Distinctive Features and Fabrication Routes of Metallic-Glass Systems Designed for Different Engineering Applications: A Review
Abstract
:1. Introduction
2. Glass Forming Ability
3. Fabrication Techniques
3.1. Liquid-Quenching Method
3.2. Welding of Metallic Glasses
3.3. Additive Manufacturing
3.4. Powder Densification Technique
3.5. Magnetron Co-Sputtering
4. Distinctive Properties
4.1. Structural and Surface Properties
4.2. Thermal Stability
4.3. Mechanical Properties
4.4. Electrochemical Properties
4.5. Magnetic Properties
5. Applications of Metallic Glasses
5.1. Biomedical Applications
5.1.1. Antibacterial Application
5.1.2. Bio-Implants
5.2. Electrochemical Devices
5.3. Optoelectronic Devices
5.4. Aerospace Application
5.5. Memory Storage Devices
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011, 3, 82–90. [Google Scholar] [CrossRef]
- Klement, W.; Willens, R.H.; Duwez, P. Non-crystalline Structure in Solidified Gold–Silicon Alloys. Nature 1960, 187, 869–870. [Google Scholar] [CrossRef]
- Chen, H.S.; Turnbull, D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall. 1969, 17, 1021–1031. [Google Scholar] [CrossRef]
- Chen, H.S. Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metall. 1974, 22, 1505–1511. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Masumoto, T. Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method. Mater. Trans. JIM 1990, 31, 425–428. [Google Scholar] [CrossRef]
- Drehman, A.J.; Greer, A.L.; Turnbull, D. Bulk formation of a metallic glass: Pd40Ni40P20. Appl. Phys. Lett. 1982, 41, 716–717. [Google Scholar] [CrossRef]
- Kui, H.W.; Greer, A.L.; Turnbull, D. Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 1984, 45, 615–616. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Masumoto, T. Zr–Al–Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Mater. Trans. JIM 1990, 31, 177–183. [Google Scholar] [CrossRef]
- Schroers, J. Processing of bulk metallic glass. Adv. Mater. 2010, 22, 1566–1597. [Google Scholar] [CrossRef]
- Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 1993, 63, 2342–2344. [Google Scholar] [CrossRef]
- Inoue, A.; Takeuchi, A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011, 59, 2243–2267. [Google Scholar] [CrossRef]
- Braeckman, B.R.; Depla, D. On the amorphous nature of sputtered thin film alloys. Acta Mater. 2016, 109, 323–329. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Mund, E.; Inoue, A.; Schultz, L. Production of Zr55Cu30Ni5Al10 Glassy Alloy Rod of 30 mm in Diameter by a Cap-Cast Technique. Mater. Trans. 2007, 48, 3190–3192. [Google Scholar] [CrossRef]
- Inoue, A.; Nishiyama, N.; Kimura, H. Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter. Mater. Trans. JIM 1997, 38, 179–183. [Google Scholar] [CrossRef]
- Zeng, Y.; Nishiyama, N.; Yamamoto, T.; Inoue, A. Ni-Rich Bulk Metallic Glasses with High Glass-Forming Ability and Good Metallic Properties. Mater. Trans. 2009, 50, 2441–2445. [Google Scholar] [CrossRef]
- Zheng, Q.; Xu, J.; Ma, E. High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys. J. Appl. Phys. 2007, 102, 113519. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Inoue, A. Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting. Mater. Trans. 2007, 48, 629–631. [Google Scholar] [CrossRef]
- Ponnambalam, V.; Poon, S.J.; Shiflet, G.J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 2004, 19, 1320–1323. [Google Scholar] [CrossRef]
- Zhu, S.L.; Wang, X.M.; Inoue, A. Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm. Intermetallics 2008, 16, 1031–1035. [Google Scholar] [CrossRef]
- Dina, S.; Geyer, U.; Minnigerode, G.V. Investigations on macroscopic intrinsic stress in amorphous binary-alloy films. Ann. Phys. 1992, 504, 164–171. [Google Scholar] [CrossRef]
- Geyer, U.; von Hülsen, U.; Kopf, H. Internal interfaces and intrinsic stress in thin amorphous Cu-Ti and Co-Tb films. J. Appl. Phys. 1998, 83, 3065–3070. [Google Scholar] [CrossRef]
- Thomas, R.E.; Perepezko, J.H.; Wiley, J.D. Crystallization of sputter deposited amorphous metal thin films. Appl. Surf. Sci. 1986, 26, 534–541. [Google Scholar] [CrossRef]
- Qing-Ming, C.; Yu-Dian, F.; Heng-De, L. Amorphization of binary alloys by magnetron cosputtering. Mater. Lett. 1988, 6, 311–315. [Google Scholar] [CrossRef]
- Chen, H.S. Glassy metals. Rep. Prog. Phys. 1980, 43, 353–432. [Google Scholar] [CrossRef]
- Zhang, T.; Inoue, A. Density, Thermal Stability and Mechanical Properties of Zr–Ti–Al–Cu–Ni Bulk Amorphous Alloys with High Al Plus Ti Concentrations. Mater. Trans. JIM 1998, 39, 857–862. [Google Scholar] [CrossRef]
- Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55, 4067–4109. [Google Scholar] [CrossRef]
- Byrne, C.J.; Eldrup, M. Bulk Metallic Glasses. Science 2008, 321, 502–503. [Google Scholar] [CrossRef]
- Archer, M.D.; Corke, C.C.; Harji, B.H. The electrochemical properties of metallic glasses. Electrochim. Acta 1987, 32, 13–26. [Google Scholar] [CrossRef]
- Carmo, M.; Sekol, R.C.; Ding, S.; Kumar, G.; Schroers, J.; Taylor, A.D. Bulk Metallic Glass Nanowire Architecture for Electrochemical Applications. ACS Nano 2011, 5, 2979–2983. [Google Scholar] [CrossRef]
- O’Handley, R.C.; Hasegawa, R.; Ray, R.; Chou, C.-P. Ferromagnetic properties of some new metallic glasses. Appl. Phys. Lett. 1976, 29, 330–332. [Google Scholar] [CrossRef]
- Hasegawa, R.; O’Handley, R.C. Soft magnetic properties of metallic glasses—Recent developments. J. Appl. Phys. 1979, 50, 1551–1556. [Google Scholar] [CrossRef]
- Jabed, A.; Meduri, C.S.; Kumar, G. Effect of time on the isothermal viscosity of metallic glass supercooled liquids. J. Alloys Compd. 2021, 863, 158067. [Google Scholar] [CrossRef]
- Jagdale, S.; Jabed, A.; Theeda, S.; Meduri, C.S.; Hu, Z.; Hasan, M.; Kumar, G. Review of Thermoplastic Drawing with Bulk Metallic Glasses. Metals 2022, 12, 518. [Google Scholar] [CrossRef]
- Li, H.F.; Zheng, Y.F. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Schroers, J.; Kumar, G.; Hodges, T.M.; Chan, S.; Kyriakides, T.R. Bulk metallic glasses for biomedical applications. JOM 2009, 61, 21–29. [Google Scholar] [CrossRef]
- Hata, S.; Sato, K.; Shimokohbe, A. Fabrication of thin film metallic glass and its application to microactuators. Proc. SPIE 1999, 3892, 97–108. [Google Scholar] [CrossRef]
- Liu, Y.; Hata, S.; Wada, K.; Shimokohbe, A. Thermal, Mechanical and Electrical Properties of Pd-Based Thin-Film Metallic Glass. Jpn. J. Appl. Phys. 2001, 40, 5382–5388. [Google Scholar] [CrossRef]
- Sharma, P.; Kaushik, N.; Kimura, H.; Saotome, Y.; Inoue, A. Nano-fabrication with metallic glass—An exotic material for nano-electromechanical systems. Nanotechnology 2007, 18, 035302. [Google Scholar] [CrossRef]
- Luber, E.; Mohammadi, R.; Ophus, C.; Lee, Z.; Nelson-Fitzpatrick, N.; Westra, K.; Evoy, S.; Dehman, U.; Radmilovic, V.; Mitlin, D. Tailoring the microstructure and surface morphology of metal thin films for nano-electro-mechanical systems applications. Nanotechnology 2008, 19, 125705. [Google Scholar] [CrossRef]
- Hu, Y.C.; Wang, Y.Z.; Su, R.; Cao, C.R.; Li, F.; Sun, C.W.; Yang, Y.; Guan, P.F.; Ding, D.W.; Wang, Z.L.; et al. A Highly Efficient and Self-Stabilizing Metallic-Glass Catalyst for Electrochemical Hydrogen Generation. Adv. Mater. 2016, 28, 10293–10297. [Google Scholar] [CrossRef] [PubMed]
- Baiker, A. Metallic glasses in heterogeneous catalysis. Faraday Discuss. Chem. Soc. 1989, 87, 239. [Google Scholar] [CrossRef]
- Katona, T.; Molnar, A. Amorphous Alloy Catalysis: VII. Activation and Surface Characterization of an Amorphous Cu-Ti Alloy Catalyst Precursor in the Dehydrogenation of 2-Propanol and Comparison with Cu-Zr1. J. Catal. 1995, 153, 333–343. [Google Scholar] [CrossRef]
- Kruzic, J.J. Bulk Metallic Glasses as Structural Materials: A Review. Adv. Eng. Mater. 2016, 18, 1308–1331. [Google Scholar] [CrossRef]
- Ashby, M.F.; Greer, A.L. Metallic glasses as structural materials. Scr. Mater. 2006, 54, 321–326. [Google Scholar] [CrossRef]
- Greer, A.L. Confusion by design. Nature 1993, 366, 303–304. [Google Scholar] [CrossRef]
