Microstructure, Mechanical Properties and First Principles Calculations of Mo/VC Multilayers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
2.3. First-Principles Calculations
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Properties
3.2.1. Hardness and Modulus
3.2.2. Toughness
3.3. Interface Details
3.3.1. Interfacial Structure
3.3.2. Work of Adhesion
3.3.3. Density of States
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Wang, H.L.; Ong, S.E.; Sun, D.; Bui, X.L. Hard yet tough nanocomposite coatings—Present status and future trends. Plasma Process. Polym. 2007, 4, 219–228. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, S.; Lee, J.W.; Lew, S.W.; Sun, D.; Li, B. Hard Yet tough ceramic coating: Not a dream any more—I. via nanostructured multilayering. Nanosci. Nanotech. Let. 2012, 4, 375–377. [Google Scholar] [CrossRef]
- Bhattacharyya, A.S.; Kumar, R.P.; Priyadarshi, S.; Shivam, S.; Anshu, S. Nanoindentation stress–strain for fracture analysis and computational modeling for hardness and modulus. J. Mater. Eng. Perform. 2018, 27, 2719–2726. [Google Scholar] [CrossRef] [Green Version]
- Kindlund, H.; Sangiovanni, D.G.; Martínez-de-Olcoz, L.; Lu, J.; Jensen, J.; Birch, J.; Petrov, I.; Greene, J.E.; Chirita, V.; Hultman, L. Toughness enhancement in hard ceramic thin films by alloy design. APL Mater. 2013, 1, 042104. [Google Scholar] [CrossRef]
- Podsiadlo, P.; Kaushik, A.K.; Arruda, E.M.; Waas, A.M.; Shim, B.S.; Xu, J.; Nandivada, H.; Pumplin, B.G.; Lahann, J.; Ramamoorthy, A.; et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 2007, 19, 3203–3224. [Google Scholar] [CrossRef] [Green Version]
- Munch, E.; Launey, M.E.; Alsem, D.H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Tough, Bio-inspired hybrid materials. Science 2008, 322, 1516–1520. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Heim, F.M.; Bartlett, J.L.; Song, N.; Isheim, D.; Li, X. Bioinspired, graphene-enabled Ni composites with high strength and toughness. Sci. Adv. 2019, 5, eaav5577. [Google Scholar] [CrossRef] [Green Version]
- Poloni, E.; Bouville, F.; Dreimol, C.H.; Niebel, T.P.; Weber, T.; Biedermann, A.R.; Hirt, A.M.; Studart, A.R. Tough metal-ceramic composites with multifunctional nacre-like architecture. Sci. Rep. 2021, 11, 1621. [Google Scholar] [CrossRef]
- Meindlhumer, M.; Zalesak, J.; Pitonak, R.; Todt, J.; Sartory, B.; Burghammer, M.; Stark, A.; Schell, N.; Danile, R.; Keckes, J.F.; et al. Biomimetic hard and tough nanoceramic Ti-Al-N film with self-assembled six-level hierarchy. Nanoscale 2019, 11, 7986–7995. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Mara, N.A.; Dickerson, P.; Hoagland, R.G.; Misra, A. Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater. 2011, 59, 3804–3816. [Google Scholar] [CrossRef]
- Santaella-González, J.B.; Hernández-Torres, J.; Morales-Hernández, J.; Flores-Ramírez, N.; Ferreira-Palma, C.; Rodríguez-Jiménez, R.C.; García-González, L. Effect of the number of bilayers in Ti/TiN coatings on AISI 316L deposited by sputtering on their hardness, adhesion, and wear. Mater. Lett. 2022, 316, 132037. [Google Scholar] [CrossRef]
- Shi, K.C.; Wang, C.; Gross, C.; Chung, Y.W. Reversing the inverse hardness-toughness trend using W/VC multilayer coatings. Surf. Coat. Technol. 2015, 284, 80–84. [Google Scholar] [CrossRef]
