Diagnostic Techniques for Electrical Discharge Plasma Used in PVD Coating Processes
Abstract
:1. Introduction
1.1. Method of Physical Vapor Deposition and Issues of Process Diagnostics
1.2. Key Methods of Operational Control of the Deposition Process Parameters
- and use of a broadband spectrum analyzer based on a multichannel inductive sensor and Prony–Fourier (PF) spectral analysis.
- perform spectral estimation of segments of time series without side effects in time windows of limited duration;
- use a non-stationary time series model (for example, increasing or decreasing in the time window);
- determine own frequency spectrum of a segment of the time series;
- and determine damping at natural frequencies.
- multi-grid probe, which makes it possible, in particular, to determine the energy distribution of ions of one- or two-component plasma generated by a vacuum arc evaporator;
- and spectrum analyzer of the glow discharge plasma electromagnetic radiation signal based on the Prony–Fourier multichannel inductive spectral analysis sensor.
2. Materials and Methods
2.1. The Langmuir Probe Measurements
- high sensitivity of the probe to its contamination;
- and when working with metal plasma, probes quickly fail, or their readings change due to the dust deposited on the input grid; the application of probes is complicated in the presence of considerably large magnetic fields in the plasma.
2.2. Broadband Spectrum Analyzer
3. Results and Discussion
3.1. Analysis of the Energy Distribution of Ions in Two-Component Plasma Using a Multigrid Probe
3.2. Plotting Curves of the Distribution of Argon Ions Using a Source of Gas Ions with Closed Electron Current
3.3. Spectrum Analyzer of the Signal of Electromagnetic Radiation of Glow Discharge Plasma Based on Multichannel Inductive Sensor
4. Conclusions
- The advantage of the probe methods for plasma diagnostics is the information content and ease of their adaptation to technological equipment.
- The possibility of determining the energy distribution of ions in the two-component plasma has been described. The energy distribution curves of ions in the two-component plasma generated by a vacuum arc evaporator with sacrificial cathode and anode have been plotted.
- Energy distribution curves of argon ions in the low-voltage mode of operation of ion sources with a closed electron current have been analyzed. The average ion energy decreases with a decline in the discharge current, and the source efficiency (the ratio of the average ion energy W to the discharge voltage U) remains approximately at the same level of W/U ≈ 0.68, …, 0.71 in the operating voltage range of the source.
- A scheme of a spectrum analyzer is proposed, which can be used both for monitoring and for controlling the processing process, including in automated PVD installations.
- The proposed magnetic induction method for monitoring the glow discharge plasma parameters can be used to determine the moment the PVD facility enters the operating mode and completes the process steps, as well as to perform operational intervention in the process, taking into account changes in electromagnetic pulses.