- Perim, E.; Lee, D.; Liu, Y.; Toher, C.; Gong, P.; Li, Y.; Simmons, W.N.; Levy, O.; Vlassak, J.J.; Schroers, J.; et al. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 2016, 7, 12315. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.; Liu, Y.; Gong, P.; Schroers, J. How Many Bulk Metallic Glasses Are There? ACS Comb. Sci. 2017, 19, 687–693. [Google Scholar] [CrossRef]
- Zeman, P.; Zítek, M.; Zuzjaková, S.; Čerstvý, R. Amorphous Zr-Cu thin-film alloys with metallic glass behavior. J. Alloys Compd. 2017, 696, 1298–1306. [Google Scholar] [CrossRef]
- Wang, W.H. Bulk Metallic Glasses with Functional Physical Properties. Adv. Mater. 2009, 21, 4524–4544. [Google Scholar] [CrossRef]
- He, Y.; Poon, S.J.; Shiflet, G.J. Synthesis and properties of metallic glasses that contain aluminum. Science 1988, 241, 1640–1642. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.L. Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys. Mater. Sci. Forum 1996, 225–227, 35–50. [Google Scholar] [CrossRef]
- Calin, M.; Gebert, A.; Ghinea, A.C.; Gostin, P.F.; Abdi, S.; Mickel, C.; Eckert, J.H. Designing biocompatible Ti-based metallic glasses for implant applications. Mater. Sci. Eng. C 2013, 33, 875–883. [Google Scholar] [CrossRef]
- Schroers, J.; Johnson, W.L. Ductile Bulk Metallic Glass. Phys. Rev. Lett. 2004, 93, 255506. [Google Scholar] [CrossRef]
- Hofmann, D.C.; Suh, J.-Y.; Wiest, A.; Duan, W.; Lind, M.-L.; Demetriou, M.D.; Johnson, W.L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008, 451, 1085–1089. [Google Scholar] [CrossRef]
- Das, J.; Tang, M.B.; Kim, K.B.; Theissmann, R.; Baier, F.; Wang, W.H.; Eckert, J.H. Work-Hardenable’ Ductile Bulk Metallic Glass. Phys. Rev. Lett. 2005, 94, 205501. [Google Scholar] [CrossRef]
- Etiemble, A.; Loughian, C.D.; Apreutesei, M.; Langlois, C.; Cardinal, S.; Pelletier, J.M.; Pierson, J.-F.; Steyer, P. Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications. J. Alloys Compd. 2017, 707, 155–161. [Google Scholar] [CrossRef]
- Chu, Y.Y.Y.; Lin, Y.S.S.; Chang, C.M.M.; Liu, J.-K.K.; Chen, C.H.H.; Huang, J.C.C. Promising antimicrobial capability of thin film metallic glasses. Mater. Sci. Eng. C 2014, 36, 221–225. [Google Scholar] [CrossRef]
- Lou, B.S.; Yang, Y.C.; Lee, J.W.; Chen, L.T. Biocompatibility and mechanical property evaluation of Zr-Ti-Fe based ternary thin film metallic glasses. Surf. Coat. Technol. 2017, 320, 512–519. [Google Scholar] [CrossRef]
- Chuang, C.-Y.; Lee, J.-W.; Li, C.-L.; Chu, J.P. Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass. Surf. Coat. Technol. 2013, 215, 312–321. [Google Scholar] [CrossRef]
- Chen, H.W.; Hsu, K.-C.; Chan, Y.-C.; Duh, J.-G.; Lee, J.-W.; Ching Jang, J.S.; Chen, G.-J. Antimicrobial properties of Zr-Cu-Al-Ag thin film metallic glass. Thin Solid Film. 2014, 561, 98–101. [Google Scholar] [CrossRef]
- Chu, J.P.; Liu, T.-Y.; Li, C.-L.; Wang, C.-H.; Jang, J.S.C.; Chen, M.-J.; Chang, S.-H.; Huang, W.-C. Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application. Thin Solid Film. 2014, 561, 102–107. [Google Scholar] [CrossRef]
- Cai, C.-N.N.; Zhang, C.; Sun, Y.-S.S.; Huang, H.-H.H.; Yang, C.; Liu, L. ZrCuFeAlAg thin film metallic glass for potential dental applications. Intermetallics 2017, 86, 80–87. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Eckert, J.; Schultz, L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 2003, 51, 1167–1179. [Google Scholar] [CrossRef]
- Yao, K.F.; Zhang, C.Q. Fe-based bulk metallic glass with high plasticity. Appl. Phys. Lett. 2007, 90, 061901. [Google Scholar] [CrossRef]
- Kobayashi, A.; Yano, S.; Kimura, H.; Inoue, A. Fe-based metallic glass coatings produced by smart plasma spraying process. Mater. Sci. Eng. B 2008, 148, 110–113. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, W.T.; Kim, D.H. A development of Ti-based bulk metallic glass. Mater. Sci. Eng. A 2004, 375–377, 127–135. [Google Scholar] [CrossRef]
- Calin, M.; Eckert, J.; Schultz, L. Improved mechanical behavior of Cu-Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scr. Mater. 2003, 48, 653–658. [Google Scholar] [CrossRef]
- Liu, Z.; Chan, K.C.; Liu, L. Enhanced glass forming ability and plasticity of a Ni-free Zr-based bulk metallic glass. J. Alloys Compd. 2009, 487, 152–156. [Google Scholar] [CrossRef]
- Kawashima, A.; Wada, T.; Ohmura, K.; Xie, G.; Inoue, A. A Ni- and Cu-free Zr-based bulk metallic glass with excellent resistance to stress corrosion cracking in simulated body fluids. Mater. Sci. Eng. A 2012, 542, 140–146. [Google Scholar] [CrossRef]
- Greer, A.L. Effect of quench rate on the structural relaxation of a metallic glass. J. Mater. Sci. 1982, 17, 1117–1124. [Google Scholar] [CrossRef]
- Inoue, A.; Kato, A.; Zhang, T.; Kim, S.G.; Masumoto, T. Mg Cu–Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method. Mater. Trans. JIM 1991, 32, 609–616. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic Glasses. Science 1995, 267, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Huang, C.H.; Chuang, J.F.; Lee, H.C.; Liu, M.C.; Du, X.H.; Huang, J.C.; Jang, J.S.C.; Chen, C.H. Simulated body-fluid tests and electrochemical investigations on biocompatibility of metallic glasses. Mater. Sci. Eng. C 2012, 32, 2578–2582. [Google Scholar] [CrossRef]
- Srivastava, A.P.; Babu, D.A.; Verma, A.; Deshmukh, A.A.; Kaushal, A.; Palikundwar, U.A. Understanding the effect of Hf on thermal stability and glass forming ability of Fe57.2Co30.8Zr7-xHfxB4Cu1 (x = 3, 5, and 7) metallic glasses. J. Non-Cryst. Solids 2019, 503–504, 7–12. [Google Scholar] [CrossRef]
- Nagel, C.; Rätzke, K.; Schmidtke, E.; Wolff, J.; Geyer, U. Free-volume changes in the bulk metallic glass and the undercooled liquid. Phys. Rev. B Condens. Matter Mater. Phys. 1998, 57, 10224–10227. [Google Scholar] [CrossRef]
- Davies, H.A.; Aucote, J.; Hull, J.B. Amorphous Nickel produced by Splat Quenching. Nat. Phys. Sci. 1973, 246, 13–14. [Google Scholar] [CrossRef]
- Davies, H.A. The kinetics of formation of A AuGeSi metallic glass. J. Non-Cryst. Solids 1975, 17, 266–272. [Google Scholar] [CrossRef]
- Woychik, C.G.; Lowndes, D.H.; Massalski, T.B. Solidification structures in melt-spun and pulsed laser-quenched Cu-Ti alloys. Acta Metall. 1985, 33, 1861–1871. [Google Scholar] [CrossRef]
- Massalski, T.B.; Woychik, C.G.; Dutkiewicz, J. Solidification structures in rapidly quenched Cu-Ti-Zr alloys. Metall. Trans. A 1988, 19, 1853–1860. [Google Scholar] [CrossRef]
- Lin, C.; Spaepen, F. Fe--B glasses formed by picosecond pulsed laser quenching. Appl. Phys. Lett. 1982, 41, 721–723. [Google Scholar] [CrossRef]
- Lin, C.-J.; Spaepen, F. Nickel-niobium alloys obtained by picosecond pulsed laser quenching. Acta Metall. 1986, 34, 1367–1375. [Google Scholar] [CrossRef]
- McCluskey, P.J.; Vlassak, J.J. Combinatorial nanocalorimetry. J. Mater. Res. 2010, 25, 2086–2100. [Google Scholar] [CrossRef]
- Gregoire, J.M.; McCluskey, P.J.; Dale, D.; Ding, S.; Schroers, J.; Vlassak, J.J. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au–Cu–Si metallic glasses. Scr. Mater. 2012, 66, 178–181. [Google Scholar] [CrossRef]
- Kuball, A.; Stolpe, M.; Busch, R. Crystallization behavior of the Al86Ni8Y6 metallic glass forming alloy upon rapid cooling. J. Alloys Compd. 2018, 737, 398–404. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J.; Sheng, H.; Zhang, Z.; Mao, S.X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014, 512, 177–180. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Li, Z.G.; Li, R.F.; Li, M.; Daze, X.L.; Feng, K.; Wu, Y.X. Microstructure and property of Fe–Co–B–Si–C–Nb amorphous composite coating fabricated by laser cladding process. Appl. Surf. Sci. 2013, 280, 50–54. [Google Scholar] [CrossRef]
- Kawamura, Y.; Ohno, Y. Successful Electron-Beam Welding of Bulk Metallic Glass. Mater. Trans. 2001, 42, 2476–2478. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.Y.; Xiong, J.G.; Xing, L.; Wang, D.; Li, Y. Laser welding of Zr45Cu48Al7 bulk glassy alloy. J. Alloys Compd. 2006, 413, 118–121. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Q.; He, G.; Guo, J. Connection of bulk amorphous alloy Zr55Al10Ni5Cu30 by high current density electropulsing. Mater. Lett. 2003, 57, 2208–2211. [Google Scholar] [CrossRef]
