Preparation of Gallic Acid Intercalated Layered Double Hydroxide for Enhanced Corrosion Protection of Epoxy Coatings
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. The Synthesis of LDH and GA-LDH
2.3. Preparation of Protective Coatings
2.4. Characterization
3. Results and Discussion
3.1. Characterization of GA-LDH
3.2. Characterization of Coatings Corrosion Protection Performance
3.3. Corrosion Protection Mechanism of the GA-LDH/EP Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Yuan, S.; Jin, Z.; Zhu, Q.; Zheng, M.; Jiang, Q.; Song, H.; Duan, J. Fabrication of composite coatings with core-shell nanofibers and their mechanical properties, anticorrosive performance, and mechanism in seawater. Prog. Org. Coat. 2020, 149, 105893. [Google Scholar]
- Nayak, S.R.; Mohana, K.N.S.; Hegde, M.B.; Rajitha, K.; Madhusudhana, A.M.; Naik, S.R. Functionalized multi-walled carbon nanotube/polyindole incorporated epoxy: An effective anti-corrosion coating material for mild steel. J. Alloys Compd. 2021, 856, 158057. [Google Scholar] [CrossRef]
- Cheng, M.; Li, F.; Wang, Z.; Li, C.; Sun, S.; Hu, S. New valve-free organosilica nanocontainer for active anticorrosion of polymer coatings. Compos. B Eng. 2021, 224, 109185. [Google Scholar]
- Xue, D.; Meng, Q.B.; Lu, Y.X.; Liang, L.; Wei, Y.H.; Liu, X.B. Achieving high performance anticorrosive coating via in situ polymerization of polyurethane and poly(propylene oxide) grafted graphene oxide composites. Corros. Sci. 2020, 176, 109055. [Google Scholar]
- Aghili, M.; Yazdi, M.K.; Ranjbar, Z.; Jafari, S.H. Anticorrosion performance of electro-deposited epoxy/ amine functionalized graphene oxide nanocomposite coatings. Corros. Sci. 2021, 179, 109143. [Google Scholar] [CrossRef]
- Kang, Y.T.; Wang, C.C.; Chen, C.Y. Corrosion-protective performance of magnetic CoFe2O4/polyaniline nanocomposite within epoxy coatings. J. Taiwan Inst. Chem. Eng. 2021, 127, 357–366. [Google Scholar]
- Cao, K.; Yu, Z.; Yin, D.; Chen, L.; Jiang, Y.; Zhu, L. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances. Prog. Org. Coat. 2020, 143, 105629. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Li, C.; Zhang, X.; Lin, D.; Xu, F.; Zhu, Y.; Wang, H.; Gong, J.; Wang, T. Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments. Corros. Sci. 2020, 176, 109049. [Google Scholar]
- AhadiParsa, M.; Dehghani, A.; Ramezanzadeh, M.; Ramezanzadeh, B. Rising of MXenes: Novel 2D-functionalized nanomaterials as a new milestone in corrosion science-a critical review. Adv. Colloid Interface Sci. 2022, 307, 102730. [Google Scholar]
- Wang, G.; Huang, D.; Cheng, M.; Chen, S.; Zhang, G.; Lei, L.; Chen, Y.; Du, L.; Li, R.; Liu, Y. Metal-organic frameworks template-directed growth of layered double hydroxides: A fantastic conversion of functional materials. Coord. Chem. Rev. 2022, 460, 214467. [Google Scholar] [CrossRef]
- Wang, J.; Qi, Y.; Zhao, X.; Zhang, Z. Electrochemical investigation of corrosion behavior of epoxy modified silicate zinc-rich coatings in 3.5% NaCl solution. Coatings 2020, 10, 444. [Google Scholar] [CrossRef]
