Preparation of High Bio-Content Polyurethane Coatings from Co-Liquefaction of Cellulosic Biomass and Starch for Controlled Release Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Bio-Polyols
2.3. Preparation of Polymer Coated Urea
2.4. Characterization
2.4.1. Liquefaction Rate, Acid Value, Hydroxyl Value and Viscosity
2.4.2. Chemical Characterization
2.5. Water Absorption Rate
2.6. Nitrogen Release Behavior
3. Results and Discussion
3.1. Effect of Co-Liquefaction Method on Biomass Liquefaction
3.2. Effect of Co-Liquefaction Method on Molecular Weight and Viscosity of Bio-Polyols
3.3. Effect of Co-Liquefaction Method on Composition of Bio-Polyols
3.4. Effect of Co-Liquefaction Method on Chemical Structure of Bio-Polyols
3.5. Effect of Co-Liquefaction Method on Chemical Structure of Coatings
3.6. Effect of Co-Liquefaction Method on Thermal Property of Coatings
3.7. Effect of Co-Liquefaction Method on SEM of Coatings
3.8. Effect of Co-Liquefaction Method on Water Absorption Rate of Coatings
3.9. Effect of Co-Liquefaction Method on Nutrient Release Property of Polymer Coated Urea
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, Y.; Liu, L.; Wang, M.; Li, L.X.; Cao, B.; Wang, H.; Huang, W.Q. Preparation and properties of starch-based polyurethane/montmorillonite composite coatings for controlled-release fertilizer. Polym. Compos. 2021, 42, 2293–2304. [Google Scholar] [CrossRef]
- Zhang, J.M.; Hori, N.; Takemura, A. Optimization of agricultural wastes liquefaction process and preparing bio-based polyurethane foams by the obtained polyols. Ind. Crop. Prod. 2019, 138, 111455. [Google Scholar] [CrossRef]
- Furtwengler, P.; Avérous, L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym. Chem. 2018, 9, 4258–4287. [Google Scholar] [CrossRef]
- Kosmela, P.; Kazimierski, P.; Formela, K.; Haponiuk, J.; Piszczyk, Ł. Liquefaction of macroalgae Enteromorpha biomass for the preparation of biopolyols by using crude glycerol. J. Ind. Eng. Chem. 2017, 56, 399–406. [Google Scholar] [CrossRef]
- Jiang, W.; Kumar, A.; Adamopoulos, S. Liquefaction of lignocellulosic materials and its applications in wood adhesives-a review. Ind. Crop. Prod. 2018, 124, 325–342. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Sadeghi, G.M.M. Effect of liquefied lignin content on synthesis of bio-based polyurethane foam for oil adsorption application. J. Polym. Environ. 2020, 28, 892–905. [Google Scholar] [CrossRef]
- Xu, Y.H.; Li, M.F. Hydrothermal liquefaction of lignocellulose for value-added products: Mechanism, parameter and production application. Bioresour. Technol. 2021, 342, 126035. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Cantero-Martínez, C.; Álvaro-Fuentes, J. Soil management effects on greenhouse gases production at the macroaggregate scale. Soil Biol. Biochem. 2014, 68, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Jadon, P.; Selladurai, R.; Yadav, S.S.; Coumar, M.V.; Dotaniya, M.L.; Singh, A.K.; Bhadouriya, J.; Kundu, S. Volatilization and leaching losses of nitrogen from different coated urea fertilizers. J. Soil Sci. Plant Nut. 2018, 18, 1036–1047. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.M.; Wang, H.; Li, W.K.; Liu, Z.J.; Liu, Y.H.; Wei, H.L.; Li, J.J. Synthesis and characterization of double-network hydrogels based on sodium alginate and halloysite for slow release fertilizers. Int. J. Biol. Macromol. 2020, 164, 557–565. [Google Scholar] [CrossRef]
- Li, L.X.; Wang, M.; Wu, X.D.; Yi, W.P.; Xiao, Q. Bio-based polyurethane nanocomposite thin coatings from two comparable POSS with eight same vertex groups for controlled release urea. Sci. Rep. 2021, 11, 9917. [Google Scholar] [CrossRef]
- Karnakar, R.R.; Shankapal, P.P.; Suryawanshi, R.D.; Gite, V.V. Coating of urea granules with epoxidised vegetable oil cured by triethylenetetramine for control release: A green approach. Mater. Today: Proceedlings 2022, 60, 1165–1171. [Google Scholar] [CrossRef]