- Kim, J.; Shin, S.; Lee, C. Characterization of the Gas Tungsten Arc Welded Cu54Ni6Zr22Ti18 Bulk Metallic Glass Weld. Mater. Trans. 2005, 46, 1440–1442. [Google Scholar] [CrossRef]
- Pakdil, M.; Çam, G.; Koçak, M.; Erim, S. Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy. Mater. Sci. Eng. A 2011, 528, 7350–7356. [Google Scholar] [CrossRef]
- Wang, G.; Huang, Y.J.; Shagiev, M.; Shen, J. Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass. Mater. Sci. Eng. A 2012, 541, 33–37. [Google Scholar] [CrossRef]
- Kawamura, Y.; Shoji, T.; Ohno, Y. Welding technologies of bulk metallic glasses. J. Non-Cryst. Solids 2003, 317, 152–157. [Google Scholar] [CrossRef]
- Kawamura, Y.; Ohno, Y.; Chiba, A. Development of Welding Technologies in Bulk Metallic Glasses. Mater. Sci. Forum 2002, 13, 553–558. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Z.; Schroers, J. Joining of bulk metallic glasses in air. Acta Mater. 2014, 62, 49–57. [Google Scholar] [CrossRef]
- Kim, J. Weldability of Cu54Zr22Ti18Ni6 bulk metallic glass by ultrasonic welding processing. Mater. Lett. 2014, 130, 160–163. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, Y.; Fujii, H.; Nakata, K.; Nogi, K. Microstructure and mechanical properties of friction stir welded joint of Zr55Cu30Al10Ni5 bulk metallic glass with pure copper. Mater. Sci. Eng. A 2010, 527, 3427–3432. [Google Scholar] [CrossRef]
- Shin, H.-S.; Jeong, Y.-J.; Choi, H.-Y.; Kato, H.; Inoue, A. Friction Welding of Zr55Al10Ni5Cu30 Bulk Metallic Glasses. Mater. Trans. 2005, 46, 2768–2772. [Google Scholar] [CrossRef]
- ACE Powder Metallurgy Ltd. Metal Powder Report No. 52; Elsevier Advanced Technology: Amsterdam, The Netherlands, 1946; Volume 10. [Google Scholar]
- Kawamura, Y.; Ohno, Y. Superplastic bonding of bulk metallic glasses using friction. Scr. Mater. 2001, 45, 279–285. [Google Scholar] [CrossRef]
- Wang, G.; Huang, Y.J.; Makhanlall, D.; Shen, J. Friction joining of Ti40Zr25Ni3Cu12Be20 bulk metallic glass. J. Mater. Process. Technol. 2012, 212, 1850–1855. [Google Scholar] [CrossRef]
- Kagao, S.; Kawamura, Y.; Ohno, Y. Electron-beam welding of Zr-based bulk metallic glasses. Mater. Sci. Eng. A 2004, 375–377, 312–316. [Google Scholar] [CrossRef]
- Kawamura, Y.; Kagao, S.; Ohno, Y. Electron Beam Welding of Zr-Based Bulk Metallic Glass to Crystalline Zr Metal. Mater. Trans. 2001, 42, 2649–2651. [Google Scholar] [CrossRef]
- Kim, J.; Kawamura, Y. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal. Scr. Mater. 2007, 56, 709–712. [Google Scholar] [CrossRef]
- Kim, J.; Kawamura, Y. Dissimilar welding of Zr41Be23Ti14Cu12Ni10 bulk metallic glass and stainless steel. Scr. Mater. 2011, 65, 1033–1036. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, C.; Lee, D.M.; Sun, J.H.; Shin, S.Y.; Bae, J.C. Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass. Mater. Sci. Eng. A 2007, 449–451, 872–875. [Google Scholar] [CrossRef]
- Kawahito, Y.; Terajima, T.; Kimura, H.; Kuroda, T.; Nakata, K.; Katayama, S.; Inoue, A. High-power fiber laser welding and its application to metallic glass Zr55Al10Ni5Cu30. Mater. Sci. Eng. B 2008, 148, 105–109. [Google Scholar] [CrossRef]
- Wang, H.-S.; Chen, H.-G.; Jang, J.S.-C. Microstructure evolution in Nd:YAG laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy. J. Alloys Compd. 2010, 495, 224–228. [Google Scholar] [CrossRef]
- Shao, L.; Datye, A.; Huang, J.; Ketkaew, J.; Sohn, S.W.; Zhao, S.; Wu, S.; Zhang, Y.; Schwarz, U.D.; Schorers, J. Pulsed Laser Beam Welding of Pd43Cu27Ni10P20 Bulk Metallic Glass. Sci. Rep. 2017, 7, 7989. [Google Scholar] [CrossRef]
- Shin, H.-S.; Jung, Y.-C. Characteristics of friction stir spot welding of Zr-based bulk metallic glass sheets. J. Alloys Compd. 2010, 504, S279–S282. [Google Scholar] [CrossRef]
- Shin, H.-S.; Jeong, Y.-J.; Choi, H.-Y.; Kato, H.; Inoue, A. Joining of Zr-based bulk metallic glasses using the friction welding method. J. Alloys Compd. 2007, 434–435, 102–105. [Google Scholar] [CrossRef]
- Ohkubo, T.; Shoji, S.; Kawamura, Y.; Hono, K. Nanostructure analysis of friction welded Pd–Ni–P/Pd–Cu–Ni–P metallic glass interface. Scr. Mater. 2005, 53, 493–497. [Google Scholar] [CrossRef]
- Al-Mamun, N.S.; Deen, K.M.; Haider, W.; Asselin, E.; Shabib, I. Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: The effect of citrate ions. Addit. Manuf. 2020, 34, 101237. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Leu, M.C.; Tsai, H.-L. Mechanical properties of Zr-based bulk metallic glass parts fabricated by laser-foil-printing additive manufacturing. Mater. Sci. Eng. A 2019, 743, 404–411. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Y.; Wu, J. Laser additive manufacturing of structural-graded bulk metallic glass. J. Alloys Compd. 2018, 766, 506–510. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, J.; Li, G.; Fuh, J.Y.H.; Jiang, H.; Gau, P.; Zhang, L.; Liu, W.; Zhao, J. Ultrasonic additive manufacturing of bulk Ni-based metallic glass. J. Non-Cryst. Solids 2019, 506, 1–5. [Google Scholar] [CrossRef]
- Mahbooba, Z.; Thorsson, L.; Unosson, M.; Skoglund, P.; West, H.; Horn, T.; Rock, C.; Vogli, E.; Harrysson, O. Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness. Appl. Mater. Today 2018, 11, 264–269. [Google Scholar] [CrossRef]
- Ouyang, D.; Li, N.; Xing, W.; Zhang, J.; Liu, L. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting. Intermetallics 2017, 90, 128–134. [Google Scholar] [CrossRef]
- Ouyang, D.; Li, N.; Liu, L. Structural heterogeneity in 3D printed Zr-based bulk metallic glass by selective laser melting. J. Alloys Compd. 2018, 740, 603–609. [Google Scholar] [CrossRef]
- Santos, E.C.; Shiomi, M.; Osakada, K.; Laoui, T. Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 2006, 46, 1459–1468. [Google Scholar] [CrossRef]
- Pauly, S.; Löber, L.; Petters, R.; Stoica, M.; Scudino, S.; Kühn, U.; Eckert, J.H. Processing metallic glasses by selective laser melting. Mater. Today 2013, 16, 37–41. [Google Scholar] [CrossRef]
- Chen, P.S.; Tsai, P.H.; Li, T.H.; Jang, J.S.; Huang, J.C.; Lin, C.H.; Pan, C.T.; Lin, H.K. Development and Fabrication of Biocompatible Ti-Based Bulk Metallic Glass Matrix Composites for Additive Manufacturing. Materials 2023, 16, 5935. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, A.A.; Panwisawas, C.; Shinjo, J.; Puncreobutr, C.; Reed, R.C.; Poungsiri, K.; Lohwongwatana, B. Laser-based additive manufacturing of bulk metallic glasses: Recent advances and future perspectives for biomedical applications. J. Mater. Res. Technol. 2023, 23, 2956–2990. [Google Scholar] [CrossRef]
- Elahinia, M.H.; Hashemi, M.; Tabesh, M.; Bhaduri, S.B. Manufacturing and processing of NiTi implants: A review. Prog. Mater. Sci. 2012, 57, 911–946. [Google Scholar] [CrossRef]
- Khan, M.M.; Nemati, A.; Rahman, Z.U.; Shah, U.H.; Asgar, H.; Haider, W. Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2018, 43, 233–268. [Google Scholar] [CrossRef]
- Zheng, B.; Zhou, Y.; Smugeresky, J.E.; Lavernia, E.J. Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping. Int. J. Powder Metall. 2009, 45, 27–39. [Google Scholar] [CrossRef]
- Jung, H.Y.; Choi, S.J.; Prashanth, K.G.; Stoica, M.; Scudino, S.; Yi, S.; Kühn, U.; Kim, D.H.; Kim, K.B.; Eckert, J.H. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study. Mater. Des. 2015, 86, 703–708. [Google Scholar] [CrossRef]
- Li, X.P.; Roberts, M.P.; O’Keeffe, S.; Sercombe, T.B. Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and mechanical properties. Mater. Des. 2016, 112, 217–226. [Google Scholar] [CrossRef]
- Li, X.P.; Kang, C.W.; Huang, H.; Sercombe, T.B. The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting. Mater. Des. 2014, 63, 407–411. [Google Scholar] [CrossRef]
- Li, X.P.; Roberts, M.; Liu, Y.J.; Kang, C.W.; Huang, H.; Sercombe, T.B. Effect of substrate temperature on the interface bond between support and substrate during selective laser melting of Al–Ni–Y–Co–La metallic glass. Mater. Des. 2015, 65, 1–6. [Google Scholar] [CrossRef]
- Deng, L.; Wang, S.; Wang, P.; Kühn, U.; Pauly, S. Selective laser melting of a Ti-based bulk metallic glass. Mater. Lett. 2018, 212, 346–349. [Google Scholar] [CrossRef]
- Pauly, S.; Schricker, C.; Scudino, S.; Deng, L.; Kühn, U. Processing a glass-forming Zr-based alloy by selective laser melting. Mater. Des. 2017, 135, 133–141. [Google Scholar] [CrossRef]