- The proposed electromagnetic radiation signal spectrum analyzer based on a multichannel inductive sensor makes it possible to analyze broadband plasma electromagnetic radiation signals with the possibility of obtaining not only spectra at the sensor output, but also deconvolution of the glow discharge plasma electromagnetic radiation signal spectrum.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Film. 2006, 513, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Mehran, Q.M.; Fazal, M.A.; Bushroa, A.R.; Rubaiee, S. A Critical Review on Physical Vapor Deposition Coatings Applied on Different Engine Components. Crit. Rev. Solid State Mater. Sci. 2018, 43, 158–175. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement andmarket trend demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Choy, K.L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Tabakov, V.; Sitnikov, N.; Andreev, N.; Sviridova, T.; Bublikov, J. Investigation of multicomponent nanolayer coatings based on nitrides of Cr, Mo, Zr, Nb, and Al. Surf. Coat. Technol. 2020, 401, 126258. [Google Scholar] [CrossRef]
- Lewis, A.S.; Brown, S.D.; Tutwiler, R.L. Unified control approach for an electron beam physical vapour deposition process. Int J. Robot. Autom. 2000, 15, 145–151. [Google Scholar]
- Metel, A.S.; Grigoriev, S.N.; Melnik, Y.A.; Bolbukov, V.P. Broad beam sources of fast molecules with segmented cold cathodes and emissive grids. Instrum. Exp. Tech. 2012, 55, 122–130. [Google Scholar] [CrossRef]
- Metel, A.; Grigoriev, S.; Melnik, Y.; Panin, V.; Prudnikov, V. Cutting Tools Nitriding in Plasma Produced by a Fast Neutral Molecule Beam. Jpn. J. Appl. Phys. 2011, 50, 08JG04. [Google Scholar] [CrossRef]
- Volosova, M.A.; Grigor’ev, S.N.; Kuzin, V.V. Effect of Titanium Nitride Coating on Stress Structural Inhomogeneity in Oxide-Carbide Ceramic. Part 4. Action of Heat Flow. Refract. Ind. Ceram. 2015, 56, 91–96. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Sotova, C.; Kutina, N. Investigation of the influence of the thickness of nanolayers in wear-resistant layers of Ti-TiN-(Ti,Cr,Al)N coating on destruction in the cutting and wear of carbide cutting tools. Surf. Coat. Technol. 2020, 385, 125402. [Google Scholar] [CrossRef]
- Colombo, D.A.; Echeverría, M.D.; Moncada, O.J.; Massone, J.M. PVD TiN and CrN coated austempered ductile iron: Analysis of processing parameters influence on coating characteristics and substrate microstructure. ISIJ Int. 2012, 52, 121–126. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Mustafaev, E. Specific features of the structure and properties of arc-PVD coatings depending on the spatial arrangement of the sample in the chamber. Vacuum 2022, 200, 111047. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Sotova, C. Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings. Vacuum 2022, 202, 111144. [Google Scholar] [CrossRef]
- Khoroshikh, V.M.; Leonov, S.A.; Belous, V.A. Influence of substrate geometry on ion-plasma coating deposition process. In Proceedings of the International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV 2, Bucharest, Romania, 15–19 September 2008; Volume 4676863, pp. 591–594. [Google Scholar]
- Grigoriev, S.N.; Melnik, Y.A.; Metel, A.S.; Panin, V.V.; Prudnikov, V.V. Broad beam source of fast atoms produced as a result of charge exchange collisions of ions accelerated between two plasmas. Instrum. Exp. Tech. 2009, 52, 602–608. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Teleshevskii, V.I. Measurement problems in technological shaping processes. Meas. Tech. 2011, 54, 744–749. [Google Scholar] [CrossRef]
- Grigoriev, S.; Melnik, Y.; Metel, A. Broad fast neutral molecule beam sources for industrial scale beam-assisted deposition. Surf. Coat. Technol. 2002, 156, 44–49. [Google Scholar] [CrossRef]