- Mara, N.A.; Beyerlein, I.J. Review: Effect of bimetal interface structure on the mechanical behavior of Cu-Nb fcc-bcc nanolayered composites. J. Mater. Sci. 2014, 49, 6497–6516. [Google Scholar] [CrossRef]
- Abadias, G.; Kanoun, M.B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S.N.; Djemia, P. Electronic structure, and mechanical properties of ternary ZrTaN alloys studied by ab initio calculations and thin-film growth experiments. Phys. Rev. B 2014, 90, 144107. [Google Scholar] [CrossRef]
- Hou, Z.; Zhang, J.; Zhang, P.; Wu, K.; Li, J.; Wang, Y.; Liu, G.; Zhang, G.; Sun, J. Modulation-dependent deformation behavior and strengthening response in nanostructured Ti/Zr multilayers. Appl. Surf. Sci. 2020, 502, 144118. [Google Scholar] [CrossRef]
- Romankov, S.; Hayasaka, Y.; Kasai, E.; Yoon, J.M. Fabrication of nanostructured Mo coatings on Al and Ti substrates by ball impact cladding. Surf. Coat. Technol. 2010, 205, 2313–2321. [Google Scholar] [CrossRef]
- Ferro, D.; Rau, J.V.; Generosi, A.; Albertini, R.A.; Latini, A.; Barinov, S.M. Electron beam deposited VC and NbC thin films on titanium: Hardness and energy-dispersive X-ray diffraction study. Surf. Coat. Technol. 2008, 202, 2162–2168. [Google Scholar] [CrossRef]
- Woydt, M.; Skopp, A.; Dorfel, I.; Witke, K. Wear engineering oxides/anti-wear oxides. Wear 1998, 218, 84–95. [Google Scholar] [CrossRef]
- Xia, Z.; Curtin, W.A.; Sheldon, B.W. A new method to evaluate the fracture toughness of thin films. Acta Mater. 2004, 52, 3507–3517. [Google Scholar] [CrossRef]
- Dudiy, S.V.; Lundqvist, B.I. Wetting of TiC and TiN by metals. Phys. Rev. B 2004, 69, 125421. [Google Scholar] [CrossRef]
- Kurlov, A.S.; Gusev, A.I. Effect of nonstoichiometry on the lattice constant of cubic vanadium carbide VCy. Phys. Solid State 2017, 59, 1520–1525. [Google Scholar] [CrossRef]
- Madan, A.; Wang, Y.Y.; Barnett, S.A. Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices. J. Appl. Phys. 1998, 84, 776–785. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965, 140, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Karch, K.; Pavone, P.; Windl, W.; Strauch, D.; Bechstedt, F. Ab initio calculation of structural, lattice dynamical, and thermal properties of cubic silicon carbide. Int. J. Quantum Chem. 1995, 56, 801–817. [Google Scholar] [CrossRef]
- Vink, T.J.; Somers, M.A.J.; Daams, J.L.C.; Dirks, A.G. Stress, strain, and microstructure of sputter-deposited Mo thin films. J. Appl. Phys. 1991, 70, 4301–4308. [Google Scholar] [CrossRef]
- Dong, R.E.; Ye, F.X.; Xu, Y.H. Synthesis, Microstructure evolution and wear properties of VCp dense ceramic prepared by in situ synthesis. Sci. Adv. Mater. 2019, 11, 526–532. [Google Scholar] [CrossRef]
- Stueber, M.; Holleck, H.; Leiste, H.; Seemann, K.; Ulrich, S.; Ziebert, C. Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys Compd. 2009, 483, 321–333. [Google Scholar] [CrossRef]
- Yang, L.; Liu, C.; Wen, M.; Dai, X.; Zhang, Y.; Chen, X.; Zhang, K. Small atoms as reinforced agent for both hardness and toughness of Group-VIB transition metal films. J. Alloys Compd. 2018, 735, 1105–1110. [Google Scholar] [CrossRef]
- Zhou, S.; Kuang, T.; Qiu, Z.; Zeng, D.; Zhou, K. Microstructural origins of high hardness and toughness in cathodic arc evaporated Cr-Al-N coatings. Appl. Surf. Sci. 2019, 493, 1067–1073. [Google Scholar] [CrossRef]