- Li, N.; Zhang, J.; Xing, W.; Ouyang, D.; Liu, L. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater. Des. 2018, 143, 285–296. [Google Scholar] [CrossRef]
- Nong, X.D.; Zhou, X.L.; Ren, Y.X. Fabrication and characterization of Fe-based metallic glasses by Selective Laser Melting. Opt. Laser Technol. 2019, 109, 20–26. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Li, H.; Xu, H.; Huang, G.; Qin, Z.; Lu, X. Crystallization prediction on laser three-dimensional printing of Zr-based bulk metallic glass. J. Non-Cryst. Solids 2017, 461, 12–17. [Google Scholar] [CrossRef]
- Zheng, B.; Ashford, D.; Zhou, Y.; Mathaudhu, S.N.; Delplanque, J.-P.; Lavernia, E.J. Influence of mechanically milled powder and high pressure on spark plasma sintering of Mg–Cu–Gd metallic glasses. Acta Mater. 2013, 61, 4414–4428. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Z.; Hu, K.; Chen, H.; Yang, C. Crystallization kinetics and spark plasma sintering of amorphous Ni53Nb20Ti10Zr8Co6Ta3 powders prepared by mechanical alloying. Vacuum 2015, 114, 93–100. [Google Scholar] [CrossRef]
- Xie, G.Q.; Louzguine-Luzgin, D.V.; Fukuhara, M.; Kimura, H.; Inoue, A. Consolidation Behavior of Cu-Zr-Al Metallic Glass Powder by Spark Plasma Sintering. Mater. Sci. Forum 2010, 654–656, 1086–1089. [Google Scholar] [CrossRef]
- Kim, C.K.; Lee, S.; Shin, S.Y.; Kim, D.H. Effects of consolidation temperature and pressure on microstructures and mechanical properties of Cu-based bulk amorphous alloys consolidated by spark plasma sintering. J. Alloys Compd. 2008, 453, 108–114. [Google Scholar] [CrossRef]
- Cardinal, S.; Pelletier, J.M.; Qiao, J.C.; Bonnefont, G.; Xie, G. Influence of spark plasma sintering parameters on the mechanical properties of Cu50Zr45Al5 bulk metallic glass obtained using metallic glass powder. Mater. Sci. Eng. A 2016, 677, 116–124. [Google Scholar] [CrossRef]
- Lee, M.H.; Bae, D.H.; Kim, W.T.; Kim, D.H.; Rozhkova, E.; Wheelock, P.B.; Sordelet, D.J. Synthesis of Ni-based bulk amorphous alloys by warm extrusion of amorphous powders. J. Non-Cryst. Solids 2003, 315, 89–96. [Google Scholar] [CrossRef]
- Robertson, J.; Im, J.-T.; Karaman, I.; Hartwig, K.T.; Anderson, I.E. Consolidation of amorphous copper based powder by equal channel angular extrusion. J. Non-Cryst. Solids 2003, 317, 144–151. [Google Scholar] [CrossRef]
- Sordelet, D.J.; Rozhkova, E.; Huang, P.; Wheelock, P.B.; Besser, M.F.; Kramer, M.J.; Calvo-Dahlborg, M.; Dahlborg, U. Synthesis of Cu47Ti34Zr11Ni8 Bulk Metallic Glass by Warm Extrusion of Gas Atomized Powders. J. Mater. Res. 2002, 17, 186–198. [Google Scholar] [CrossRef]
- Kim, Y.B.; Jang, D.H.; Seok, H.K.; Kim, K.Y. Fabrication of Fe–Si–B based amorphous powder cores by cold pressing and their magnetic properties. Mater. Sci. Eng. A 2007, 449–451, 389–393. [Google Scholar] [CrossRef]
- Kim, Y.B.; Park, H.M.; Jeung, W.Y.; Bae, J.S. Vacuum hot pressing of gas-atomized Ni–Zr–Ti–Si–Sn amorphous powder. Mater. Sci. Eng. A 2004, 368, 318–322. [Google Scholar] [CrossRef]
- Deng, S.S.; Wang, D.J.; Luo, Q.; Huang, Y.J.; Shen, J. Spark plasma sintering of gas atomized AlNiYLaCo amorphous powders. Adv. Powder Technol. 2015, 26, 1696–1701. [Google Scholar] [CrossRef]
- Kim, C.K.; Son, C.-Y.; Ha, D.J.; Yoon, T.S.; Lee, S.; Kim, N.J. Microstructure and mechanical properties of powder-injection-molded products of Cu-based amorphous powders and Fe-based metamorphic powders. Mater. Sci. Eng. A 2008, 476, 69–77. [Google Scholar] [CrossRef]
- Cai, A.; Xiong, X.; Liu, Y.; An, W.; Zhou, G.; Lou, Y.; Li, T.; Li, X. Effect of consolidation parameters on mechanical properties of Cu-based bulk amorphous alloy consolidated by hot pressing. Trans. Nonferrous Met. Soc. China 2012, 22, 2032–2040. [Google Scholar] [CrossRef]
- Kelly, J.P.; Fuller, S.M.; Seo, K.; Novitskaya, E.; Eliasson, V.; Hodge, A.M.; Graeve, O.A. Designing in situ and ex situ bulk metallic glass composites via spark plasma sintering in the super cooled liquid state. Mater. Des. 2016, 93, 26–38. [Google Scholar] [CrossRef]
- Cardinal, S.; Pelletier, J.M.; Xie, G.Q.; Mercier, F. Manufacturing of Cu-based metallic glasses matrix composites by spark plasma sintering. Mater. Sci. Eng. A 2018, 711, 405–414. [Google Scholar] [CrossRef]
- Lee, M.H.; Sordelet, D.J. Nanoporous metallic glass with high surface area. Scr. Mater. 2006, 55, 947–950. [Google Scholar] [CrossRef]
- Xie, G.; Qin, F.; Zhu, S.; Louzguine-Lugzin, D.V. Corrosion behaviour of porous Ni-free Ti-based bulk metallic glass produced by spark plasma sintering in Hanks’ solution. Intermetallics 2014, 44, 55–59. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, W.; Louzguine-Luzgin, D.V.; Kimura, H.; Inoue, A. Fabrication of porous Zr–Cu–Al–Ni bulk metallic glass by spark plasma sintering process. Scr. Mater. 2006, 55, 687–690. [Google Scholar] [CrossRef]
- Lee, M.H.; Sordelet, D.J. Synthesis of bulk metallic glass foam by powder extrusion with a fugitive second phase. Appl. Phys. Lett. 2006, 89, 021921. [Google Scholar] [CrossRef]
- Qiu, K.; Yu, B.; Ren, Y. Porous bulk metallic glass fabricated by powder hot pressing. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 2007, 14, 59–63. [Google Scholar] [CrossRef]
- Choi, P.P.; Kim, J.S.; Nguyen, O.T.H.; Kwon, D.H.; Kwon, Y.S.; Kim, J.C. Al-La-Ni-Fe bulk metallic glasses produced by mechanical alloying and spark-plasma sintering. Mater. Sci. Eng. A 2007, 449–451, 1119–1122. [Google Scholar] [CrossRef]
- Xie, G.; Louzguine-Luzgin, D.V.; Kimura, H.; Inoue, A. Nearly full density Ni52.5Nb10Zr15Ti15Pt7.5 bulk metallic glass obtained by spark plasma sintering of gas atomized powders. Appl. Phys. Lett. 2007, 90, 241902. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, H.J.; Kim, T.S.; Shin, S.Y.; Kim, Y.C.; Bae, J.C. Deformation behavior of Ni-based bulk metallic glass synthesized by spark plasma sintering. J. Mater. Process. Technol. 2007, 187–188, 801–804. [Google Scholar] [CrossRef]
- Lee, S.; Kato, H.; Kubota, T.; Makino, A.; Inoue, A. Fabrication and soft-magnetic properties of Fe–B–Nb–Y glassy powder compacts by spark plasma sintering technique. Intermetallics 2009, 17, 218–221. [Google Scholar] [CrossRef]
- Xie, G.; Louzguine-Luzgin, D.V.; Song, L.; Kimura, H.; Inoue, A. Dual phase metallic glassy composites with large-size and ultra-high strength fabricated by spark plasma sintering. Intermetallics 2009, 17, 512–516. [Google Scholar] [CrossRef]
- Harimkar, S.P.; Paital, S.R.; Singh, A.; Aalund, R.; Dahotre, N.B. Microstructure and properties of spark plasma sintered Fe–Cr–Mo–Y–B–C bulk metallic glass. J. Non-Cryst. Solids 2009, 355, 2179–2182. [Google Scholar] [CrossRef]
- Ishihara, S.; Zhang, W.; Kimura, H.; Omori, M.; Inoue, A. Consolidation of Fe-Co-Nd-Dy-B Glassy Powders by Spark-Plasma Sintering and Magnetic Properties of the Consolidated Alloys. Mater. Trans. 2003, 44, 138–143. [Google Scholar] [CrossRef]
- Li, Q.; Wang, G.; Song, X.; Fan, L.; Hu, W.; Xiao, F.; Yang, Q.; Ma, M.; Zhang, J.; Liu, R. Ti50Cu23Ni20Sn7 bulk metallic glasses prepared by mechanical alloying and spark-plasma sintering. J. Mater. Process. Technol. 2009, 209, 3285–3288. [Google Scholar] [CrossRef]
- Mahieu, S.; Depla, D. Reactive sputter deposition of TiN layers: Modelling the growth by characterization of particle fluxes towards the substrate. J. Phys. D Appl. Phys. 2009, 42, 053002. [Google Scholar] [CrossRef]
- Van Steenberge, S.; Leroy, W.P.; Hubin, A.; Depla, D. Momentum transfer driven textural changes of CeO2 thin films. Appl. Phys. Lett. 2014, 105, 111602. [Google Scholar] [CrossRef]
- Liu, Y.; Padmanabhan, J.; Cheung, B.; Liu, J.; Chen, Z.; Scanley, B.E.; Wesolowski, D.; Pressley, M.; Broadbridge, C.C.; Altman, S.; et al. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses. Sci. Rep. 2016, 6, 26950. [Google Scholar] [CrossRef] [PubMed]
- Bouala, G.I.N.; Etiemble, A.; Der Loughian, C.; Langlois, C.; Pierson, J.-F.; Steyer, P. Silver influence on the antibacterial activity of multi-functional Zr-Cu based thin film metallic glasses. Surf. Coat. Technol. 2018, 343, 108–114. [Google Scholar] [CrossRef]
