Sustainable and Bio-Based Coatings as Actual or Potential Treatments to Protect and Preserve Concrete
Abstract
:1. Introduction
- A waterproof behavior.
- Its chemical inertness against substrates.
- A good stability against acids, alkalis, UV radiations, heat, and oxidation.
- A suitable permeability to water vapor (the underlying concrete must still “breathe”).
- An adequate adhesion to the substrate.
- Possibly a crack-bridging ability.
- The coating should be non-toxic and non-dangerous for the environment and human beings.
2. Sustainable Technologies for Producing Coatings
3. Sustainable/Bio-Based Coatings for Concrete
3.1. Geopolymers
3.2. Coatings Based on Agricultural Waste
3.3. Vegetable Oil and Fatty Acids
3.4. Proteins
3.5. Cellulose
3.6. Plant-Based Wax Coatings
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frigione, M.; Lettieri, M. Novel Attribute of Organic–Inorganic Hybrid Coatings for Protection and Preservation of Materials (Stone and Wood) Belonging to Cultural Heritage. Coatings 2018, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Shi, Z.; Shi, C.; Ling, T.-C.; Li, N. A Review on Concrete Surface Treatment Part I: Types and Mechanisms. Constr. Build. Mater. 2017, 132, 578–590. [Google Scholar] [CrossRef]
- Jena, G.; Philip, J. A Review on Recent Advances in Graphene Oxide-Based Composite Coatings for Anticorrosion Applications. Prog. Org. Coat. 2022, 173, 107208. [Google Scholar] [CrossRef]
- Akhtar, A.; Ruan, H. Review on Thin Film Coatings for Precision Glass Molding. Surf. Interfaces 2022, 30, 101903. [Google Scholar] [CrossRef]
- Lucarelli, M.T.; Mussinelli, E.; Daglio, L. Progettare Resiliente; Maggioli: Santarcangelo di Romagna, Italy, 2018; ISBN 88-916-2853-0. [Google Scholar]
- Odler, I.; Rößler, M. Investigations on the Relationship between Porosity, Structure and Strength of Hydrated Portland Cement Pastes. II. Effect of Pore Structure and of Degree of Hydration. Cem. Concr. Res. 1985, 15, 401–410. [Google Scholar] [CrossRef]
- Röβler, M.; Odler, I. Investigations on the Relationship between Porosity, Structure and Strength of Hydrated Portland Cement Pastes I. Effect of Porosity. Cem. Concr. Res. 1985, 15, 320–330. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Shi, C.; Yuan, Q.; Zhang, Z. Durability of Ultra-High Performance Concrete—A Review. Constr. Build. Mater. 2020, 255, 119296. [Google Scholar] [CrossRef]
- Almusallam, A.A.; Khan, F.M.; Dulaijan, S.U.; Al-Amoudi, O.S.B. Effectiveness of Surface Coatings in Improving Concrete Durability. Cem. Concr. Compos. 2003, 25, 473–481. [Google Scholar] [CrossRef]
- Elnaggar, E.M.; Elsokkary, T.M.; Shohide, M.A.; El-Sabbagh, B.A.; Abdel-Gawwad, H.A. Surface Protection of Concrete by New Protective Coating. Constr. Build. Mater. 2019, 220, 245–252. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, W.G.; Feng, T.; Li, W.Q.; Liu, X.T.; Dong, L.L.; Fu, Y.Q. Enhancing Chloride Ion Penetration Resistance into Concrete by Using Graphene Oxide Reinforced Waterborne Epoxy Coating. Prog. Org. Coat. 2020, 138, 105389. [Google Scholar] [CrossRef]
- Korayem, A.H.; Ghoddousi, P.; Javid, A.A.S.; Oraie, M.A.; Ashegh, H. Graphene Oxide for Surface Treatment of Concrete: A Novel Method to Protect Concrete. Constr. Build. Mater. 2020, 243, 118229. [Google Scholar] [CrossRef]