- Bagotsky, V.S. Fundamentals of Electrochemistry; Willey Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Popov, T.K.; Dimitrova, M.; Ivanova, P.; Kovačič, J.; Gyergyek, T.; Dejarnac, R.; Stöckel, J.; Pedrosa, M.A.; López-Bruna, D.; Hidalgo, C. Advances in Langmuir probe diagnostics of the plasma potential and electron-energy distribution function in magnetized plasma. Plasma Sources Sci. Technol. 2016, 25, 033001. [Google Scholar] [CrossRef]
- Bilik, N.; Anthony, R.; Merritt, B.A.; Aydil, E.S.; Kortshagen, U.R. Langmuir probe measurements of electron energy probability functions in dusty plasmas. J. Phys. D 2015, 48, 105204. [Google Scholar] [CrossRef]
- Tanışlı, M.; Şahin, N.; Demir, S. An investigation on optical properties of capacitive coupled radio-frequency mixture plasma with Langmuir probe. Optik 2017, 142, 153–162. [Google Scholar] [CrossRef]
- Seo, D.-C.; Chung, T.-H. Observation of the transition of operating regions in a low-pressure inductively coupled oxygen plasma by Langmuir probe measurement and optical emission spectroscopy. J. Phys. D 2001, 34, 2854–2861. [Google Scholar] [CrossRef]
- Yuan, Y.; Bansky, J.; Engemann, J.; Brockhaus, A. Ion energy determination for r.f. plasma and ion beam using a multigrid retarding field analyser. Surf. Coat. Technol. 1995, 74–75 Pt 1, 534–538. [Google Scholar] [CrossRef]
- Mišina, M.; Musil, J. Plasma diagnostics of low pressure microwave-enhanced d.c. sputtering discharge. Surf. Coat. Technol. 1995, 74–75 Pt 1, 450–454. [Google Scholar] [CrossRef]
- Kitami, H.; Miyashita, M.; Sakemi, T.; Aoki, Y.; Kato, T. Quantitative analysis of ionization rates of depositing particles in reactive plasma deposition using mass-energy analyzer and Langmuir probe. Jpn. J. Appl. Phys. 2015, 54 (Suppl. S1), 01AB05. [Google Scholar] [CrossRef]
- Powers, E.J.; Caldwell, G.S. Fast-fourier-transform spectral-analysis techniques as a plasma fluctuation diagnostic tool. IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 1975, 2, 261–272. [Google Scholar]
- Krebbers, R.; Liu, N.; Jahromi, K.E.; Nematollahi, M.; Harren, F.J.M.; Cristescu, S.M.; Khodabakhsh, A. Fourier transform spectroscopy based on a mid-infrared supercontinuum source for plasma study. Opt. InfoBase Conf. Pap. 2022, MF3C.4. [Google Scholar]
- Xie, W.; Jiang, W.; Gao, Y. Spectral analysis of Ar plasma-arc under different experimental parameters. Optik 2013, 124, 420–424. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Kozochkin, M.P.; Sabirov, F.S.; Kutin, A.A. Diagnostic Systems as Basis for Technological Improvement. Proc. CIRP 2012, 1, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.; Metel, A. Plasma- and beam- assisted deposition methods. In Nanostructured Thin Films and Nanodispersion Strengthened Coatings; Nato Science Series, Series II: Mathematics, Physics and Chemistry; Springer: Dordrecht, The Netherland, 2004; Volume 155, pp. 147–154. [Google Scholar]
- Metel, A.S.; Grigoriev, S.N.; Melnik, Y.A.; Panin, V.V. Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge. Plasma Phys. Rep. 2009, 35, 1058–1067. [Google Scholar] [CrossRef]
- Abramov, A.S.; Vinogradov, A.Y.; Kosarev, A.I.; Smirnov, A.S.; Orlov, K.E.; Shutov, M.V. Study of ion bombardment of amorphous silicon films during plasma-chemical deposition in a high-frequency discharge. JTF 1998, 68, 52. [Google Scholar]
- Hamers, E.A.G.; Fontcuberta, I.; Morral, A.; Niikura, C.; Brenot, R.; Roca, I.; Cabarrocas, P. Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films. J. Appl. Phys. 2000, 88, 3674–3688. [Google Scholar] [CrossRef]