- Chu, C.W.; Jang, J.S.C.; Chen, G.J.; Chiu, S.M. Characteristic studies on the Zr-based metallic glass thin film fabricated by magnetron sputtering process. Surf. Coat. Technol. 2008, 202, 5564–5566. [Google Scholar] [CrossRef]
- Deng, Y.P.; Guan, Y.F.; Fowlkes, J.D.; Wen, S.Q.; Liu, F.X.; Pharr, G.M.; Liaw, P.K.; Liu, C.T.; Rack, P.D. A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics 2007, 15, 1208–1216. [Google Scholar] [CrossRef]
- Chou, H.S.; Huang, J.C.; Chang, L.W. Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum. Surf. Coat. Technol. 2010, 205, 587–590. [Google Scholar] [CrossRef]
- Ketov, S.V.; Shi, X.; Xie, G.; Kumashiro, R.; Churyumov, A.Y.; Bazlov, A.I.; Chen, N.; Ishikawa, Y.; Asao, N.; Wu, H.; et al. Nanostructured Zr-Pd metallic glass thin film for biochemical applications. Sci. Rep. 2015, 5, 7799. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.X.; Yang, F.Q.; Gao, Y.F.; Jiang, W.h.; Guan, Y.F.; Rack, P.D.; Sergic, O.; Liaw, P.K. Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film. Surf. Coat. Technol. 2009, 203, 3480–3484. [Google Scholar] [CrossRef]
- Lai, J.J.; Lin, Y.S.; Chang, C.H.; Wei, T.Y.; Huang, J.C.; Liao, Z.X.; Lin, C.H.; Chen, C.H. Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications. Appl. Surf. Sci. 2018, 427, 485–495. [Google Scholar] [CrossRef]
- Chu, J.H.; Lee, J.; Chang, C.C.; Chan, Y.C.; Liou, M.L.; Lee, J.W.; Jang, J.S.C.; Duh, J.G. Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass. Surf. Coat. Technol. 2014, 259, 87–93. [Google Scholar] [CrossRef]
- Peter, W.H.H.; Buchanan, R.A.; Liu, C.T.; Liaw, P.K.; Morrison, M.L.; Horton, J.A.; Carmichael Jr, C.A.; Wright, J.L. Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 2002, 10, 1157–1162. [Google Scholar] [CrossRef]
- Pang, S.; Liu, Y.; Li, H.; Sun, L.; Li, Y.; Zhang, T. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications. J. Alloys Compd. 2014, 625, 323–327. [Google Scholar] [CrossRef]
- Tsai, P.H.H.; Lin, Y.Z.; Li, J.B.; Jian, S.R.; Jang, J.S.C.; Li, C.; Chu, J.P.; Huang, J.C. Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics 2012, 31, 127–131. [Google Scholar] [CrossRef]
- Huang, L.; Cao, Z.; Meyer, H.M.; Liaw, P.K.; Garlea, E.; Dunlap, J.R.; Zhang, T.; He, W. Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness. Acta Biomater. 2011, 7, 395–405. [Google Scholar] [CrossRef]
- Lee, M.; Lee, C.-M.; Lee, K.-R.; Ma, E.; Lee, J.-C. Networked interpenetrating connections of icosahedra: Effects on shear transformations in metallic glass. Acta Mater. 2011, 59, 159–170. [Google Scholar] [CrossRef]
- Hui, X.; Fang, H.Z.; Chen, G.L.; Shang, S.L.; Wang, Y.; Qin, J.Y.; Liu, Z.K. Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy. Acta Mater. 2009, 57, 376–391. [Google Scholar] [CrossRef]
- Bernal, J.D. Geometry of the Structure of Monatomic Liquids. Nature 1960, 185, 68–70. [Google Scholar] [CrossRef]
- Sheng, H.W.; Luo, W.K.; Alamgir, F.M.; Bai, J.M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, P.H. A new structural model for amorphous transition metal silicides, borides, phosphides and carbides. J. Non-Cryst. Solids 1979, 32, 207–224. [Google Scholar] [CrossRef]
- Miracle, D.B. A structural model for metallic glasses. Nat. Mater. 2004, 3, 697–702. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.; Bian, X.; Li, H.; Wang, W.; Wu, S. Short-range and medium-range order in liquid and amorphous Al90Fe5Ce5 alloys. J. Non-Cryst. Solids 2000, 262, 169–176. [Google Scholar] [CrossRef]
- Hirotsu, Y.; Matsushita, M.; Ohkubo, T.; Makino, A.; Oikawa, T. Average and local structures of amorphous Pd75Si25 alloy analyzed by modern electron diffraction techniques. Mater. Sci. Eng. A 1997, 226–228, 274–279. [Google Scholar] [CrossRef]
- Dubois, J.M.; Le Caer, G. Ordre local et proprietes physiques des verres metalliques riches en fer. Acta Metall. 1984, 32, 2101–2114. [Google Scholar] [CrossRef]
- Hufnagel, T.C.; Brennan, S. Short- and medium-range order in (Zr70Cu20Ni10…90)xTaxAl10 bulk amorphous alloys. Phys. Rev. B 2003, 67, 014203. [Google Scholar] [CrossRef]
- Sietsma, J.; Thijsse, B.J. An investigation of universal medium range order in metallic glasses. J. Non-Cryst. Solids 1991, 135, 146–154. [Google Scholar] [CrossRef]
- Wakeda, M.; Shibutani, Y. Icosahedral clustering with medium-range order and local elastic properties of amorphous metals. Acta Mater. 2010, 58, 3963–3969. [Google Scholar] [CrossRef]
- Dougherty, G.M.; He, Y.; Shiflet, G.J.; Poon, S.J. Compositional dependence of glass formability in AlNiFeGd amorphous alloys. Scr. Metall. Mater. 1994, 30, 101–106. [Google Scholar] [CrossRef]
- Yavari, A.R.; Uriarte, J.-L.; Inoue, A. Volume Effects in Amorphisation by Rapid Solidification and Solid-State Reaction and in Bulk Glass-Forming Alloys. Mater. Sci. Forum 2009, 269–272, 533–540. [Google Scholar] [CrossRef]
- Battezzati, L.; Baricco, M. An analysis of volume effects in metallic glass formation. J. Less Common Met. 1988, 145, 31–38. [Google Scholar] [CrossRef]
- Mukherjee, S.; Schroers, J.; Zhou, Z.; Johnson, W.L.; Rhim, W.-K. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 2004, 52, 3689–3695. [Google Scholar] [CrossRef]
- Jiang, Q.K.; Wang, X.D.; Nie, X.P.; Zhang, G.Q.; Ma, H.; Fecht, H.-J.; Bendnarcik, J.; Franz, H.; Liu, Y.G.; Cao, Q.P.; et al. Zr–(Cu,Ag)–Al bulk metallic glasses. Acta Mater. 2008, 56, 1785–1796. [Google Scholar] [CrossRef]
- Khan, M.M.; Shabib, I.; Haider, W. A combinatorially developed Zr-Ti-Fe-Al metallic glass with outstanding corrosion resistance for implantable medical devices. Scr. Mater. 2019, 162, 223–229. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhang, L.; Dong, A.P.; Wang, L.T.; Zeng, Y.W.; Meng, L. Effects of Cr and Zr additions on the microstructure and properties of Cu–6 wt.% Ag alloys. Mater. Sci. Eng. A 2012, 532, 331–338. [Google Scholar] [CrossRef]
- Wang, H.-S.; Su, Y.-Z.; Jang, J.S.-C.; Chen, H.-G. A comparison of crystallization behaviors of laser spot welded Zr–Cu–Ag–Al and Zr–Cu–Ni–Al bulk metallic glasses. Mater. Chem. Phys. 2013, 139, 215–219. [Google Scholar] [CrossRef]
- Apreutesei, M.; Billard, A.; Steyer, P. Crystallization and hardening of Zr-40 at. % Cu thin film metallic glass: Effects of isothermal annealing. Mater. Des. 2015, 86, 555–563. [Google Scholar] [CrossRef]
- Ishii, A.; Iwase, A.; Fukumoto, Y.; Yokoyama, Y.; Konno, T.J.; Hori, F. Effect of thermal annealing on the local structure in ZrCuAl bulk metallic glass. J. Alloys Compd. 2010, 504, S230–S233. [Google Scholar] [CrossRef]
- He, G.; Zhang, Z.F.; Löser, W.; Eckert, J.; Schultz, L. Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass. Acta Mater. 2003, 51, 2383–2395. [Google Scholar] [CrossRef]
- Inoue, A.; Shibata, T.; Zhang, T. Effect of Additional Elements on Glass Transition Behavior and Glass Formation Tendency of Zr-Al-Cu-Ni Alloys. Mater. Trans. JIM 1995, 36, 1420–1426. [Google Scholar] [CrossRef]
- Choi-Yim, H.; Conner, R.D.; Szuecs, F.; Johnson, W.L. Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 2002, 50, 2737–2745. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W. Formation, Thermal Stability and Mechanical Properties of Cu-Zr-Al Bulk Glassy Alloys. Mater. Trans. 2005, 43, 2921–2925. [Google Scholar] [CrossRef]
- Pang, S.J.; Zhang, T.; Asami, K.; Inoue, A. Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 2002, 50, 489–497. [Google Scholar] [CrossRef]
- Inoue, A. High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates. Mater. Trans. JIM 1995, 36, 866–875. [Google Scholar] [CrossRef]
- Wu, J.; Grosdidier, T.; Allain-Bonasso, N.; Gaffet, E.; Dong, C. On the mechanically induced crystallization of FCC phases by mechanical milling in ZrAlNiCu bulk metallic glasses. J. Alloys Compd. 2010, 504, S264–S266. [Google Scholar] [CrossRef]
- Axinte, E. Metallic glasses from ‘alchemy’ to pure science: Present and future of design, processing and applications of glassy metals. Mater. Des. 2012, 35, 518–556. [Google Scholar] [CrossRef]
- Telford, M. The case for bulk metallic glass. Mater. Today 2004, 7, 36–43. [Google Scholar] [CrossRef]
