Effect of Vacancy Defects and Hydroxyl on the Adsorption of Glycine on Mg(0001): A First-Principles Study
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Adsorption of Gly on the Mg(0001) Surfaces with Different Defect Concentrations
3.2. Effect of Hydroxyl on the Adsorption of Gly on the Mg(0001) Surfaces
3.3. Electronic Properties of Gly on Different Mg(0001) Surfaces
4. Conclusions
- In the case of vacancy defects with varying concentrations, the most favorable adsorption mode of Gly on the Mg(0001) surface was found to involve the formation of coordination covalent bonds between the amino and carboxyl groups of Gly and the surface Mg atoms. Computational analysis revealed that the presence of defects facilitated a stronger adhesion of Gly to the surface compared to the defect-free surface. Specifically, the most stable configuration was observed when Gly was adsorbed at the edge of the grooved vacancy defect surface, with a defect concentration of 1/3.
- Among the four adsorption sites, the fcc site is the most favorable adsorption site for the hydroxyl group. The adsorption of the hydroxyl group alters the electronic structure properties of the Mg(0001) surface, causing some electrons to transfer from the Mg(001) surface to the hydroxyl group, resulting in a slight decrease in the adsorption energy of Gly.
- Different concentrations of vacancy defects can improve the adsorption of glycine on the Mg(0001) surface. The presence of the hydroxyl functional group weakens the adsorption of glycine on the Mg(0001) surface. These findings offer a theoretical foundation for the development of amino acid-based bio-coatings on material surfaces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Pan, H.B. Effects of magnesium alloy corrosion on biological response—Perspectives of metal-cell interaction. Prog. Mater. Sci. 2023, 133, 101039. [Google Scholar]
- Farshid, S.; Kharaziha, M.; Atapour, M. A self-healing and bioactive coating based on duplex plasma electrolytic oxidation/polydopamine on AZ91 alloy for bone implants. J. Magnes. Alloys 2023, 11, 592–606. [Google Scholar]
- Hou, R.Q.; Feyerabend, F.; Helmholz, H.; Garamus, V.M.; Willumeit-Roemer, R. Effects of proteins on magnesium degradation-static vs. dynamic conditions. J. Magnes. Alloys 2023, 11, 1332–1342. [Google Scholar]
- Albaraghtheh, T.; Willumeit-Roemer, R.; Zeller-Plumhoff, B. In silico studies of magnesium-based implants: A review of the current stage and challenges. J. Magnes. Alloys 2022, 10, 2968–2996. [Google Scholar]
- Kuah, K.X.; Wijesinghe, S.; Blackwood, D.J. Toward understanding in vivo corrosion: Influence of interfacial hydrogen gas build-up on degradation of magnesium alloy implants. J. Biomed. Mater. Res. Part A 2023, 111, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Mei, D.; Wang, C.; Lamaka, S.V.; Zheludkevich, M.L. Clarifying the influence of albumin on the initial stages of magnesium corrosion in Hank’s balanced salt solution. J. Magnes. Alloys 2021, 9, 805–817. [Google Scholar]
- Höhn, S.; Virtanen, S.; Boccaccini, A.R. Protein adsorption on magnesium and its alloys: A review. Appl. Surf. Sci. 2019, 464, 212–219. [Google Scholar]
- Hou, R.Q.; Scharnagl, N.; Willumeit-Römer, R.; Feyerabend, F. Different effects of single protein vs. protein mixtures on magnesium degradation under cell culture conditions. Acta Biomater. 2019, 98, 256–268. [Google Scholar] [PubMed]
- Cai, L.; Mei, D.; Zhang, Z.Q.; Huang, Y.D.; Cui, L.Y.; Guan, S.K.; Chen, D.C.; Kannan, M.B.; Zheng, Y.F.; Zeng, R.C. Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys. J. Magnes. Alloys 2022, 10, 670–688. [Google Scholar]
- Hedberg, Y.S. Role of proteins in the degradation of relatively inert alloys in the human body. npj Mater Degrad 2018, 2, 1–5. [Google Scholar]
- Rajan, S.T.; Arockiarajan, A. A comprehensive review of properties of the biocompatible thin films on biodegradable Mg alloys. Biomed. Mater. 2023, 18, 012002. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wang, H.Y.; Zeng, R.C. Protein conformation and electric attraction adsorption mechanisms on anodized magnesium alloy by molecular dynamics simulations. J. Magnes. Alloys 2022, 10, 3143–3155. [Google Scholar] [CrossRef]