- Pelhos, K.; Donnelly, V.M.; Kornblit, A.; Green, M.L.; van Dover, R.B.; Manchanda, L.; Hu, Y.; Morris, M.; Bower, E. Etching of high-k dielectric Zr1-xAlxOy films in chlorine-containing plasmas. J. Vac. Sci. Technol. A 2001, 19, 1361–1366. [Google Scholar] [CrossRef]
- Sungauer, E.; Pargon, E.; Mellhaoui, X.; Ramos, R.; Cunge, G.; Vallier, L.; Joubert, O.; Lill, T. Etching mechanisms of HfO2, SiO2, and poly-Si substrates in BCl3 plasmas. J. Vac. Sci. Technol. B 2007, 25, 1640–1646. [Google Scholar] [CrossRef]
- Pearton, S.J.; Abernathy, C.R.; Ren, F.; Lothian, J.R.; Wisk, P.W.; Katz, A. Dry and wet Etching Characteristics of InN, AIN, and GaN Deposited by Electron Cyclotron Resonance Metalorganic Molecular Beam Epitaxy. J. Vac. Sci. Technol. A 1993, 11, 1772. [Google Scholar] [CrossRef]
- Metel, A.; Bolbukov, V.; Volosova, M.; Grigoriev, S.; Melnik, Y. Equipment for deposition of thin metallic films bombarded by fast argon atoms. Instrum. Exp. Tech. 2014, 57, 345–351. [Google Scholar] [CrossRef]
- Hartfuss, H.J.; Geist, T.; Hirsch, M. Heterodyne methods in millimetre wave plasma diagnostics with applications to ECE, interferometry and reflectometry. Plasma Phys. Control Fusion 1997, 39, 1693–1769. [Google Scholar] [CrossRef]
- Thiry, D.; Konstantinidis, S.; Cornil, J.; Snyders, R. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Film. 2016, 606, 19–44. [Google Scholar] [CrossRef]
- Williams, C.B.; Amais, R.S.; Fontoura, B.M.; Jones, B.T.; Nóbrega, J.A.; Donati, G.L. Recent developments in microwave-induced plasma optical emission spectrometry and applications of a commercial Hammer-cavity instrument. TrAC Trends Anal. Chem. 2019, 116, 151–157. [Google Scholar] [CrossRef]
- Schwabedissen, A.; Benck, E.C.; Roberts, J.R. Comparison of electron density measurements in planar inductively coupled plasmas by means of the plasma oscillation method and Langmuir probes. Plasma Sources Sci. Technol. 1998, 7, 119–129. [Google Scholar] [CrossRef]
- Welzel, S.; Hempel, F.; Hübner, M.; Lang, N.; Davies, P.B.; Röpcke, J. Quantum cascade laser absorption spectroscopy as a plasma diagnostic tool: An overview. Sensors 2010, 10, 6861–6900. [Google Scholar] [CrossRef] [Green Version]
- Benedikt, J.; Hecimovic, A.; Ellerweg, D.; Von Keudell, A. Quadrupole mass spectrometry of reactive plasmas. J. Phys. D 2012, 45, 403001. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ying, P. Theoretical study of novel B-C-O compounds with non-diamond isoelectronic. Chin. Phys. B 2022, 31, 026201. [Google Scholar] [CrossRef]
- Cheng, M.; Yan, X.; Cui, Y.; Han, M.; Wang, X.; Wang, J.; Zhang, R. An eco-friendly film of pH-responsive indicators for smart packaging. J. Food Eng. 2022, 321, 110943. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Han, X.; Jiang, G.; Shi, J.; Liu, P.; Khan, M.Z.; Huhtinen, H.; Zhu, J.; Jin, Z.; et al. Ultra-fast growth of cuprate superconducting films: Dual-phase liquid assisted epitaxy and strong flux pinning. Mater. Today Phys. 2021, 18, 100400. [Google Scholar] [CrossRef]
- Bulgakov, B.V. Fluctuations; Publishing House of Technical and Theoretical Literature: Moscow, Russia, 1954; p. 891. [Google Scholar]
- Hauer, J.F.; Scharf, L.L. Initial results in prony analysis of power system response signals. IEEE Trans. Power Syst. 1990, 5, 80–89. [Google Scholar] [CrossRef]