- Liu, L.; Qiu, C.L.; Huang, C.Y.; Yu, Y.; Huang, H.; Zhang, S.M. Biocompatibility of Ni-free Zr-based bulk metallic glasses. Intermetallics 2009, 17, 235–240. [Google Scholar] [CrossRef]
- Liu, C.T.; Heatherly, L.; Horton, J.A.; Easton, D.S.; Carmichael, C.A.; Wright, J.L.; Schneibel, J.H.; Yoo, M.H.; Chen, C.H.; Inoue, A. Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 1998, 29, 1811–1820. [Google Scholar] [CrossRef]
- Hua, N.; Huang, L.; Chen, W.; He, W.; Zhang, T. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: Compositional optimization for potential biomedical applications. Mater. Sci. Eng. C 2014, 44, 400–410. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.-M.M.; Pang, H.-F.F.; Zhao, Q.; Liu, L. A Ni-free ZrCuFeAlAg bulk metallic glass with potential for biomedical applications. Acta Biomater. 2013, 9, 7043–7053. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Fan, H.; Liu, F.; Shen, J.; Sun, J.; Chen, J.J.J. Comparison of mechanical behaviors of several bulk metallic glasses for biomedical application. J. Non-Cryst. Solids 2014, 406, 144–150. [Google Scholar] [CrossRef]
- Zhu, S.L.L.; Wang, X.M.M.; Qin, F.X.; Inoue, A.; Qin, F.X.; Inoue, A. A new Ti-based bulk glassy alloy with potential for biomedical application. Mater. Sci. Eng. A 2007, 459, 233–237. [Google Scholar] [CrossRef]
- Wang, J.G.; Choi, B.W.; Nieh, T.G.; Liu, C.T. Crystallization and nanoindentation behavior of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. J. Mater. Res. 2000, 15, 798–807. [Google Scholar] [CrossRef]
- Xie, G.; Qin, F.; Zhu, S.; Inoue, A. Ni-free Ti-based bulk metallic glass with potential for biomedical applications produced by spark plasma sintering. Intermetallics 2012, 29, 99–103. [Google Scholar] [CrossRef]
- Oak, J.J.; Louzguine-Luzgin, D.V.; Inoue, A. Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants. Mater. Sci. Eng. C 2009, 29, 322–327. [Google Scholar] [CrossRef]
- Jin, K.; Löffler, J.F. Bulk metallic glass formation in Zr–Cu–Fe–Al alloys. Appl. Phys. Lett. 2005, 86, 241909. [Google Scholar] [CrossRef]
- Gu, X.J.; Poon, S.J.; Shiflet, G.J. Mechanical properties of iron-based bulk metallic glasses. J. Mater. Res. 2007, 22, 344–351. [Google Scholar] [CrossRef]
- Conner, R.D.; Dandliker, R.B.; Johnson, W.L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 1998, 46, 6089–6102. [Google Scholar] [CrossRef]
- Qiu, K.Q.; Wang, A.M.; Zhang, H.F.; Ding, B.Z.; Hu, Z.Q. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics 2002, 10, 1283–1288. [Google Scholar] [CrossRef]
- Wright, W.; Saha, R.; Nix, W. Deformation Mechanisms of the Zr40Ti14Ni10Cu12Be24 Bulk Metallic Glass. Mater. Trans. 2001, 42, 642–649. [Google Scholar] [CrossRef]
- Tang, C.; Li, Y.; Zeng, K. Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques. Mater. Sci. Eng. A 2004, 384, 215–223. [Google Scholar] [CrossRef]
- Bei, H.; Lu, Z.P.; George, E.P. Theoretical Strength and the Onset of Plasticity in Bulk Metallic Glasses Investigated by Nanoindentation with a Spherical Indenter. Phys. Rev. Lett. 2004, 93, 125504. [Google Scholar] [CrossRef]
- Liu, L.; Chan, K.C. Plastic deformation of Zr-based bulk metallic glasses under nanoindentation. Mater. Lett. 2005, 59, 3090–3094. [Google Scholar] [CrossRef]
- Fornell, J.; Pellicer, E.; Steenberge, N.V.; González, S.; Gebert, A.; Suriñach, S.; Baró, M.D.; Sort, J. Improved plasticity and corrosion behavior in Ti–Zr–Cu–Pd metallic glass with minor additions of Nb: An alloy composition intended for biomedical applications. Mater. Sci. Eng. A 2013, 559, 159–164. [Google Scholar] [CrossRef]
- Huang, Y.; Chiu, Y.L.; Shen, J.; Chen, J.J.J.; Sun, J. Nanoindentation study of Ti-based metallic glasses. J. Alloys Compd. 2009, 479, 121–128. [Google Scholar] [CrossRef]
- Subramanian, B. In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels. Mater. Sci. Eng. C 2015, 47, 48–56. [Google Scholar] [CrossRef]
- Kim, Y.C.; Bae, D.H.; Kim, W.T.; Kim, D.H. Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength. J. Non-Cryst. Solids 2003, 325, 242–250. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W.; Zhang, T.; Kurosaka, K. High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 2001, 49, 2645–2652. [Google Scholar] [CrossRef]
- Jiang, W.H.; Liu, F.X.; Wang, Y.D.; Zhang, H.F.; Choo, H.; Liaw, P.K. Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses. Mater. Sci. Eng. A 2006, 430, 350–354. [Google Scholar] [CrossRef]
- Qin, C.L.; Zhang, W.; Asami, K.; Kimura, H.; Wang, X.M.; Inoue, A. A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Mater. 2006, 54, 3713–3719. [Google Scholar] [CrossRef]
- Park, E.S.; Kim, D.H.; Ohkubo, T.; Hono, K. Enhancement of glass forming ability and plasticity by addition of Nb in Cu–Ti–Zr–Ni–Si bulk metallic glasses. J. Non-Cryst. Solids 2005, 351, 1232–1238. [Google Scholar] [CrossRef]
- Cheung, T.L.; Shek, C.H. Thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses. J. Alloys Compd. 2007, 434–435, 71–74. [Google Scholar] [CrossRef]
- Jia, P.; Guo, H.; Li, Y.; Xu, J.; Ma, E. A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scr. Mater. 2006, 54, 2165–2168. [Google Scholar] [CrossRef]
- Bian, Z.; Kato, H.; Qin, C.; Zhang, W.; Inoue, A. Cu–Hf–Ti–Ag–Ta bulk metallic glass composites and their properties. Acta Mater. 2005, 53, 2037–2048. [Google Scholar] [CrossRef]
- Chen, Q.J.; Shen, J.; Zhang, D.L.; Fan, H.B.; Sun, J.F. Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass. J. Mater. Res. 2007, 22, 358–363. [Google Scholar] [CrossRef]
- Fornell, J.; González, S.; Rossinyol, E.; Suriñach, S.; Baró, M.D.; Louzguine-Luzgin, D.V.; Perepezko, J.H.; Sort, J.; Inoue, A. Enhanced mechanical properties due to structural changes induced by devitrification in Fe–Co–B–Si–Nb bulk metallic glass. Acta Mater. 2010, 58, 6256–6266. [Google Scholar] [CrossRef]
- Shen, B.; Chang, C.; Inoue, A. Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)–B–Si–Nb bulk glassy alloys. Intermetallics 2007, 15, 9–16. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.L.; Chang, C.T. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 2004, 52, 4093–4099. [Google Scholar] [CrossRef]
- Gu, X.J.; Poon, S.J.; Shiflet, G.J.; Widom, M. Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure. Acta Mater. 2008, 56, 88–94. [Google Scholar] [CrossRef]
- Xu, F.; Ding, Y.H.; Deng, X.H.; Zhang, P.; Long, Z.L. Indentation size effects in the nano- and micro-hardness of a Fe-based bulk metallic glass. Phys. B Condens. Matter 2014, 450, 84–89. [Google Scholar] [CrossRef]
- Schuster, B.E.; Wei, Q.; Hufnagel, T.C.; Ramesh, K.T. Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater. 2008, 56, 5091–5100. [Google Scholar] [CrossRef]
- Choi-Yim, H.; Xu, D.; Johnson, W.L. Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 2003, 82, 1030–1032. [Google Scholar] [CrossRef]
- Li, H.; Pang, S.; Liu, Y.; Liaw, P.K.; Zhang, T. In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. J. Non-Cryst. Solids 2015, 427, 134–138. [Google Scholar] [CrossRef]
- Li, H.F.; Xie, X.H.; Zhao, K.; Wang, Y.B.; Zheng, Y.F.; Wang, W.H.; Qin, L. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater. 2013, 9, 8561–8573. [Google Scholar] [CrossRef]
- Inoue, A.; Ohtera, K.; Tsai, A.-P.; Masumoto, T. Aluminum-Based Amorphous Alloys with Tensile Strength above 980 MPa (100 kg/mm2). Jpn. J. Appl. Phys. 1988, 27, L479–L482. [Google Scholar] [CrossRef]
- Gilbert, C.J.; Ritchie, R.O.; Johnson, W.L. Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 1997, 71, 476–478. [Google Scholar] [CrossRef]
- Kawamura, Y.; Kato, H.; Inoue, A.; Masumoto, T. Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state. Appl. Phys. Lett. 1995, 67, 2008–2010. [Google Scholar] [CrossRef]
- Choi-Yim, H.; Busch, R.; Köster, U.; Johnson, W.L. Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 1999, 47, 2455–2462. [Google Scholar] [CrossRef]
- Fan, C.; Li, C.; Inoue, A.; Haas, V. Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys. Phys. Rev. B 2000, 61, R3761–R3763. [Google Scholar] [CrossRef]
- Leonhard, A.; Xing, L.Q.; Heilmaier, M.; Gebert, A.; Eckert, J.; Schultz, L. Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 1998, 10, 805–817. [Google Scholar] [CrossRef]