- Delucchi, M.; Barbucci, A.; Cerisola, G. Study of the Physico-Chemical Properties Oforganic Coatings for Concrete Degradation Control. Constr. Build. Mater. 1997, 11, 365–371. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, L.; Shu, X.; Yang, Y.; She, W.; Ran, Q. A Review on Recent Advances in the Fabrication and Evaluation of Superhydrophobic Concrete. Compos. Part B Eng. 2022, 237, 109867. [Google Scholar] [CrossRef]
- Aitcin, P.C. The Durability Characteristics of High Performance Concrete: A Review. Cem. Concr. Compos. 2003, 25, 409–420. [Google Scholar] [CrossRef]
- Basheer, P.A.M.; Basheer, L.; Cleland, D.J.; Long, A.E. Surface Treatments for Concrete: Assessmentmethods and Reported Performance. Constr. Build. Mater. 1997, 11, 413–429. [Google Scholar] [CrossRef]
- Hansson, C.M.; Mammoliti, L.; Hope, B.B. Corrosion Inhibitors in Concrete—Part I: The Principles. Cem. Concr. Res. 1998, 28, 1775–1781. [Google Scholar] [CrossRef]
- Czarnecki, L.; Garbacz, A.; Krystosiak, M. On the Ultrasonic Assessment of Adhesion between Polymer Coating and Concrete Substrate. Cem. Concr. Compos. 2006, 28, 360–369. [Google Scholar] [CrossRef]
- Aguiar, J.B.; Camões, A.; Moreira, P.M. Coatings for Concrete Protection against Aggressive Environments. J. Adv. Concr. Technol. 2008, 6, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Pavlidou, S.; Papaspyrides, C.D. A Review on Polymer–Layered Silicate Nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Tjong, S.C. Structural and Mechanical Properties of Polymer Nanocomposites. Mater. Sci. Eng. R. Rep. 2006, 53, 73–197. [Google Scholar] [CrossRef]
- Zhu, Q.; Chua, M.H.; Ong, P.J.; Lee, J.J.C.; Chin, K.L.O.; Wang, S.; Kai, D.; Ji, R.; Kong, J.; Dong, Z.; et al. Recent Advances in Nanotechnology-Based Functional Coatings for the Built Environment. Mater. Today Adv. 2022, 15, 100270. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiang, Y.; Ren, H.; Cao, J.; Cui, L.; Zong, Z.; Chen, D.; Xiang, T. Inhibitor Loaded Functional HNTs Modified Coatings towards Corrosion Protection in Reinforced Concrete Environment. Prog. Org. Coat. 2022, 170, 106971. [Google Scholar] [CrossRef]
- Ray, S.S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar]
- Pacheco-Torgal, F.; Jalali, S. Sulphuric Acid Resistance of Plain, Polymer Modified, and Fly Ash Cement Concretes. Constr. Build. Mater. 2009, 23, 3485–3491. [Google Scholar] [CrossRef] [Green Version]
- Franzoni, E.; Pigino, B.; Pistolesi, C. Ethyl Silicate for Surface Protection of Concrete: Performance in Comparison with Other Inorganic Surface Treatments. Cem. Concr. Compos. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Won, J.-P.; Kang, H.-B.; Lee, S.-J.; Kang, J.-W. Eco-Friendly Fireproof High-Strength Polymer Cementitious Composites. Constr. Build. Mater. 2012, 30, 406–412. [Google Scholar] [CrossRef]
- Sharmin, E.; Zafar, F.; Akram, D.; Ahmad, S. Plant Oil Polyol Nanocomposite for Antibacterial Polyurethane Coating. Prog. Org. Coat. 2013, 76, 541–547. [Google Scholar] [CrossRef]
- Ghosal, A.; Shah, J.; Kotnala, R.K.; Ahmad, S. Facile Green Synthesis of Nickel Nanostructures Using Natural Polyol and Morphology Dependent Dye Adsorption Properties. J. Mater. Chem. A 2013, 1, 12868–12878. [Google Scholar] [CrossRef]