- Zhao, C.H.; Tian, H.Y.; Zhang, Q.; Liu, Z.G.; Zhang, M.; Wang, J. Preparation of urea-containing starch-castor oil superabsorbent polyurethane coated urea and investigation of controlled nitrogen release. Carbohyd. Polym. 2021, 253, 117240. [Google Scholar] [CrossRef]
- Zhao, X.H.; Qi, X.; Chen, Q.L.; Ao, X.Q.; Guo, Y. Sulfur-modified coated slow-release fertilizer based on castor oil: Synthesis and a controlled-release model. ACS Sustain. Chem. Eng. 2020, 8, 18044–18053. [Google Scholar] [CrossRef]
- Fertahi, S.; Ilsouk, M.; Zeroual, Y.; Oukarroum, A.; Barakat, A. Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J. Control. Release 2021, 330, 341–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Li, Y.F.; Jia, C.; Zhang, X.; Zhang, M.; Lu, P.F.; Chen, H.K. Preparation and application of polyurethane from liquefied waste paper for controlled release fertilizer. J. Biobased Mater. Bio. 2018, 12, 532–539. [Google Scholar] [CrossRef]
- Cassales, A.; Ramos, L.A.; Frollini, E. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. Int. J. Biol. Macr. 2020, 145, 28–41. [Google Scholar] [CrossRef]
- Lu, P.F.; Jia, C.; Zhang, Y.F.; Li, Y.F.; Zhang, M.; Mao, Z.Z. Preparation and properties of starch-based polymer coated urea granules. J. Biobased Mater. Bio. 2016, 10, 113–118. [Google Scholar] [CrossRef]
- Jo, Y.J.; Ly, H.V.; Kim, J.; Kim, S.S.; Lee, E. Preparation of biopolyol by liquefaction of palm kernel cake using PEG#400 blended glycerol. J. Ind. Eng. Chem. 2015, 29, 304–313. [Google Scholar]
- Meng, F.R.; Zhang, X.X.; Yu, W.F.; Zhang, Y.C. Kinetic analysis of cellulose extraction from banana pseudo-stem by liquefaction in polyhydric alcohols. Ind. Crop. Prod. 2019, 137, 377–385. [Google Scholar] [CrossRef]
- Chang, C.; Liu, L.W.; Li, P.; Xu, G.Z.; Xu, C.B. Preparation of flame retardant polyurethane foam from crude glycerol based liquefaction of wheat straw. Ind. Crop. Prod. 2021, 160, 113098. [Google Scholar] [CrossRef]
- Muller, L.C.; Marx, S.; Vosloo, H.C.M. Polyol preparation by liquefaction of technical lignins in crude glycerol. J. Renew. Mater. 2017, 5, 67–80. [Google Scholar] [CrossRef]
- Lu, Z.X.; Wu, Z.G.; Fan, L.W.; Zhang, H.; Liao, Y.Q.; Zheng, D.Y.; Wang, S.Q. Rapid and solvent-saving liquefaction of woody biomass using microwave-ultrasonic assisted technology. Bioresour. Technol. 2016, 199, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Zhang, Q.N.; Lin, X.Q.; Jiang, K.S.; Han, D.Z. The degradation and repolymerization analysis on solvolysis liquefaction of corn stalk. Polymers 2020, 12, 2337. [Google Scholar] [CrossRef] [PubMed]
- Li, L.X.; Geng, K.Q.; Liu, D.S.; Song, H.H.; Li, H.Y. Relationship between starch liquefaction behavior and properties of polymer coated urea from liquefied starch. Prog. Org. Coat. 2020, 147, 105759. [Google Scholar] [CrossRef]
- Huang, H.J.; Chang, Y.C.; Lai, F.Y.; Zhou, C.F.; Pan, Z.Q.; Xiao, X.F.; Wang, J.X.; Zhou, C.H. Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products. Energy 2019, 173, 140–150. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Gupta, N.K.; Mallesham, B.; Singh, N.; Kalbande, P.N.; Reddy, B.M.; Sels, B.F. Supported MoOx and WOx solid acids for biomass valorization: Interplay of coordination chemistry, acidity, and catalysis. ACS Catal. 2021, 11, 13603–13648. [Google Scholar] [CrossRef]
- Zhang, S.G.; Yang, Y.C.; Gao, B.; Wan, Y.S.; Li, Y.C.; Zhao, C.H. Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. J. Agric. Food Chem. 2016, 64, 5692–5700. [Google Scholar] [CrossRef]
- Watanabe, A.; Takebayashi, Y.; Ohtsubo, T.; Furukawa, M. Permeation of urea through various polyurethane membranes. Pest Manag. Sci. 2009, 65, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Hori, N.; Takemura, A. Thermal and time regularities during oilseed rape straw liquefaction process to produce bio-polyol. J. Clean. Prod. 2020, 277, 124015. [Google Scholar] [CrossRef]
- Yamada, T.; Aratani, M.; Kubo, S.; Ono, H. Chemical analysis of the product in acid-catalyzed solvolysis of cellulose using polyethylene glycol and ethylene carbonate. J. Wood Sci. 2007, 53, 487–493. [Google Scholar] [CrossRef]