- Hauer, J.F. Application of prony analysis to the determination of modal content and equivalent models for measured power system response. IEEE Trans. Power Syst. 1991, 6, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Lobos, T.; Rezmer, J. Real-time determination of power system frequency. IEEE Trans. Instrum. Meas. 1997, 46, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, Y.A. Electrical Probes in Reduced Pressure Plasma; Institute of Petrochemical Synthesis, A.V. Topchiev RAS: Moscow, Russia, 2003. [Google Scholar]
- Raiser, Y.P. Physics of the Gas Discharge; Intellect Publishing House: Dolgoprudny, Russia, 2009. [Google Scholar]
- Demidov, V.I.; Kolokolov, N.B.; Kudryavtsev, A.A. Probe Methods for Studying Low-Temperature Plasma; Energoatomizdat: Moscow, Russia, 1996. [Google Scholar]
- Mott-Smith, H.; Langmuir, I. The theory of collectors in gaseous discharges. Phys. Rev. 1926, 28, 727–763. [Google Scholar] [CrossRef]
- Godyak, V.A.; Piejak, R.B.; Alexandrovich, B.M. Measurement of electron energy distribution in low-pressure RF discharges. Plasma Sources Sci. Technol. 1992, 1, 36–58. [Google Scholar] [CrossRef]
- Godyak, V.A.; Demidov, V.I. Probe measurements of electron-energy distributions in plasmas: What can we measure and how can we achieve reliable results? J. Phys. D 2011, 44, 233001. [Google Scholar] [CrossRef]
- Demidov, V.I.; Ratynskaia, S.V.; Rypdal, K. Electric probes for plasmas: The link between theory and instrument. Rev. Sci. Instrum. 2002, 73, 3409. [Google Scholar] [CrossRef]
- Irfan, Z.; Bashir, S.; Butt, S.H.; Hayat, A.; Ayub, R.; Mahmood, K.; Akram, M.; Batool, A. Evaluation of electron temperature and electron density of laser-Ablated Zr plasma by Langmuir probe characterization and its correlation with surface modifications. Laser Part. Beams 2020, 38, 84–93. [Google Scholar] [CrossRef]
- Li, P.; Hershkowitz, N.; Wackerbarth, E.; Severn, G. Experimental studies of the difference between plasma potentials measured by Langmuir probes and emissive probes in presheaths. Plasma Sources Sci. Technol. 2020, 29, 025015. [Google Scholar] [CrossRef]
- Kimura, H.; Odajima, K.; Sugie, T.; Maeda, H. Application of multigrid energy analyzer to the scrape-off layer plasma in DIVA. Jpn. J. Appl. Phys. 1979, 18, 2275–2281. [Google Scholar] [CrossRef]
- Ingram, S.G.; Braithwaite, N.S.J. Ion and electron energy analysis at a surface in an RF discharge. J. Phys. D 1988, 21, 1496. [Google Scholar] [CrossRef]
- Bohm, C.; Perrin, J. Retarding-field analyzer for measurements of ion energy distributions and secondary electron emission coefficients in low-pressure radio frequency discharges. Rev. Sci. Instrum. 1993, 64, 31. [Google Scholar] [CrossRef]
- Tonks, L.; Mott-Smith, H.M., Jr.; Langmuir, I. Flow of ions through a small orifice in a charged plate. Phys. Rev. 1926, 28, 104. [Google Scholar] [CrossRef]
- Cubric, D.; Kholine, N.; Konishi, I. Electron optics of spheroid charged particle energy analyzers. Nucl. Instrum. Methods Phys. Res. 2011, 645, 234–240. [Google Scholar] [CrossRef]
- Walker, C.G.H.; Zha, X.; El Gomati, M.M. A parallel acquisition charged particle energy analyser using a magnetic field. Surf. Interface Anal. 2017, 49, 34–46. [Google Scholar] [CrossRef]
- Veselovzorov, A.N.; Dlugach, E.D.; Pogorelov, A.A.; Svirsky, E.B.; Smirnov, V.A. Study of the formation of ion flows in variable electric fields of a stationary plasma engine. Tech. Phys. 2013, 83, 37–42. [Google Scholar]
- Dorodnov, A.M.; Zelenkov, V.V.; Kuznetsov, A.N. Stationary vacuum arc with two evaporated electrodes. Ther. Phys. High Temp. 1997, 35, 983–1008. [Google Scholar]