- Di Gianni, A.; Bongiovanni, R.; Turri, S.; Deflorian, F.; Malucelli, G.; Rizza, G. UV-Cured Coatings Based on Waterborne Resins and SiO2 Nanoparticles. J. Coat. Technol. Res. 2009, 6, 177–185. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, Y.; Liu, X.; Fan, L.; Zhu, J. Bio-Based Tetrafunctional Crosslink Agent from Gallic Acid and Its Enhanced Soybean Oil-Based UV-Cured Coatings with High Performance. RSC Adv. 2014, 4, 23036–23042. [Google Scholar] [CrossRef]
- Long, A.E.; Henderson, G.D.; Montgomery, F.R. Why Assess the Properties of Near-Surface Concrete? Constr. Build. Mater. 2001, 15, 65–79. [Google Scholar] [CrossRef]
- Gaikwad, M.S.; Kusumkar, V.V.; Yemul, O.S.; Hundiwale, D.G.; Mahulikar, P.P. Eco-Friendly Waterborne Coating from Bio-Based Polyester Amide Resin. Polym. Bull. 2019, 76, 2743–2763. [Google Scholar] [CrossRef]
- Dai, J.; Ma, S.; Liu, X.; Han, L.; Wu, Y.; Dai, X.; Zhu, J. Synthesis of Bio-Based Unsaturated Polyester Resins and Their Application in Waterborne UV-Curable Coatings. Prog. Org. Coat. 2015, 78, 49–54. [Google Scholar] [CrossRef]
- Corcione, C.E.; Striani, R.; Capone, C.; Molfetta, M.; Vendetta, S.; Frigione, M. Preliminary Study of the Application of a Novel Hydrophobic Photo-Polymerizable Nano-Structured Coating on Concrete Substrates. Prog. Org. Coat. 2018, 121, 182–189. [Google Scholar] [CrossRef]
- Dai, J.; Ma, S.; Wu, Y.; Zhu, J.; Liu, X. High Bio-Based Content Waterborne UV-Curable Coatings with Excellent Adhesion and Flexibility. Prog. Org. Coat. 2015, 87, 197–203. [Google Scholar] [CrossRef]
- Sharmin, E.; Zafar, F.; Akram, D.; Alam, M.; Ahmad, S. Recent Advances in Vegetable Oils Based Environment Friendly Coatings: A Review. Ind. Crops Prod. 2015, 76, 215–229. [Google Scholar] [CrossRef]
- Paraskar, P.M.; Prabhudesai, M.S.; Hatkar, V.M.; Kulkarni, R.D. Vegetable Oil Based Polyurethane Coatings—A Sustainable Approach: A Review. Prog. Org. Coat. 2021, 156, 106267. [Google Scholar] [CrossRef]
- Kong, X.; Liu, G.; Qi, H.; Curtis, J.M. Preparation and Characterization of High-Solid Polyurethane Coating Systems Based on Vegetable Oil Derived Polyols. Prog. Org. Coat. 2013, 76, 1151–1160. [Google Scholar] [CrossRef]
- Bayer, I.S. Superhydrophobic Coatings from Ecofriendly Materials and Processes: A Review. Adv. Mater. Interfaces 2020, 7, 2000095. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and Techniques for Solvent Selection: Green Solvent Selection Guides. Sustain. Chem. Process. 2016, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, N.A.S.M.; Kamaruzzaman, W.M.I.W.M.; Nasir, N.A.M.; Shaifudin, M.S.; Ghazali, M.S.M. Potential Application of Plant-Based Derivatives as Green Components in Functional Coatings: A Review. Clean. Mater. 2022, 4, 100097. [Google Scholar] [CrossRef]
- Shehata, N.; Mohamed, O.A.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Geopolymer Concrete as Green Building Materials: Recent Applications, Sustainable Development and Circular Economy Potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef] [PubMed]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Balaguru, P.N.; Nazier, M.; Arafa, M.D.; Sasor, M.R. Field Implementation of Geopolymer Coatings; New Jersey Department of Transportation: Ewing Township, NJ, USA, 2008. [Google Scholar]