- Maranescu, B.; Lupa, L.; Mihali, M.T.L.; Plesu, N.; Maranescu, V.; Visa, A. The corrosion inhibitor behavior of iron in saline solution by the action of magnesium carboxyphosphonate. Pure Appl. Chem. 2018, 90, 1713–1722. [Google Scholar] [CrossRef]
- Pourhashem, S.; Saba, F.; Duan, J.; Rashidi, A.; Guan, F.; Nezhad, E.G.; Hou, B. Polymer/Inorganic nanocomposite coatings with superior corrosion protection performance: A review. J. Ind. Eng. Chem. 2020, 88, 29–57. [Google Scholar]
- Su, Y.; Qiu, S.; Yang, D.; Liu, S.; Zhao, H.; Wang, L.; Xue, Q. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH. J. Hazard. Mater. 2020, 391, 122215. [Google Scholar] [CrossRef]
- Tabish, M.; Yasin, G.; Anjum, M.J.; Malik, M.U.; Zhao, J.; Yang, Q.; Manzoor, S.; Murtaza, H.; Khan, W.Q. Reviewing the current status of layered double hydroxide-based smart nanocontainers for corrosion inhibiting applications. J. Mater. Res. Technol. 2021, 10, 390–421. [Google Scholar]
- Li, W.; Liu, A.; Tian, H.; Wang, D. Controlled release of nitrate and molybdate intercalated in Zn-Al-layered double hydroxide nanocontainers towards marine anticorrosion applications. Colloid. Interface Sci. Commun. 2018, 24, 18–23. [Google Scholar] [CrossRef]
- Wang, N.; Gao, H.; Zhang, J.; Li, L.; Fan, X.; Diao, X. Anticorrosive waterborne epoxy (EP) coatings based on sodium tripolyphosphate-pillared layered double hydroxides (STPP-LDHs). Prog. Org. Coat. 2019, 135, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Tian, H.; Li, W.; Wang, W.; Gao, X.; Han, P.; Ding, R. Delamination and self-assembly of layered double hydroxides for enhanced loading capacity and corrosion protection performance. Appl. Surf. Sci. 2018, 462, 175–186. [Google Scholar] [CrossRef]
- Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.; Ramezanzadeh, B.; Farashi, S. Active corrosion protection of Mg-Al- LDH nanoparticle in silane primer coated with epoxy on mild steel. J. Taiwan. Inst. Chem. Eng. 2017, 75, 248–262. [Google Scholar] [CrossRef]
- Qu, W.; Breksa, I.A.P.; Pan, Z.; Ma, H. Quantitative determination of major polyphenol constituents in pomegranate products. Food Chem. 2012, 3, 1585–1591. [Google Scholar] [CrossRef]
- Damiani, E.; Bacchetti, T.; Padella, L.; Tiano, L.; Carloni, P. Antioxidant activity of different white teas: Comparison of hot and cold tea infusions. J. Food Compost. Anal. 2014, 33, 59–66. [Google Scholar] [CrossRef]
- Tako, E.; Beebe, S.E.; Reed, S.; Hart, J.J.; Glahn, R.P. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.). Nutr. J. 2014, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ge, S.; Wang, J.; Du, H.; Song, K.; Fei, Z.; Shao, Q.; Guo, Z. Water-based rust converter and its polymer composites for surface anticorrosion. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 334–342. [Google Scholar]
- Lei, Y.; Yu, P.; Peng, H.; Luan, Z.; Deng, S.; Wang, S.; Zhou, N. Water-based & eco-friendly & high-efficiency 3,4,5-Trihydroxybenzoic acid ester as a novel rust conversion agent and its polymer composites for enhanced surface anticorrosion. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127065. [Google Scholar]
- Pérez-Almeida, N.; González, A.G.; Santana-Casiano, J.M.; González-Dávila, M. Ocean acidification effect on the iron-gallic acid redox interaction in seawater. Front. Mar. Sci. 2022, 9, 837363. [Google Scholar]