- Dai, J.H.; Xie, R.W.; Chen, Y.Y.; Song, Y. First principles study on stability and hydrogen adsorption properties of Mg/Ti interface. Phys. Chem. Chem. Phys. 2015, 17, 16594–16600. [Google Scholar] [CrossRef] [PubMed]
- Savaedi, Z.; Motallebi, R.; Mirzadeh, H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. J. Alloys Compd. 2022, 903, 163964. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, D.J.; Zhou, W.K.; Hu, B.; Zhao, X.F.; Wang, J.Y.; Qin, M.; Xu, J.K.; Zeng, X.Q. Characterization on the formation of porosity and tensile properties prediction in die casting Mg alloys. J. Magnes. Alloys 2022, 10, 1857–1867. [Google Scholar] [CrossRef]
- Han, Z.Y.; Chen, H.P.; Zhou, S.X. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study. Appl. Surf. Sci. 2017, 394, 371–377. [Google Scholar] [CrossRef]
- Zhou, B.C.; Shang, S.L.; Wang, Y.; Liu, Z.K. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study. Acta Mater. 2016, 103, 573–586. [Google Scholar] [CrossRef]
- Williams, K.S.; Labukas, J.P.; Rodriguez-Santiago, V.; Andzelm, J.W. First Principles Modeling of Water Dissociation on Mg(0001) and Development of a Mg Surface Pourbaix Diagram. Corrosion 2014, 71, 209–223. [Google Scholar] [CrossRef]
- Yuwono, J.A.; Birbilis, N.; Williams, K.S.; Medhekar, N.V. Electrochemical Stability of Magnesium Surfaces in an Aqueous Environment. J. Phys. Chem. C 2016, 120, 26922–26933. [Google Scholar] [CrossRef]
- Zhou, W.L.; Liu, T.; Li, M.C.; Zhao, T.; Duan, Y.H. Adsorption of bromine on Mg(0001) surface from first-principles calculations. Comput. Mater. Sci. 2016, 111, 47–53. [Google Scholar] [CrossRef]
- Li, B.X.; Xiao, C.C.; Harrison, N.M.; Fogarty, R.M.; Horsfield, A.P. Role of electron localisation in H adsorption and hydride formation in the Mg basal plane under aqueous corrosion: A first-principles study. Phys. Chem. Chem. Phys. 2023, 25, 5989–6001. [Google Scholar] [CrossRef]
- Talha, M.; Ma, Y.C.; Kumar, P.; Lin, Y.H.; Singh, A. Role of protein adsorption in the bio corrosion of metallic implants—A review. Colloids Surf. B Biointerfaces 2019, 176, 494–506. [Google Scholar] [CrossRef]
- Jackson, A.A. The Glycine story. Eur. J. Clin. Nutr. 1991, 45, 59–65. [Google Scholar]
- Adeva-Andany, M.; Souto-Adeva, G.; Ameneiros-Rodriguez, E.; Fernandez-Fernandez, C.; Donapetry-Garcia, C.; Dominguez-Montero, A. Insulin resistance and glycine metabolism in humans. Amino Acids 2018, 50, 11–27. [Google Scholar] [CrossRef]
- Yin, L.H.; Liu, X.P.; Yi, L.Y.; Wang, J.; Zhang, Y.J.; Feng, Y.F. Structural characterization of calcium glycinate, magnesium glycinate and zinc glycinate. J. Innov. Opt. Health Sci. 2016, 10, 1650052. [Google Scholar] [CrossRef]
- Kanazawa, K.; Taninaka, A.; Takeuchi, O.; Shigekawa, H. What Orchestrates the Self-Assembly of Glycine Molecules on Cu(100)? Phys. Rev. Lett. 2007, 99, 216102. [Google Scholar] [CrossRef]
- Pantaleone, S.; Rimola, A.; Ugliengo, P.; Sodupe, M. First-Principles Modeling of Protein/Surface Interactions. Polyglycine Secondary Structure Adsorption on the TiO2 (101) Anatase Surface Adopting a Full Periodic Approach. J. Chem. Inf. Model. 2021, 61, 5484–5498. [Google Scholar] [CrossRef]
- Xavier, N.F.; da Silva, A.M., Jr.; Sacchi, M.; Bauerfeldt, G.F. Decarboxylation of glycine on icy grain surfaces: A first-principle investigation. Mon. Not. R. Astron. Soc. 2022, 517, 5912–5920. [Google Scholar] [CrossRef]
- Remko, M.; Rode, B.M. Effect of Metal Ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and Water Coordination on the Structure of Glycine and Zwitterionic Glycine. J. Phys. Chem. A 2006, 110, 1960–1967. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Q.; Huang, X.X.; Yun, J.N.; Hu, Q.L.; Yang, G. Adsorption of amino acids at clay surfaces and implication for biochemical reactions: Role and impact of surface charges. Colloids Surf. B-Biointerfaces 2019, 183, 110458. [Google Scholar] [CrossRef]