- da Silva, S.H.F.; Egüés, I.; Labidi, J. Liquefaction of kraft lignin using polyhydric alcohols and organic acids as catalysts for sustainable polyols production. Ind. Crop. Prod. 2019, 137, 687–693. [Google Scholar] [CrossRef]
- Feng, G.D.; Ma, Y.; Zhang, M.; Jia, P.Y.; Hu, L.H.; Liu, C.G.; Zhou, Y.H. Polyurethane-coated urea using fully vegetable oil-based polyols: Design, nutrient release and degradation. Prog. Org. Coat. 2019, 133, 267–275. [Google Scholar] [CrossRef]
- D’Souza, J.; Camargo, R.; Yan, N. Biomass liquefaction and alkoxylation: A review of structural characterization methods for bio-based polyols. Polym. Rev. 2017, 57, 668–694. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.J.; Liu, D.H.; Petrus, L. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresour. Technol. 2007, 98, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.L.; Wen, J.L.; Sun, R.C. Producing lignin-based polyols through microwave-assisted liquefaction for rigid polyurethane foam production. Materials 2015, 8, 586–599. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.L.; Xiao, H.H.; Wang, Q.S.; Sun, J.H. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab. 2013, 98, 2687–2696. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Zhou, J.M.; Du, C.W. Development of a polyacrylate/silica nanoparticle hybrid emulsion for delaying nutrient release in coated controlled-release urea. Coatings 2019, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.F.; Zhang, Y.F.; Jia, C.; Wang, C.J.; Li, X.; Zhang, M. Polyurethane from liquefied wheat straw as coating material for controlled release fertilizers. Bioresources 2015, 10, 7877–7888. [Google Scholar] [CrossRef]
- Tian, H.Y.; Li, Z.L.; Lu, P.F.; Wang, Y.; Jia, C.; Wang, H.L.; Liu, Z.G.; Zhang, M. Starch and castor oil mutually modified, cross-linked polyurethane for improving the controlled release of urea. Carbohydr. Polym. 2021, 251, 117060. [Google Scholar] [CrossRef]
- Yu, X.J.; Sun, X.; Dong, J.J.; Wu, L.; Guo, W.S.; Wang, Y.F.; Jiang, X.J.; Liu, Z.G.; Zhang, M. Instant catapult steam explosion pretreatment of wheat straw liquefied polyols to prolong the slow-release longevity of bio-based polyurethane-coated fertilizers. Chem. Eng. J. 2022, 435, 134985. [Google Scholar] [CrossRef]
Corn Straw to Starch Ratio | Mn (g mol−1) | Mw (g mol−1) | PDI | Viscosity (mPa s) |
---|---|---|---|---|
1:0 | 21,520 | 45,420 | 2.11 | 7318 |
3:1 | 21,860 | 47,580 | 2.18 | 5658 |
1:1 | 20,680 | 33,810 | 1.64 | 3239 |
1:3 | 17,940 | 29,730 | 1.66 | 2811 |
0:1 | 762 | 1052 | 1.38 | 806 |
Corn Straw to Starch Ratio | C1s (%) | O1s (%) | N1s (%) |
---|---|---|---|
1:0 | 96.33 | 2.83 | 0.84 |
3:1 | 85.30 | 11.64 | 3.07 |
0:1 | 96.33 | 2.68 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, M.; Dong, S.; Zhao, J.; Li, H.; Liu, D.; Li, L. Preparation of High Bio-Content Polyurethane Coatings from Co-Liquefaction of Cellulosic Biomass and Starch for Controlled Release Fertilizers. Coatings 2023, 13, 148. https://doi.org/10.3390/coatings13010148
Pang M, Dong S, Zhao J, Li H, Liu D, Li L. Preparation of High Bio-Content Polyurethane Coatings from Co-Liquefaction of Cellulosic Biomass and Starch for Controlled Release Fertilizers. Coatings. 2023; 13(1):148. https://doi.org/10.3390/coatings13010148
Chicago/Turabian StylePang, Minhui, Shuqi Dong, Jianguo Zhao, Hongyan Li, Dongsheng Liu, and Lixia Li. 2023. "Preparation of High Bio-Content Polyurethane Coatings from Co-Liquefaction of Cellulosic Biomass and Starch for Controlled Release Fertilizers" Coatings 13, no. 1: 148. https://doi.org/10.3390/coatings13010148
APA StylePang, M., Dong, S., Zhao, J., Li, H., Liu, D., & Li, L. (2023). Preparation of High Bio-Content Polyurethane Coatings from Co-Liquefaction of Cellulosic Biomass and Starch for Controlled Release Fertilizers. Coatings, 13(1), 148. https://doi.org/10.3390/coatings13010148