- Rodriguez, J.; Bollen, E.; Nguyen, T.D.; Portier, A.; Paint, Y.; Olivier, M.G. Incorporation of layered double hydroxides modified with benzotriazole into an epoxy resin for the corrosion protection of Zn-Mg coated steel. Prog. Org. Coat. 2020, 149, 105894. [Google Scholar] [CrossRef]
- Cao, Y.; Zheng, D.; Zhang, F.; Pan, J.; Lin, C. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review. J. Mater. Sci. Technol. 2022, 102, 232–263. [Google Scholar]
- Zou, K.; Zhang, H.; Duan, X. Studies on the formation of 5-aminosalicylate intercalated Zn–Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes. Chem. Eng. Sci. 2007, 62, 2022–2031. [Google Scholar] [CrossRef]
- Lou, C.; Zhang, R.; Lu, X.; Zhou, C.; Xin, Z. Facile fabrication of epoxy/polybenzoxazine based superhydrophobic coating with enhanced corrosion resistance and high thermal stability. Colloids Surf. A 2019, 562, 8–15. [Google Scholar] [CrossRef]
- He, J.; Li, M.; Li, D.; Bao, B.; Xue, M.; Huang, Y.; Xu, Y.; Chen, G.; Dai, L. Fabrication of azobenzene non-covalent bonding grafting graphene composite and its application in weathering and corrosion resistant polyurethane coating. Polym. Degrad. Stab. 2022, 206, 110157. [Google Scholar] [CrossRef]
- Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.; Ramezanzadeh, B.; Mana, y. The effect of interlayer spacing on the inhibitor release capability of layered double hydroxide based nanocontainers. J. Clean. Prod. 2020, 251, 119676. [Google Scholar] [CrossRef]
- Kleyi, P.E.; Mudaly, P.; Pillai, S.K.; de Beer, M. Zn/Al Layered double hydroxides nanostructure as effective controlled release vehicle of nicotinic acid for topical applications. Appl. Clay Sci. 2021, 215, 106304. [Google Scholar] [CrossRef]
- Iyi, N.; Yamada, H.; Sasaki, T. Deintercalation of carbonate ions from carbonate-type layered double hydroxides (LDHs) using acid–alcohol mixed solutions. Appl. Clay Sci. 2011, 54, 132–137. [Google Scholar] [CrossRef]
- Salak, A.N.; Tedim, J.; Kuznetsova, A.I.; Ribeiro, J.L.; Vieira, L.G.; Zheludkevich, M.L. Ferreira MGS. Comparative X-ray diffraction and infrared spectroscopy study of Zn–Al layered double hydroxides: Vanadate vs nitrate. Chem. Phys. 2012, 397, 102–108. [Google Scholar] [CrossRef]
- Shamim, M.; Dana, K. Intercalation of LDH NO3 with short-chain intercalants. Bull. Mater. Sci. 2019, 42, 25. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zheng, D.; Dong, S.; Zhang, F.; Lin, J.; Wang, C.; Lin, C. A composite corrosion inhibitor of MgAl Layered double hydroxides co-intercalated with hydroxide and organic anions for carbon steel in simulated carbonated concrete pore solutions. J. Electrochem. Soc. 2019, 166, C3106–C3113. [Google Scholar] [CrossRef]
- Ma, L.; Qiang, Y.; Zhao, W. Designing novel organic inhibitor loaded MgAl-LDHs nanocontainer for enhanced corrosion resistance. Chem. Eng. J. 2021, 408, 127367. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D. Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn–Al layered double hydroxides. Mater. Res. Bull. 2011, 46, 1963–1968. [Google Scholar] [CrossRef]