- Mohd Bahar, A.A.; Zakaria, Z.; Md Isa, A.A.; Ruslan, E.; Alahnomi, R.A. A review of characterization techniques for materials’ properties measurement using microwave resonant sensor. J. Telecommun. Electron. Comput. Eng. 2015, 7, 1–6. [Google Scholar]
- Itoh, T.; Yamamoto, Y.S. Between plasmonics and surface-enhanced resonant Raman spectroscopy: Toward single-molecule strong coupling at a hotspot. Nanoscale 2021, 13, 1566–1580. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.G.; Iqbal, S.A.; Asaduzzaman, N.; Hammouch, Z. Dynamical behaviors and oblique resonant nonlinear waves with dual-power law nonlinearity and conformable temporal evolution. Discrete Cont. Dyn. Syst.-S 2021, 14, 2245–2260. [Google Scholar] [CrossRef]
- Lewandowski, W.; Vaupotič, N.; Pociecha, D.; Górecka, E.; Liz-Marzán, L.M. Chirality of Liquid Crystals Formed from Achiral Molecules Revealed by Resonant X-Ray Scattering. Adv. Mater. 2020, 32, 1905591. [Google Scholar] [CrossRef]
- Mitrano, M.; Wang, Y. Probing light-driven quantum materials with ultrafast resonant inelastic X-ray scattering. Commun. Phys. 2020, 3, 184. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, C.; Jakli, A.; Zhu, C.; Liu, F. Deciphering chiral structures in soft materials via resonant soft and tender X-ray scattering. Giant 2020, 2, 100018. [Google Scholar] [CrossRef]
- Pace, D.C.; Shi, M.; Maggs, J.E.; Morales, G.J.; Carter, T.A. Exponential frequency spectrum in magnetized plasmas. Phys. Rev. Lett. 2008, 101, 085001. [Google Scholar] [CrossRef]
- Pace, D.C.; Shi, M.; Maggs, J.E.; Morales, G.J.; Carter, T.A. Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas. Phys. Plasmas 2008, 15, 122304. [Google Scholar] [CrossRef] [Green Version]
- Milaniak, N.; Audet, P.; Griffiths, P.R.; Massines, F.; Laroche, G. Interpretation of artifacts in Fourier transform infrared spectra of atmospheric pressure dielectric barrier discharges: Relationship with the plasma frequency between 300 Hz and 15 kHz. J. Phys. D 2020, 53, 015201. [Google Scholar] [CrossRef]
- Viktorov, M.E.; Ilichev, S.D. Method for Studying the Dynamics of Fast Frequency Sweeping Events in the Spectra of Non-Thermal Electromagnetic Plasma Emission. Radiophys. Quant. Electron. 2019, 62, 286–292. [Google Scholar] [CrossRef]
- Vladimirov, S.N.; Maydanovskiy, A.S. Comparative Analysis of Natural Fluctuations in Two Classes of Self-Excited Oscillatory Systems. Sov. J. Commun. Technol. Electron. 1987, 32, 69–75. [Google Scholar]
- Lv, H.; Liu, H.; Tan, Y.; Sun, Z. Improved methodology for identifying Prony series coefficients based on continuous relaxation spectrum method. Mater. Struct. 2019, 52, 86. [Google Scholar] [CrossRef]
- Xia, X.; Luo, A.; Luo, S.; Xu, J. Harmonic current detection based on improved extended Prony spectrum estimation. Dianli Zidonghua Shebei/Electr. Power Autom. Equip. 2010, 30, 6–11, 21. [Google Scholar]
- Marple Jr, S.L. Digital Spectral Analysis with Applications. J. Acoust. Soc. Am. 1989, 86, 2043. [Google Scholar] [CrossRef] [Green Version]
- Kirenkov, V.V.; Gusarov, S.V.; Dosko, S.I.; Volkov, N.V. Method for diagnosing the state of mechanical systems based on modal analysis in the time domain. Bull. Mstu Stank. 2012, 1, 90. [Google Scholar]
- Kukharenko, B.G. Spectral analysis technology based on fast Prony transform. Inform. Technol. 2008, 4, 38–42. [Google Scholar]