- Jiang, C. A Review on Geopolymer in Potential Coating Application: Materials, Preparation and Basic Properties. J. Build. Eng. 2020, 32, 101734. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential Application of Geopolymers as Protection Coatings for Marine Concrete: I. Basic Properties. Appl. Clay Sci. 2010, 49, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential Application of Geopolymers as Protection Coatings for Marine Concrete: II. Microstructure and Anticorrosion Mechanism. Appl. Clay Sci. 2010, 49, 7–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Wang, H. Potential Application of Geopolymers as Protection Coatings for Marine Concrete III. Field Experiment. Appl. Clay Sci. 2012, 67, 57–60. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Alrefaei, Y.; Dai, J.-G. Silico-Aluminophosphate and Alkali-Aluminosilicate Geopolymers: A Comparative Review. Front. Mater. 2019, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ye, G. The Shrinkage of Alkali Activated Fly Ash. Cem. Concr. Res. 2015, 68, 75–82. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, J.; Ye, G. The Effect of Activating Solution on the Mechanical Strength, Reaction Rate, Mineralogy, and Microstructure of Alkali-Activated Fly Ash. J. Mater. Sci. 2012, 47, 4568–4578. [Google Scholar] [CrossRef] [Green Version]
- Balaguru, P.N. Geopolymer for Protective Coating of Transportation Infrastructures; New Jersey Department of Transportation: Ewing Township, NJ, USA, 1998. [Google Scholar]
- Aguirre-Guerrero, A.M.; de Gutiérrez, R.M. Alkali-Activated Protective Coatings for Reinforced Concrete Exposed to Chlorides. Constr. Build. Mater. 2021, 268, 121098. [Google Scholar] [CrossRef]
- Rostami, H.; Tovia, F.; Masoodi, R.; Bahadory, M. Reduction of Corrosion of Reinforcing Steel in Concrete Using Alkali Ash Material. J. Solid Waste Technol. Manag. 2015, 41, 136–145. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Luo, W.; Zhou, W. A Novel Surface Waterproof Geopolymer Derived from Metakaolin by Hydrophobic Modification. Mater. Lett. 2016, 164, 172–175. [Google Scholar] [CrossRef]
- Wu, X.; Yang, F.; Lu, G.; Zhao, X.; Chen, Z.; Qian, S. A Breathable and Environmentally Friendly Superhydrophobic Coating for Anti-Condensation Applications. Chem. Eng. J. 2021, 412, 128725. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Shao, Q. Porous Silica and Carbon Derived Materials from Rice Husk Pyrolysis Char. Microporous Mesoporous Mater. 2014, 188, 46–76. [Google Scholar] [CrossRef]
- Husni, H.; Nazari, M.R.; Yee, H.M.; Rohim, R.; Yusuff, A.; Ariff, M.A.M.; Ahmad, N.N.R.; Leo, C.P.; Junaidi, M.U.M. Superhydrophobic Rice Husk Ash Coating on Concrete. Constr. Build. Mater. 2017, 144, 385–391. [Google Scholar] [CrossRef]
- Junaidi, M.U.M.; Azaman, S.A.H.; Ahmad, N.N.R.; Leo, C.P.; Lim, G.W.; Chan, D.J.C.; Yee, H.M. Superhydrophobic Coating of Silica with Photoluminescence Properties Synthesized from Rice Husk Ash. Prog. Org. Coat. 2017, 111, 29–37. [Google Scholar] [CrossRef]
- Azadi, M.; Bahrololoom, M.E.; Heidari, F. Enhancing the Mechanical Properties of an Epoxy Coating with Rice Husk Ash, a Green Product. J. Coat. Technol. Res. 2011, 8, 117–123. [Google Scholar] [CrossRef]
- Mustapha, S.N.H.; Nizam, M.N.M.; Isa, M.I.M.; Roslan, R.; Mustapha, R. Synthesis and Characterization of Hydrophobic Properties of Silicon Dioxide in Palm Oil Based Bio-Coating. Mater. Today Proc. 2022, 51, 1415–1419. [Google Scholar] [CrossRef]
- Prabhudesai, M.S.; Paraskar, P.M.; Kedar, R.; Kulkarni, R.D. Sea Buckthorn Oil Tocopherol Extraction’s By-Product Utilization in Green Synthesis of Polyurethane Coating. Eur. J. Lipid Sci. Technol. 2020, 122, 1900387. [Google Scholar] [CrossRef]