- Fan, C.; Takeuchi, A.; Inoue, A. Preparation and Mechanical Properties of Zr-based Bulk Nanocrystalline Alloys Containing Compound and Amorphous Phases. Mater. Trans. JIM 1999, 40, 42–51. [Google Scholar] [CrossRef]
- Eckert, J.; Mattern, N.; Zinkevitch, M.; Seidel, M. Crystallization behavior and phase formation in Zr–Al–Cu–Ni metallic glass containing oxygen. Mater. Trans. JIM 1998, 39, 623–632. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, G.; Qu, R.T.; Zhang, Z.F.; Wu, S.J.; Zhang, T. Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites. Sci. Rep. 2015, 4, 4167. [Google Scholar] [CrossRef]
- Eckert, J.; Das, J.; Kim, K.B.; Baier, F.; Tang, M.B.; Wang, W.H.; Zhang, Z.F. High strength ductile Cu-base metallic glass. Intermetallics 2006, 14, 876–881. [Google Scholar] [CrossRef]
- Pauly, S.; Liu, G.; Wang, G.; Kühn, U.; Mattern, N.; Eckert, J.H. Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater. 2009, 57, 5445–5453. Available online: https://www.sciencedirect.com/science/article/pii/S1359645409004765 (accessed on 21 June 2023). [CrossRef]
- Wu, Y.; Xiao, Y.; Chen, G.; Liu, C.T.; Lu, Z. Bulk Metallic Glass Composites with Transformation-Mediated Work-Hardening and Ductility. Adv. Mater. 2010, 22, 2770–2773. [Google Scholar] [CrossRef]
- Wu, Y.; Song, W.L.; Zhang, Z.Y.; Hui, X.; Ma, D.; Wang, X.; Shang, X.; Lu, Z. Relationship between composite structures and compressive properties in CuZr-based bulk metallic glass system. Chin. Sci. Bull. 2011, 56, 3960–3964. [Google Scholar] [CrossRef]
- Liu, Z.; Li, R.; Liu, G.; Su, W.; Wang, H.; Li, Y.; Shi, M.; Luo, X.; Wu, G.; Zhang, T. Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Mater. 2012, 60, 6–7. [Google Scholar] [CrossRef]
- Aditya, A.V.; Arora, H.S.; Mukherjee, S. Corrosion behavior of ZrTiCuNiBe bulk metallic glass subjected to friction stir processing. J. Non-Cryst. Solids 2015, 425, 124–129. [Google Scholar] [CrossRef]
- Jabed, A.; Khan, M.M.; Camiller, J.; Greenlee-Wacker, M.; Haider, W.; Shabib, I. Property optimization of Zr-Ti-X (X = Ag, Al) metallic glass via combinatorial development aimed at prospective biomedical application. Surf. Coat. Technol. 2019, 372, 278–287. [Google Scholar] [CrossRef]
- Morrison, M.L.L.; Buchanan, R.A.A.; Peker, A.; Peter, W.H.H.; Horton, J.A.A.; Liaw, P.K.K. Cyclic-anodic-polarization studies of a Zr41.2Ti 13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallic 2004, 12, 1177–1181. [Google Scholar] [CrossRef]
- Jabed, A.; Kumar, G. Effect of cryogenic cycling and above-Tg annealing on the corrosion behavior of Zr-Cu-Ti-Be metallic glass. J. Non-Cryst. Solids 2023, 608, 122260. [Google Scholar] [CrossRef]
- Al-Mamun, N.S.; Jabed, A.; Noor-A-Alam, M.; Haider, W.; Shabib, I. Electrochemical response in physiological environments and mechanical properties of Ti51Si24Ni14Nb11 and Fe40Ti30Al18Si12 thin film metallic glasses. J. Non-Cryst. Solids 2022, 575, 121209. [Google Scholar] [CrossRef]
- Masumoto, T.; Hashimoto, K. Chemical properties of amorphous metals. Annu. Rev. Mater. Sci. 1978, 8, 215–233. [Google Scholar] [CrossRef]
- Kou, H.; Li, Y.; Zhang, T.; Li, J.; Li, J. Electrochemical corrosion properties of Zr- and Ti-based bulk metallic glasses. Trans. Nonferrous Met. Soc. China 2011, 21, 552–557. [Google Scholar] [CrossRef]
- Jiang, W.H.; Jiang, F.; Green, B.A.; Liu, F.X.; Liaw, P.K.; Choo, H.; Qiu, Q. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass. Appl. Phys. Lett. 2007, 91, 041904. [Google Scholar] [CrossRef]
- Morrison, M.L.L.; Buchanan, R.A.A.; Peker, A.; Liaw, P.K.K.; Horton, J.A.A. Electrochemical behavior of a Ti-based bulk metallic glass. J. Non-Cryst. Solids 2007, 353, 2115–2124. [Google Scholar] [CrossRef]
- Jabed, A.; Rahman, Z.U.; Khan, M.M.; Haider, W.; Shabib, I. Combinatorial Development and In Vitro Characterization of the Quaternary Zr–Ti–X–Y (X–Y = Cu–Ag/Co–Ni) Metallic Glass for Prospective Bioimplants. Adv. Eng. Mater. 2019, 21, 1900726. [Google Scholar] [CrossRef]
- Stansbury, E.E.; Buchanan, R.A. Fundamentals of Electrochemical Corrosion—Ele Eugene Stansbury, Robert Angus Buchanan; ASM International: Materials Park, OH, USA, 2000. [Google Scholar]
- Zohdi, H.; Shahverdi, H.R.; Hadavi, S.M.M. Effect of Nb addition on corrosion behavior of Fe-based metallic glasses in Ringer’s solution for biomedical applications. Electrochem. Commun. 2011, 13, 840–843. [Google Scholar] [CrossRef]
- Luborsky, F.E. Amorphous metallic alloys. In Amorphous Metallic Alloys; Butterworths: London, UK, 1983. [Google Scholar]
- Wang, Y.B.; Li, H.F.; Cheng, Y.; Wei, S.C.; Zheng, Y.F. Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids. Electrochem. Commun. 2009, 11, 2187–2190. [Google Scholar] [CrossRef]
- Huang, L.; Wang, G.; Qiao, D.; Liaw, P.K.; Pang, S.; Wang, J. Corrosion-fatigue study of a Zr-based bulk-metallic glass in a physiologically relevant environment. J. Alloys Compd. 2010, 504, S159–S162. [Google Scholar] [CrossRef]
- Lee, J.; Liou, M.L.; Duh, J.G. The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application. Surf. Coat. Technol. 2017, 310, 214–222. [Google Scholar] [CrossRef]
- Fornell, J.; Pellicer, E.; Steenberge, N.V.; Varea, A.; Rossinyol, E.; Pellicer, E.; Suriñach, S.; Baró, M.D.; Sort, J. Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. J. Mech. Behav. Biomed. Mater. 2011, 4, 1709–1717. [Google Scholar] [CrossRef]
- Huang, H.-H.; Sun, Y.-S.; Wu, C.-P.; Liu, C.-F.; Liaw, P.K.; Kai, W. Corrosion resistance and biocompatibility of Ni-free Zr-based bulk metallic glass for biomedical applications. Intermetallics 2012, 30, 139–143. [Google Scholar] [CrossRef]
- Jayaraj, J.; Park, J.M.; Gostin, P.F.; Fleury, E.; Gebert, A.; Schultz, L. Nano-porous surface states of Ti–Y–Al–Co phase separated metallic glass. Intermetallics 2009, 17, 1120–1123. [Google Scholar] [CrossRef]
- Chang, J.-C.; Lee, J.-W.; Lou, B.-S.; Li, C.-L.; Chu, J.P. Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr–W–Ti thin film metallic glasses. Thin Solid Film. 2015, 584, 253–256. [Google Scholar] [CrossRef]
- Hua, N.; Huang, L.; Wang, J.; Cao, Y.; He, W.; Pang, S.; Zhang, T. Corrosion behavior and in vitro biocompatibility of Zr–Al–Co–Ag bulk metallic glasses: An experimental case study. J. Non-Cryst. Solids 2012, 358, 1599–1604. [Google Scholar] [CrossRef]
- Qiu, C.L.; Chen, Q.; Liu, L.; Chan, K.C.; Zhou, J.X.; Chen, P.P.; Zhang, S.M. A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility. Scr. Mater. 2006, 55, 605–608. [Google Scholar] [CrossRef]
- Hiromoto, S.; Tsai, A.-P.; Sumita, M.; Hanawa, T. Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution. Corros. Sci. 2000, 42, 1651–1660. [Google Scholar] [CrossRef]
- Oak, J.-J.; Louzguine-Luzgin, D.V.; Inoue, A. Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior. J. Mater. Res. 2007, 22, 1346–1353. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Y.D.; Si, J.J.; Cai, Y.H.; Chen, X.H.; Hui, X.D. Novel Ti-based bulk metallic glasses with superior plastic yielding strength and corrosion resistance. Mater. Sci. Eng. A 2015, 642, 297–303. [Google Scholar] [CrossRef]
- Nnamchi, P.S.; Obayi, C.S.; Todd, I.; Rainforth, M.W. Mechanical and electrochemical characterization of new Ti–Mo–Nb–Zr alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2016, 60, 68–77. [Google Scholar] [CrossRef]
- Li, S.; Wei, Q.; Li, Q.; Jiang, B.; Chen, Y.; Sun, Y. Development of Fe-based bulk metallic glasses as potential biomaterials. Mater. Sci. Eng. C 2015, 52, 235–241. [Google Scholar] [CrossRef]
- Mukherjee, S.; Schroers, J.; Johnson, W.L.; Rhim, W.-K.K. Influence of Kinetic and Thermodynamic Factors on the Glass-Forming Ability of Zirconium-Based Bulk Amorphous Alloys. Phys. Rev. Lett. 2005, 94, 245501. [Google Scholar] [CrossRef]
- Shen, J.; Chen, Q.; Sun, J.; Fan, H.; Wang, G. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 2005, 86, 151907. [Google Scholar] [CrossRef]
- Wang, P. Corrosion Behaviour of Zirconium Alloys in High Temperature Aqueous Environment by Electrochemical Impedance Spectroscopy October; The University of Manchester Library: Manchester, UK, 2011; pp. 1–217. Available online: https://www.escholar.manchester.ac.uk/uk-ac-man-scw:138826 (accessed on 21 June 2023).