- Dosko, S.I.; Logvin, V.A.; Sheptunov, S.A.; Yuganov, E.V. Identification of the induction sensor model and deconvolution of the input signal spectrum. Sci.-Intensive Technol. Mech. Eng. 2018, 12, 32–38. [Google Scholar]
- Grigoriev, S.N.; Gurin, V.D.; Volosova, M.A.; Cherkasova, N.Y. Development of residual cutting tool life prediction algorithm by processing on CNC machine tool. Materwiss. Werksttech. 2013, 44, 790–796. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Sinopalnikov, V.A.; Tereshin, M.V.; Gurin, V.D. Control of parameters of the cutting process on the basis of diagnostics of the machine tool and workpiece. Meas. Tech. 2012, 55, 555–558. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Vereschaka, A.A.; Fyodorov, S.V.; Sitnikov, N.N.; Batako, A.D. Comparative analysis of cutting properties and nature of wear of carbide cutting tools with multi-layered nano-structured and gradient coatings produced by using of various deposition methods. Int. J. Adv. Manuf. Technol. 2017, 90, 3421–3435. [Google Scholar] [CrossRef]
- Alekseev, V.V.; Zelevkov, V.V.; Krivoruchko, M.M.; Keem, J.E. Ion Sorces. U.S. Patent 2004/0195521 A1, 7 October 2004. [Google Scholar]
- Han, C.; Rok Ahn, J.; Jung Ahn, S.; Joon Park, C. Optimization of closed ion source for a high-sensitivity residual gas analyzer. J. Vac. Sci. Technol. A 2014, 32, 021603. [Google Scholar] [CrossRef]
- Zhurin, V.V. Industrial Ion Sources: Broadbeam Gridless ion Source Technology; Wiley: Hoboken, NJ, USA, 2011; p. 326. [Google Scholar]
- Arnold, T.; Pietag, F. Ion beam figuring machine for ultra-precision silicon spheres correction. Precis Eng. 2015, 41, 119–125. [Google Scholar] [CrossRef]
- Shvydkiy, G.V.; Zadiriev, I.I.; Kralkina, E.A.; Vavilin, K.V. Acceleration of ions in a plasma accelerator with closed electron drift based on a capacitive radio-frequency discharge. Vacuum 2020, 180, 109588. [Google Scholar] [CrossRef]
- Hufner, S. Photoelectron Spectroscopy: Principles and Application; Springer: New York, NY, USA, 2003; p. 684. [Google Scholar]
- Roberts, A.J.; Macak, K.; Takahashi, K. Test of the Consistency of Angle Resolved XPS Data for Depth Profile Reconstruction using the Maximum Entropy Method. J. Surf. Anal. 2009, 15, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Yin, Z.; Liao, S.; Yang, B.; Liu, S.; Liu, M.; Yin, L.; Zheng, W. An asymmetric encoder–decoder model for Zn-ion battery lifetime prediction. Energy Rep. 2022, 8, 33–50. [Google Scholar] [CrossRef]
Ak | 0.7 | 1.0 | 1.5 | 0.5 | 0.6 | 1.0 | 1.0 | 1.0 |
fk, Hz | 10,000 | 12,000 | 15,000 | 20,000 | 25,000 | 50,000 | 75,000 | 100,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriev, S.; Dosko, S.; Vereschaka, A.; Zelenkov, V.; Sotova, C. Diagnostic Techniques for Electrical Discharge Plasma Used in PVD Coating Processes. Coatings 2023, 13, 147. https://doi.org/10.3390/coatings13010147
Grigoriev S, Dosko S, Vereschaka A, Zelenkov V, Sotova C. Diagnostic Techniques for Electrical Discharge Plasma Used in PVD Coating Processes. Coatings. 2023; 13(1):147. https://doi.org/10.3390/coatings13010147
Chicago/Turabian StyleGrigoriev, Sergey, Sergej Dosko, Alexey Vereschaka, Vsevolod Zelenkov, and Catherine Sotova. 2023. "Diagnostic Techniques for Electrical Discharge Plasma Used in PVD Coating Processes" Coatings 13, no. 1: 147. https://doi.org/10.3390/coatings13010147
APA StyleGrigoriev, S., Dosko, S., Vereschaka, A., Zelenkov, V., & Sotova, C. (2023). Diagnostic Techniques for Electrical Discharge Plasma Used in PVD Coating Processes. Coatings, 13(1), 147. https://doi.org/10.3390/coatings13010147