissue Eng. Res. 2013, 17, 544–551. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, J.; Yang, H.; Ding, X.; Luo, Z.; Wang, H.; Pan, C.; Sheng, J.; Cheng, D. Controllable preparation and properties of mesoporous silica hollow microspheres inside-loaded Ag nanoparticles. J. Non-Cryst. Solids 2014, 391, 112–116. [Google Scholar] [CrossRef]
- Gong, J.L.; Jiang, J.H.; Liang, Y.; Shen, G.L.; Yu, R.Q. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology. J. Colloid Interface Sci. 2006, 298, 752–756. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, S.; Mao, C. Synthesis of Ag/SiO2 nanocomposite material by adsorption phase nanoreactor technique. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 104–110. [Google Scholar] [CrossRef]
- Chen, W.S.; Chen, H.R.; Lee, C.H. The Photocatalytic Performance of Ag-Decorated SiO2 Nanoparticles (NPs) and Binding Ability between Ag NPs and Modifiers. Coatings 2022, 12, 146. [Google Scholar] [CrossRef]
- Noh, B.I.; Yoon, J.W.; Kim, K.S.; Lee, Y.C.; Jung, S.B. Microstructure, Electrical Properties, and Electrochemical Migration of a Directly Printed Ag Pattern. J. Electron. Mater. 2011, 40, 35–41. [Google Scholar] [CrossRef]
- Hofflin, D.; Rosilius, M.; Seitz, P.; Schiffler, A.; Hartmann, J. Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance. Sensors 2021, 22, 46. [Google Scholar] [CrossRef] [PubMed]
Sample | Ink (g) | Ag (g) [50 nm] | Ag (g) [20 μm] | SiO2 (g) | SiO2@Ag (g) | Square Resistance (kΩ/□) (Average ± 0.01) |
---|---|---|---|---|---|---|
0 | 0.5 | 0 | 0 | 0 | 0 | 8.44 |
1 | 0.5 | 0.06 | 0 | 0 | 0 | 4.36 |
2 | 0.5 | 0.06 | 0 | 0.003 | 0 | 4.80 |
3 | 0.5 | 0.06 | 0 | 0 | 0.003 | 4.82 |
4 | 0.5 | 0 | 0.06 | 0 | 0 | 2.03 |
5 | 0.5 | 0 | 0.06 | 0.003 | 0 | 2.11 |
6 | 0.5 | 0 | 0.06 | 0 | 0.003 | 1.02 |
Sample | Adhesion Grade | Hardness/Hv0.5 | Tensile Displacement at Fracture (Standard)/mm | Tensile Displacement at Fracture (Standard)/% | α/cm2s−1 | Quality of Fit | Thickness/cm |
---|---|---|---|---|---|---|---|
0 | 3B | 198 | - | - | 0.184 | 98.4 | 0.26 |
4 | 3B | 168.1 | - | - | 0.074 | 95.2 | 0.29 |
5 | 4B | 232 | - | - | 0.236 | 96.2 | 0.32 |
6 | 4B | 205 | 15.07 | 37.21 | 0.217 | 97.7 | 0.32 |
6-1 | - | - | 13.18 | 32.50 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Yang, X.; Zhao, Q.; Hao, Y.; Yang, Y.; Sun, J.; Tang, J.; Zhang, H.; Zeng, G. Approach to the Modification of Carbon-Based Composite Conductive Ink for Silicone Keypads. Coatings 2022, 12, 1368. https://doi.org/10.3390/coatings12091368
Zheng Y, Yang X, Zhao Q, Hao Y, Yang Y, Sun J, Tang J, Zhang H, Zeng G. Approach to the Modification of Carbon-Based Composite Conductive Ink for Silicone Keypads. Coatings. 2022; 12(9):1368. https://doi.org/10.3390/coatings12091368
Chicago/Turabian StyleZheng, Yujie, Xiutao Yang, Qianyan Zhao, Yaning Hao, Yucheng Yang, Juehan Sun, Junqiang Tang, Hongguo Zhang, and Guanggen Zeng. 2022. "Approach to the Modification of Carbon-Based Composite Conductive Ink for Silicone Keypads" Coatings 12, no. 9: 1368. https://doi.org/10.3390/coatings12091368
APA StyleZheng, Y., Yang, X., Zhao, Q., Hao, Y., Yang, Y., Sun, J., Tang, J., Zhang, H., & Zeng, G. (2022). Approach to the Modification of Carbon-Based Composite Conductive Ink for Silicone Keypads. Coatings, 12(9), 1368. https://doi.org/10.3390/coatings12091368