- Ruiz, C.V.; Rodríguez-Castellón, E.; Giraldo, O. Hybrid materials based on a layered zinc hydroxide solid and gallic acid: Structural characterization and evaluation of the controlled release behavior as a function of the gallic acid content. Appl. Clay Sci. 2019, 181, 105228. [Google Scholar] [CrossRef]
- Kong, X.; Jin, L.; Wei, M.; Duan, X. Antioxidant drugs intercalated into layered double hydroxide: Structure and in vitro release. Appl. Clay Sci. 2010, 49, 324–329. [Google Scholar] [CrossRef]
- Lu, S.; Liu, L.; Wang, H.; Zhao, W.; Li, Z.; Qu, Z.; Li, J.; Sun, T.; Wang, T.; Sui, G. Synthesis of dual functional gallic-acid-based carbon dots for bioimaging and antitumor therapy. Biomater. Sci. 2019, 7, 3258–3265. [Google Scholar] [CrossRef]
- Barr, T.L.; Seal, S. Nature of the use of adventitious carbon as a binding energy standard. J. Vac. Sci. Technol. A 1995, 13, 1239–1246. [Google Scholar] [CrossRef]
- Cao, Y.; Jin, S.; Zheng, D.; Lin, C. Facile fabrication of ZnAl layered double hydroxide film co-intercalated with vanadates and laurates by one-step post modification. Colloids Interface Sci. 2021, 40, 100351. [Google Scholar] [CrossRef]
- Toth, I.Y.; Szekeres, M.; Turcu, R.; Saringer, S.; Illes, E.; Nesztor, D.; Tombacz, E. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles. Langmuir 2014, 30, 15451–15461. [Google Scholar] [CrossRef] [Green Version]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Thermogravimetric analysis of selected layered double hydroxides. J. Therm. Anal. Calorim. 2012, 112, 649–657. [Google Scholar] [CrossRef]
- Starukh, G.; Rozovik, O.; Oranska, O. Organo/Zn-Al LDH nanocomposites for cationic dye removal from aqueous media. Nanoscale Res. Lett. 2016, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Karami, Z.; Jouyandeh, M.; Ali, J.A.; Ganjali, M.R.; Aghazadeh, M.; Paran, S.M.R.; Naderi, G.; Puglia, D.; Saeb, M.R. Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and Excellent cure feature of nitrate anion intercalated Zn-Al LDH. Prog. Org. Coat. 2019, 136, 105218. [Google Scholar] [CrossRef]
- Hafez, I.H.; Osman, A.R.; Sewedan, E.A.; Berber, M.R. Tailoring of a potential nanoformulated form of gibberellic acid: Synthesis, characterization, and field applications on vegetation and flowering. J. Agric. Food Chem. 2018, 66, 8237–8245. [Google Scholar] [CrossRef]
- Ghotbi, M.Y.; bin Hussein, M.Z. Gallate–Zn–Al-layered double hydroxide as an intercalated compound with new controlled release formulation of anticarcinogenic agent. J. Phys. Chem. Solids 2010, 71, 1565–1570. [Google Scholar] [CrossRef]
- Shen, L.; Li, Y.; Zhao, W.; Wang, K.; Ci, X.; Wu, Y.; Liu, G.; Liu, C.; Fang, Z. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating. J. Mater. Sci. Technol. 2020, 44, 121–132. [Google Scholar] [CrossRef]
- Wang, N.; Diao, X.; Zhang, J.; Kang, P. Corrosion Resistance of waterborne epoxy coatings by incorporation of dopamine treated mesoporous-TiO2 particles. Coatings 2018, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Gao, F.; Wang, H.; Dai, R.; Dong, S.; Wang, H. Organic/inorganic hybrid waterborne polyurethane coatings with self-healing properties for anticorrosion application. Prog. Org. Coat. 2023, 174, 107244. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Guo, L.; Zheng, X.; Xiang, B.; Chen, S. Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corros. Sci. 2017, 119, 68–78. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Q.; Liu, X.; Hou, B. Rust conversion performance of phosphoric acid–gallic acid in vinyl chloride acrylic emulsion. Coatings 2021, 11, 152. [Google Scholar] [CrossRef]