- Noreen, A.; Zia, K.M.; Zuber, M.; Tabasum, S.; Zahoor, A.F. Bio-Based Polyurethane: An Efficient and Environment Friendly Coating Systems: A Review. Prog. Org. Coat. 2016, 91, 25–32. [Google Scholar] [CrossRef]
- Akram, D.; Sharmin, E.; Ahmad, S. Synthesis, Characterization and Corrosion Protective Properties of Boron-Modified Polyurethane from Natural Polyol. Prog. Org. Coat. 2008, 63, 25–32. [Google Scholar] [CrossRef]
- Wei, D.; Liao, B.; Yong, Q.; Wang, H.; Li, T.; Huang, J.; Pang, H. Castor Oil-Based Waterborne Hyperbranched Polyurethane Acrylate Emulsion for UV-Curable Coatings with Excellent Chemical Resistance and High Hardness. J. Coat. Technol. Res. 2019, 16, 415–428. [Google Scholar] [CrossRef]
- Deka, H.; Karak, N. Bio-Based Hyperbranched Polyurethanes for Surface Coating Applications. Prog. Org. Coat. 2009, 66, 192–198. [Google Scholar] [CrossRef]
- Zhong, X.; Lv, L.; Hu, H.; Jiang, X.; Fu, H. Bio-Based Coatings with Liquid Repellency for Various Applications. Chem. Eng. J. 2020, 382, 123042. [Google Scholar] [CrossRef]
- Song, J.; Lu, Y.; Huang, S.; Liu, X.; Wu, L.; Xu, W. A Simple Immersion Approach for Fabricating Superhydrophobic Mg Alloy Surfaces. Appl. Surf. Sci. 2013, 266, 445–450. [Google Scholar] [CrossRef]
- Wei, Z.; Jiang, D.; Chen, J.; Ren, S.; Li, L. Fabrication of Mechanically Robust Superhydrophobic Aluminum Surface by Acid Etching and Stearic Acid Modification. J. Adhes. Sci. Technol. 2017, 31, 2380–2397. [Google Scholar] [CrossRef]
- Xu, W.; Hu, Y.; Bao, W.; Xie, X.; Liu, Y.; Song, A.; Hao, J. Superhydrophobic Copper Surfaces Fabricated by Fatty Acid Soaps in Aqueous Solution for Excellent Corrosion Resistance. Appl. Surf. Sci. 2017, 399, 491–498. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, H.; Mao, P.; Wang, Y.; Ge, Y. Superhydrophobic Alumina Surface Based on Stearic Acid Modification. Appl. Surf. Sci. 2011, 257, 3959–3963. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, S.; Cheng, Y.F. Stearic Acid Modified Zinc Nano-Coatings with Superhydrophobicity and Enhanced Antifouling Performance. Surf. Coat. Technol. 2018, 340, 55–65. [Google Scholar] [CrossRef]
- Hu, C.; Xie, X.; Ren, K. A Facile Method to Prepare Stearic Acid-TiO2/Zinc Composite Coating with Multipronged Robustness, Self-Cleaning Property, and Corrosion Resistance. J. Alloy. Compd. 2021, 882, 160636. [Google Scholar] [CrossRef]
- Gao, A.; Wu, Q.; Wang, D.; Ha, Y.; Chen, Z.; Yang, P. A Superhydrophobic Surface Templated by Protein Self-Assembly and Emerging Application toward Protein Crystallization. Adv. Mater. 2016, 28, 579–587. [Google Scholar] [CrossRef]
- Liu, H.; Xie, W.-Y.; Song, F.; Wang, X.-L.; Wang, Y.-Z. Constructing Hierarchically Hydrophilic/Superhydrophobic ZIF-8 Pattern on Soy Protein towards a Biomimetic Efficient Water Harvesting Material. Chem. Eng. J. 2019, 369, 1040–1048. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, M.; Tang, W.-W.; Wang, Y. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly. J. Phys. Chem. B 2015, 119, 5321–5327. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, W.; Guo, Y.; Zhu, Y.; Lu, H.; Wu, Y. Superhydrophobic Coatings on Gelatin-Based Films: Fabrication, Characterization and Cytotoxicity Studies. RSC Adv. 2018, 8, 23712–23719. [Google Scholar] [CrossRef] [Green Version]
