Fabrication and Characterization of LaF3-Reinforced Porous HA/Ti Scaffolds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of LaF3 Reinforced Porous HA/Ti Scaffolds
2.2. Immersion of Samples in the SBF
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Pattanayak, D.K.; Fukuda, A.; Matsushita, T.; Takemoto, M.; Fujibayashi, S.; Sasaki, K.; Nishida, N.; Nakamura, T.; Kokubo, T. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater. 2011, 7, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Cui, Z.D.; Zhu, S.L.; Sang, X.M. Progress in the research of biomimetic modification on the surface of Ti and Ti alloy. J. Funct. Mater. 2005, 1, 19–22. [Google Scholar]
- Wang, X.H.; Cao, Y.; Zhang, L. Alkali and thermal treatment of titanium and its effect on the bioactivity. J. Funct. Mater. 2013, 2, 275. [Google Scholar]
- Kim, H.M.; Miyaji, F.; Kokubo, T.; Nakamura, T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 1996, 32, 409–417. [Google Scholar] [CrossRef]
- Filiaggi, M.J.; Coombs, N.A.; Pilliar, R.M. Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system. J. Biomed. Mater. Res. 1991, 25, 1211–1229. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.Y.; Sun, J.F.; Han, Y. Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surf. Coat. Technol. 2010, 205, 1702–1713. [Google Scholar] [CrossRef]
- Akao, H.; Aoki, H.; Kato, K. Mechanical properties of sintered hydroxyapatite for prosthetic application. J. Mater. Sci. 1981, 16, 809–812. [Google Scholar] [CrossRef]
- Osborn, J.; Newesely, H. The material science of calcium phosphate ceramics. Biomaterials 1980, 1, 108–111. [Google Scholar] [CrossRef]
- Ning, C.Q.; Zhou, Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials 2002, 23, 2909–2915. [Google Scholar] [CrossRef]
- Salman, S.; Gunduz, O.; Yilmaz, S. Sintering effect on mechanical properties of composites of natural hydroxyapatites and titanium. Ceram. Int. 2009, 35, 2965–2971. [Google Scholar] [CrossRef]
- Thian, E.S.; Loh, N.H.; Khor, K.A. Ti-6A1-4V HA composite feedstock for injection molding. Mater. Lett. 2002, 56, 522–532. [Google Scholar] [CrossRef]
- Egorov, A.; Smirnov, V.; Shvorneva, L. High-temperature hydroxyapatite-titanium interaction. Inorg. Mater. 2010, 46, 168–171. [Google Scholar] [CrossRef]
- Zou, H.; Lu, Q.; Tian, W.D. Preparation and characterization of bio-medical porous titanium by unconventional powder metallurgy. J. Funct. Mater. Devices 2010, 16, 490–494. [Google Scholar]
- Fan, X.P.; Feng, B.; Liu, Z.Y. Fabrication of TiO2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo. J. Biomed. Mater. Res. A 2012, 12, 3422–3427. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Gálfiová, P.; Nováková, Z.V.; Polák, Š.; Varga, I.; Strunga, M.; Urban, R.; Surovková, J.; Leško, Ľ.; Hajdúchová, Z.; et al. Fabrication and in vitro characterization of novel hydroxyapatite scaffolds 3D printed using polyvinyl alcohol as a thermoplastic binder. Int. J. Mol. Sci. 2022, 23, 14870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.J.; Sun, Y.J.; Niu, R.M. The strenthening mechanism of rare earth lanthanum oxide doped molybdenum alloys. Rare Met. Mater. Eng. 2005, 34, 1926–1930. [Google Scholar]
- Wang, B.; Liu, Y.; Liu, Y.B. Effects of LaH2 and LaB6 addition on microstructure and mechanical property of powder metallurgy Ti alloy. Mater. Sci. Eng. Powder Metall. 2011, 16, 136–142. [Google Scholar]
- Shao, Z.Y.; Li, F.; Zhang, J.L. Research progress of various nano-materials reinforced and rare earth element doped Ti-HA composites. Met. Funct. Mater. 2017, 24, 13–24. [Google Scholar]
- Lv, N.L.; Yin, P.; Xia, M. Sr-containing bioglass fabricated by sol-gel method and its solubility. Fenmo Yejin Cailiao Kexue yu Gongcheng/Mater. Sci. Eng. Powder Metall. 2015, 20, 296–303. [Google Scholar]
- Kokubo, T.; Takadama, H. How useful is SBF in prediction in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Chen, Y.J.; Feng, B.; Zhu, Y.P. Fabrication of porous titanium implants with biomechanical compatibility. Mater. Lett. 2009, 30, 2659–2661. [Google Scholar] [CrossRef]
- Ning, C.Q.; Zhou, Y.; Jia, D.C. Mechanical properties and biological behavior of titanium/hydroxyapatite biocomposites. J. Chin. Ceram. Soc. 2000, 28, 483–486. [Google Scholar]
- Ohtsuki, C.; Kokubo, T.; Yamamuro, T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fliud. J. Non-Cryst. Solids 1992, 143, 84–92. [Google Scholar] [CrossRef]
- De, G.K.; Klein, C.P.A.T.; Wolke, J.G.C. Chemistry of calcium phosphate bioceramics. In Handbook of Bioactive Ceramics, II; Yamamuro, T., Hench, L.L., Wilson, J., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 3–6. [Google Scholar]
- Fujita, T.; Ogawa, A.; Ouchi, C. Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process. Mater. Sci. Eng. A 1996, 213, 148–153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Zhang, H. Fabrication and Characterization of LaF3-Reinforced Porous HA/Ti Scaffolds. Coatings 2024, 14, 111. https://doi.org/10.3390/coatings14010111
Fan X, Zhang H. Fabrication and Characterization of LaF3-Reinforced Porous HA/Ti Scaffolds. Coatings. 2024; 14(1):111. https://doi.org/10.3390/coatings14010111
Chicago/Turabian StyleFan, Xingping, and Hao Zhang. 2024. "Fabrication and Characterization of LaF3-Reinforced Porous HA/Ti Scaffolds" Coatings 14, no. 1: 111. https://doi.org/10.3390/coatings14010111
APA StyleFan, X., & Zhang, H. (2024). Fabrication and Characterization of LaF3-Reinforced Porous HA/Ti Scaffolds. Coatings, 14(1), 111. https://doi.org/10.3390/coatings14010111