- Madden, D.C.; Temprano, I.; Sacchi, M.; Jenkins, S.J. Spontaneous Local Symmetry Breaking: A Conformational Study of Glycine on Cu{311}. J. Phys. Chem. C 2015, 119, 13041–13049. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J.F.; Yang, X.F.; Sun, Q.; Jia, Y.; Liu, H.R.; Xi, T.F.; Guan, S.K. Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study. Appl. Surf. Sci. 2017, 409, 149–155. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J.F.; Zhu, S.J.; Yang, X.F.; Jia, Y.; Sun, Q.; Jia, Y.; Guan, S.K. A DFT study of the adsorption of short peptides on Mg and Mg-based alloy surfaces. Phys. Chem. Chem. Phys. 2018, 20, 3602–3607. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, Y.; Wang, H.Y.; Wang, J.F.; Zhu, S.J.; Jia, Y.; Cho, J.Y.; Guan, S.K. Influence of surface charge density on ligand-metal bonding: A DFT study of NH3 and HCOOH on Mg (0001) surface. Appl. Surf. Sci. 2019, 470, 893–898. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, H.L.; Li, P.; Qiao, H.J.; Liang, E.J.; Jia, Y.; Guan, S.K. Interaction Mechanism of RGD Tripeptide on Different Surfaces of Mg and Mg Alloys: A First-Principles Study. Coatings 2022, 12, 1814. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D.C.; Lundqvist, B.I. Van der Waals Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef]
- Klimeš, J.; Bowler, D.R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201. [Google Scholar] [CrossRef]
- Klimeš, J.; Michaelides, A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 2012, 137, 120901. [Google Scholar] [CrossRef]
- Klimeš, J.; Bowler, D.R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131. [Google Scholar] [CrossRef]
- Lüder, J.; Sanyal, B.; Eriksson, O.; Puglia, C.; Brena, B. Comparison of van der Waals corrected and sparse-matter density functionals for the metal-free phthalocyanine/gold interface. Phys. Rev. B 2014, 89, 045416. [Google Scholar] [CrossRef]
- Swanson, H.E.; McMurdie, H.F.; Morris, M.C.; Evans, E.H. Standard X-ray Diffraction Powder Patterns. In National Bureau of Standards Monograph 25—Section 6; U.S. Department of Commerce, National Bureau of Standards: Gaithersburg, MD, USA, 1968. [Google Scholar]
- Lei, H.P.; Wang, C.Z.; Yao, Y.X.; Wang, Y.G.; Hupalo, M.; McDougall, D.; Tringides, M.; Ho, K.M. Strain effect on the adsorption, diffusion, and molecular dissociation of hydrogen on Mg (0001) surface. J. Chem. Phys. 2013, 139, 224702. [Google Scholar] [CrossRef]
- Sargent, W. Table of Periodic Properties of the Elements; Sargent-Welch Scientific: Skokie, IL, USA, 1980. [Google Scholar]
- Hoffling, B.; Ortmann, F.; Hannewald, K.; Bechstedt, F. Single cysteine adsorption on Au(110): A first-principles study. Phys. Rev. B 2010, 81, 045407. [Google Scholar] [CrossRef]
Adsorption Energy | Vacancy Defect Concentrations | |||
---|---|---|---|---|
1/36 | 1/6 | 1/3 | 1/2 | |
Eads (eV) | −1.17 | −1.26 | −1.27; −1.40 | −1.25; −1.15 |
Adsorption Energy | Adsorption Site of Hydroxyl | |||
---|---|---|---|---|
Bridge | Top | Fcc-Hollow | Hcp-Hollow | |
Eads (eV) | −5.4581 | −5.4569 | −5.5010 | −5.5004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Wei, W.; Qiao, H.; Liang, E.; Jia, Y.; Guan, S. Effect of Vacancy Defects and Hydroxyl on the Adsorption of Glycine on Mg(0001): A First-Principles Study. Coatings 2023, 13, 1684. https://doi.org/10.3390/coatings13101684
Fang Z, Wei W, Qiao H, Liang E, Jia Y, Guan S. Effect of Vacancy Defects and Hydroxyl on the Adsorption of Glycine on Mg(0001): A First-Principles Study. Coatings. 2023; 13(10):1684. https://doi.org/10.3390/coatings13101684
Chicago/Turabian StyleFang, Zhe, Wutao Wei, Huijie Qiao, Erjun Liang, Yu Jia, and Shaokang Guan. 2023. "Effect of Vacancy Defects and Hydroxyl on the Adsorption of Glycine on Mg(0001): A First-Principles Study" Coatings 13, no. 10: 1684. https://doi.org/10.3390/coatings13101684
APA StyleFang, Z., Wei, W., Qiao, H., Liang, E., Jia, Y., & Guan, S. (2023). Effect of Vacancy Defects and Hydroxyl on the Adsorption of Glycine on Mg(0001): A First-Principles Study. Coatings, 13(10), 1684. https://doi.org/10.3390/coatings13101684