- Sajid, H.U.; Kiran, R.; Bajwa, D.S. Soy-Protein and Corn-Derived Polyol Based Coatings for Corrosion Mitigation in Reinforced Concrete. Constr. Build. Mater. 2022, 319, 126056. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Li, P.; Huang, J.-T. A Durable and Sustainable Superhydrophobic Surface with Intertwined Cellulose/SiO2 Blends for Anti-Icing and Self-Cleaning Applications. Mater. Des. 2022, 217, 110628. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Zhang, L.; Liu, J.; Wang, C.; Wu, M. Cellulose Nanofiber Assisted Dispersion of Hydrophobic SiO2 Nanoparticles in Water and Its Superhydrophobic Coating. Carbohydr. Polym. 2022, 290, 119504. [Google Scholar] [CrossRef]
- Huang, J.; Lyu, S.; Chen, Z.; Wang, S.; Fu, F. A Facile Method for Fabricating Robust Cellulose Nanocrystal/SiO2 Superhydrophobic Coatings. J. Colloid Interface Sci. 2019, 536, 349–362. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Szymańska-Chargot, M.; Jarosz-Hadam, M.; Łagód, G. Effect of Cellulose Nanofibrils and Nanocrystals on Physical Properties of Concrete. Constr. Build. Mater. 2019, 223, 1–11. [Google Scholar] [CrossRef]
- Baker, E. Chemistry and Morphology of Plant Epicuticular Waxes. In Plant Cuticle; Cutler, D.F., Alvin, K.L., Price, C.E., Eds.; Academic Press: London, UK, 1982; pp. 139–166. [Google Scholar]
- Morrissette, J.M.; Carroll, P.J.; Bayer, I.S.; Qin, J.; Waldroup, D.; Megaridis, C.M. A Methodology to Produce Eco-Friendly Superhydrophobic Coatings Produced from All-Water-Processed Plant-Based Filler Materials. Green Chem. 2018, 20, 5169–5178. [Google Scholar] [CrossRef]
- Torun, I.; Ruzi, M.; Er, F.; Onses, M.S. Superhydrophobic Coatings Made from Biocompatible Polydimethylsiloxane and Natural Wax. Prog. Org. Coat. 2019, 136, 105279. [Google Scholar] [CrossRef]
- Gupta, S.; Ivvala, J.; Grewal, H.S. Development of Natural Wax Based Durable Superhydrophobic Coatings. Ind. Crops Prod. 2021, 171, 113871. [Google Scholar] [CrossRef]
- ElShami, A.A.; Bonnet, S.; Makhlouf, M.H.; Khelidj, A.; Leklou, N. Novel Green Plants Extract as Corrosion Inhibiting Coating for Steel Embedded in Concrete. Pigment. Resin Technol. 2020, 49, 501–514. [Google Scholar] [CrossRef]
- Wang, W.; Song, Z.; Guo, M.; Jiang, L.; Xiao, B.; Jiang, Q.; Chu, H.; Liu, Y.; Zhang, Y.; Xu, N. Employing Ginger Extract as an Eco-Friendly Corrosion Inhibitor in Cementitious Materials. Constr. Build. Mater. 2019, 228, 116713. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarcinella, A.; Frigione, M. Sustainable and Bio-Based Coatings as Actual or Potential Treatments to Protect and Preserve Concrete. Coatings 2023, 13, 44. https://doi.org/10.3390/coatings13010044
Sarcinella A, Frigione M. Sustainable and Bio-Based Coatings as Actual or Potential Treatments to Protect and Preserve Concrete. Coatings. 2023; 13(1):44. https://doi.org/10.3390/coatings13010044
Chicago/Turabian StyleSarcinella, Antonella, and Mariaenrica Frigione. 2023. "Sustainable and Bio-Based Coatings as Actual or Potential Treatments to Protect and Preserve Concrete" Coatings 13, no. 1: 44. https://doi.org/10.3390/coatings13010044
APA StyleSarcinella, A., & Frigione, M. (2023). Sustainable and Bio-Based Coatings as Actual or Potential Treatments to Protect and Preserve Concrete. Coatings, 13(1), 44. https://doi.org/10.3390/coatings13010044