- Jia, Y.; Ren, N.; Yue, H.; Deng, J.; Liu, Y. Preparation and properties of natural gallic acid based rust conversion emulsion. Pigm. Resin. Technol. 2016, 45, 191–198. [Google Scholar] [CrossRef]
Coating | Time (d) | Rc (Ω·cm2) | Qc (F·cm−2) | nc | Rct (Ω·cm2) | Qdl (F·cm−2) | ndl | Zw (Ω·cm2) |
---|---|---|---|---|---|---|---|---|
Pure EP | 7 | 5.04 × 107 | 1.96 × 10−10 | 0.97 | 1.08 × 106 | 1.66 × 10−8 | 0.60 | 1.30 × 10−7 |
14 | 7.49 × 106 | 2.06 × 10−10 | 0.98 | 1.64 × 106 | 1.45 × 10−7 | 0.95 | 7.60 × 10−7 | |
21 | 4.87 × 106 | 3.46 × 10−10 | 0.93 | 1.53 × 106 | 6.87 × 10−7 | 0.40 | 9.43 × 10−7 | |
28 | 1.83 × 106 | 2.30 × 10−10 | 0.97 | 1.39 × 106 | 1.28 × 10−6 | 0.36 | 1.75 × 10−6 | |
35 | 3.77 × 105 | 4.38 × 10−10 | 0.94 | 1.03 × 106 | 5.18 × 10−6 | 0.39 | 3.81 × 10−5 | |
LDH/EP | 7 | 8.20 × 107 | 1.65 × 10−10 | 0.98 | 7.58 × 107 | 1.18 × 10−10 | 0.61 | |
14 | 4.31 × 107 | 1.89 × 10−10 | 0.97 | 3.90 × 107 | 4.24 × 10−9 | 0.48 | ||
21 | 8.29 × 106 | 1.83 × 10−10 | 0.97 | 1.86 × 107 | 7.87 × 10−8 | 0.24 | 7.87 × 10−8 | |
28 | 2.48 × 106 | 2.14 × 10−10 | 0.97 | 1.68 × 107 | 1.47 × 10−7 | 0.28 | 1.10 × 10−8 | |
35 | 1.29 × 106 | 2.64 × 10−10 | 0.96 | 3.81 × 106 | 1.65 × 10−7 | 0.35 | 1.98 × 10−7 | |
GA-LDH/EP | 7 | 1.10 × 109 | 4.88 × 10−11 | 0.97 | 4.00 × 109 | 2.12 × 10−10 | 0.49 | |
14 | 3.29 × 109 | 2.92 × 10−11 | 0.97 | 1.66 × 109 | 1.76 × 10−9 | 0.41 | ||
21 | 4.71 × 108 | 2.82 × 10−11 | 0.97 | 1.50 × 109 | 3.70 × 10−9 | 0.63 | 3.70 × 10−9 | |
28 | 3.38 × 108 | 4.72 × 10−11 | 0.97 | 9.57 × 108 | 1.81 × 10−8 | 0.65 | 5.85 × 10−9 | |
35 | 1.77 × 108 | 3.70 × 10−11 | 0.97 | 3.46 × 108 | 1.61 × 10−8 | 0.74 | 6.89 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Chen, K.; Yao, H.; Cao, Y.; Guo, S.; Wang, L.; Wang, Y.; Yu, S.; Wang, N. Preparation of Gallic Acid Intercalated Layered Double Hydroxide for Enhanced Corrosion Protection of Epoxy Coatings. Coatings 2023, 13, 128. https://doi.org/10.3390/coatings13010128
Fang S, Chen K, Yao H, Cao Y, Guo S, Wang L, Wang Y, Yu S, Wang N. Preparation of Gallic Acid Intercalated Layered Double Hydroxide for Enhanced Corrosion Protection of Epoxy Coatings. Coatings. 2023; 13(1):128. https://doi.org/10.3390/coatings13010128
Chicago/Turabian StyleFang, Shuo, Kaifeng Chen, Hongrui Yao, Yanhui Cao, Shuli Guo, Li Wang, Yangsong Wang, Shuai Yu, and Na Wang. 2023. "Preparation of Gallic Acid Intercalated Layered Double Hydroxide for Enhanced Corrosion Protection of Epoxy Coatings" Coatings 13, no. 1: 128. https://doi.org/10.3390/coatings13010128
APA StyleFang, S., Chen, K., Yao, H., Cao, Y., Guo, S., Wang, L., Wang, Y., Yu, S., & Wang, N. (2023). Preparation of Gallic Acid Intercalated Layered Double Hydroxide for Enhanced Corrosion Protection of Epoxy Coatings. Coatings, 13(1), 128. https://doi.org/10.3390/coatings13010128