- Li, Y.P.; Zhang, G.P.; Wang, W.; Tan, J.; Zhu, S.J. On interface strengthening ability in metallic multilayers. Scr. Mater. 2007, 57, 117–120. [Google Scholar] [CrossRef]
- Ivanov, M.B.; Vershinina, T.N.; Ivanisenko, V.V. The effect of composition and microstructure on hardness and toughness of Mo2FeB2 based cermets. Mat. Sci. Eng. A 2019, 763, 138117. [Google Scholar] [CrossRef]
- Chu, X.; Barnett, S.A. Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 1995, 77, 4403–4411. [Google Scholar] [CrossRef]
- Lu, Y.; Sekido, N.; Yoshimi, K.; Yarmolenko, S.N.; Wei, Q. Microstructures and mechanical properties of Mg/Zr nanostructured multilayers with coherent interface. Thin Solid Film. 2020, 712, 138314. [Google Scholar] [CrossRef]
- Barbé, E.; Fu, C.C.; Sauzay, M. Fracture of coherent interfaces between an fcc metal matrix and the Cr23C6 carbide precipitate from first principles. Phys. Rev. Mater. 2018, 2, 023605. [Google Scholar] [CrossRef]
- Shen, Y.; Anderson, P.M. Transmission of a screw dislocation across a coherent, non-slipping interface. J. Mech. Phys. Solids 2006, 55, 956–979. [Google Scholar] [CrossRef]
- Li, J.; Cui, Y.; Chen, Y.; Lv, X.; Luo, X. Theoretical investigation on SiC(111)/Al4C3(0001) interface using density functional theory calculations. Mater. Today Commun. 2019, 21, 100743. [Google Scholar] [CrossRef]
ƞMo/VC = 6:4 | ƞMo/VC = 7:3 | ƞMo/VC = 8:2 | ƞMo/VC = 9:1 | |
---|---|---|---|---|
Mo shutter/s | 32 | 37 | 42 | 48 |
VC shutter/s | 36 | 27 | 18 | 9 |
Modulation Ratios | 6:4 | 7:3 | 8:2 | 9:1 |
---|---|---|---|---|
Thickness/nm | 600 | 600 | 600 | 600 |
Poisson ration | 0.26 | 0.27 | 0.28 | 0.29 |
Residual Stress/GPa | −0.75 | −0.64 | −0.47 | −0.11 |
Φb − a | 1.6 | 2.6 | 3.4 | 4.4 |
Termination | Stacking Site | d0 (Å) | Wad (J·m−2) |
---|---|---|---|
C-termination | Top | 1.314 | 5.66 |
Center | 1.311 | 9.22 | |
Hollow | 1.250 | 10.64 | |
V-termination | Top | 2.488 | 3.77 |
Center | 2.372 | 5.43 | |
Hollow | 2.318 | 5.76 |
Termination | Stacking Site | Elayer,Mo/eV | Elayer,VC/eV | EMo/VC/eV | A/Å2 |
---|---|---|---|---|---|
C-termination | Top | −17,434.5 | −10,816.9 | −28,254 | 7.52 |
Center | −28,255.7 | ||||
Hollow | −28,256.4 | ||||
V-termination | Top | −17,434.5 | −12,643.4 | −30,079.7 | |
Center | −30,080.5 | ||||
Hollow | −30,080.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Xu, W.; Li, H.; Liu, Y.; Lv, X.; Liu, W.; Jin, N.; Tong, L. Microstructure, Mechanical Properties and First Principles Calculations of Mo/VC Multilayers. Coatings 2023, 13, 127. https://doi.org/10.3390/coatings13010127
Wang C, Xu W, Li H, Liu Y, Lv X, Liu W, Jin N, Tong L. Microstructure, Mechanical Properties and First Principles Calculations of Mo/VC Multilayers. Coatings. 2023; 13(1):127. https://doi.org/10.3390/coatings13010127
Chicago/Turabian StyleWang, Chen, Wenya Xu, Hongfu Li, Yanming Liu, Xianghong Lv, Wenting Liu, Na Jin, and Lijia Tong. 2023. "Microstructure, Mechanical Properties and First Principles Calculations of Mo/VC Multilayers" Coatings 13, no. 1: 127. https://doi.org/10.3390/coatings13010127
APA StyleWang, C., Xu, W., Li, H., Liu, Y., Lv, X., Liu, W., Jin, N., & Tong, L. (2023). Microstructure, Mechanical Properties and First Principles Calculations of Mo/VC Multilayers. Coatings, 13(1), 127. https://doi.org/10.3390/coatings13010127