- Mareci, D.; Chelariu, R.; Gordin, D.-M.; Ungureanu, G.; Gloriant, T. Comparative corrosion study of Ti–Ta alloys for dental applications. Acta Biomater. 2009, 5, 3625–3639. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, S.L.; Zheng, Y.G.; Ke, W.; Sun, W.H.; Wang, J.Q. Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions. Corros. Sci. 2012, 63, 159–173. [Google Scholar] [CrossRef]
- Liu, L.; Qiu, C.L.L.; Chen, Q.; Zhang, S.M.M. Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids. J. Alloys Compd. 2006, 425, 268–273. [Google Scholar] [CrossRef]
- Huang, L.; Pu, C.; Fisher, R.K.; Mountain, D.J.H.; Gao, Y.; Liaw, P.K.; Zhang, W.; He, W. A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response. Acta Biomater. 2015, 25, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Qin, F.; Wang, X.; Yoshimura, M.; Inoue, A.; Sugiyama, N.; Ito, R.; Matsushita, N. Formation and bioactivation of Zr-Al-Co bulk metallic glasses. J. Mater. Res. 2009, 24, 2941–2948. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L. The effect of microalloying on thermal stability and corrosion resistance of Cu-based bulk metallic glasses. Mater. Sci. Eng. A 2006, 415, 286–290. [Google Scholar] [CrossRef]
- Apreutesei, M.; Boissy, C.; Mary, N.; Yazdi, M.A.P.; Billard, A.; Steyer, P. Binary Zr–Ni/Co metallic glass films: Role of the structural state on their durability. Acta Mater. 2015, 89, 305–314. [Google Scholar] [CrossRef]
- Yang, Y.J.; Jin, Z.S.; Ma, X.Z.; Zhang, Z.P.; Zhang, H.; Ma, M.Z.; Zhang, X.Y.; Li, G.; Liu, R.P. Comparison of corrosion behaviors between Ti-based bulk metallic glasses and its composites. J. Alloys Compd. 2018, 750, 757–764. [Google Scholar] [CrossRef]
- Liu, L.; Qiu, C.L.L.; Chen, Q.; Chan, K.C.C.; Zhang, S.M.M. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses. J. Biomed. Mater. Res. Part A 2008, 86A, 160–169. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, P.; Chang, A.; Zhao, T.; Li, W.; Chang, C.; Jia, J.; Wong, Q.; You, F.; Feng, D.; et al. Glass-forming ability, thermal stability, mechanical and electrochemical behavior of Al-Ce-TM (TM = Ti, Cr, Mn, Fe, Co, Ni and Cu) amorphous alloys. J. Non-Cryst. Solids X 2019, 1, 100005. [Google Scholar] [CrossRef]
- Diyatmika, W.; Chu, J.P.; Kacha, B.T.; Yu, C.-C.C.; Lee, C.-M.M. Thin film metallic glasses in optoelectronic, magnetic, and electronic applications: A recent update. Curr. Opin. Solid State Mater. Sci. 2015, 19, 95–106. [Google Scholar] [CrossRef]
- Nishibe, Y.; Yamadera, H.; Ohta, N.; Tsukada, K.; Nonomura, Y. Thin film magnetic field sensor utilizing Magneto Impedance effect. Sens. Actuators A Phys. 2000, 82, 155–160. [Google Scholar] [CrossRef]
- Hristoforou, E.; Hristoforou, E. Magnetic effects in physical sensor design magnetic effects in physical sensor design and development. J. Optoelectron. Adv. Mater. 2002, 4, 245–260. [Google Scholar]
- Pookat, G.; Thomas, H.; Thomas, S.; Al-Harthi, S.H.; Raghavan, L.; Al-Omari, I.A.; Sakthikumar, D.; Ramanujan, R.V.; Anantharagman, M.R. Evolution of structural and magnetic properties of Co–Fe based metallic glass thin films with thermal annealing. Surf. Coat. Technol. 2013, 236, 246–251. [Google Scholar] [CrossRef]
- Crocker, A.G.; Elvidge, A.M.; Flewitt, P.E.J. Structure and properties of polycrystalline materials. Phys. Scr. 1987, 1987, 344–349. [Google Scholar] [CrossRef]
- Jin, Y.M.; Wang, Y.U.; Kazaryan, A.; Wang, Y.; Laughlin, D.E.; Khachaturyan, A.G. Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation. J. Appl. Phys. 2002, 92, 6172–6181. [Google Scholar] [CrossRef]
- Chu, J.P.; Lo, C.-T.; Fang, Y.-K.; Han, B.-S. On annealing-induced amorphization and anisotropy in a ferromagnetic Fe-based film: A magnetic and property study. Appl. Phys. Lett. 2006, 88, 012510. [Google Scholar] [CrossRef]
- Jiao, Z.B.; Li, H.X.; Gao, J.E.; Wu, Y.; Lu, Z.P. Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics 2011, 19, 1502–1508. [Google Scholar] [CrossRef]
- Mehrizi, S.; Sohi, M.H.; Ebrahimi, S.A.S. Study of microstructure and magnetic properties of electrodeposited nanocrystalline CoFeNiCu thin films. Surf. Coat. Technol. 2011, 205, 4757–4763. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, M.; Yao, L.; Nan, R.; Jian, Z.; Chang, F. Effect of Mo substitution for Nb on the glass-forming ability, magnetic properties, and electrical resistivity in Fe80(Nb1−xMox)5B15 (x = 0–0.75) amorphous ribbons. Vacuum 2019, 163, 368–372. [Google Scholar] [CrossRef]
- Shen, B.; Inoue, A. Bulk Glassy Fe-Ga-P-C-B-Si Alloys with High Glass-Forming Ability, High Saturation Magnetization and Good Soft Magnetic Properties The effect of Si addition on the glass-forming ability and magnetic properties for the Fe 77 Ga. Mater. Trans. 2002, 43, 1235–1239. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Tien, H.-Y.; Chin, T.-S. Soft magnetic ternary iron-boron-based bulk metallic glasses. Appl. Phys. Lett. 2005, 86, 162501. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.L.; Koshiba, H.; Kato, H.; Yavari, A.R. Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys. Acta Mater. 2004, 52, 1631–1637. [Google Scholar] [CrossRef]
- Inoue, A. Bulk amorphous and nanocrystalline alloys with high functional properties. Mater. Sci. Eng. A 2001, 304–306, 1–10. [Google Scholar] [CrossRef]
- Mizushima, T.; Ikarashi, K.; Makino, A.; Inoue, A. Structure and magnetic properties of bulk Fe-Al-Ga-P-C-B-Si glassy alloys in a ringed form prepared by copper mold casting. IEEE Trans. Magn. 1999, 35, 3361–3363. [Google Scholar] [CrossRef]
- Piccin, R.; Tiberto, P.; Chiriac, H.; Baricco, M. Magnetic properties and power losses in Fe–Co-based bulk metallic glasses. J. Magn. Magn. Mater. 2008, 320, e806–e809. [Google Scholar] [CrossRef]
- Inoue, A.; Gook, J.S. Fe-Based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region. Mater. Trans. JIM 1995, 36, 1180–1183. [Google Scholar] [CrossRef]
- Shen, B.; Inoue, A.; Chang, C. Superhigh strength and good soft-magnetic properties of (Fe,Co)–B–Si–Nb bulk glassy alloys with high glass-forming ability. Appl. Phys. Lett. 2004, 85, 4911–4913. [Google Scholar] [CrossRef]
- Makino, A.; Kubota, T.; Makabe, M.; Chang, C.T.; Inoue, A. FeSiBP metallic glasses with high glass-forming ability and excellent magnetic properties. Mater. Sci. Eng. B 2008, 148, 166–170. [Google Scholar] [CrossRef]
- Gao, J.E.; Li, H.X.; Jiao, Z.B.; Wu, Y.; Chen, Y.H.; Yu, T.; Lu, P. Effects of nanocrystal formation on the soft magnetic properties of Fe-based bulk metallic glasses. Appl. Phys. Lett. 2011, 99, 052504. [Google Scholar] [CrossRef]
- Zhang, M.; Kong, F.; Wang, A.; Chang, C.; Shen, B. Soft magnetic properties of bulk FeCoMoPCBSi glassy core prepared by copper mold casting. J. Appl. Phys. 2012, 111, 07A312. [Google Scholar] [CrossRef]
- Kong, F.; Wang, A.; Fan, X.; Men, H.; Shen, B.; Xie, G.; Makino, A.; Inoue, A. High Bs Fe84-xSi4B8P 4Cux (x = 0–1.5) nanocrystalline alloys with excellent magnetic softness. J. Appl. Phys. 2011, 109, 07A303. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Oguma, S.; Yamauchi, K. New Fe--based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 1988, 64, 6044–6046. [Google Scholar] [CrossRef]
- Hasegawa, R. Advances in amorphous and nanocrystalline magnetic materials. J. Magn. Magn. Mater. 2006, 304, 187–191. [Google Scholar] [CrossRef]
- Quintana, P.; Amano, E.; Valenzuela, R.; Irvine, J.T.S. Effects of nanocrystallization upon the soft magnetic properties of Co--based amorphous alloys. J. Appl. Phys. 1994, 75, 6940–6942. [Google Scholar] [CrossRef]
- Tsai, C.S.; Yang, W.J.; Leu, M.S.; Lin, C.S. High frequency characteristics of annealed Co-base amorphous alloy ribbons. J. Appl. Phys. 1991, 70, 5846–5848. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, C.L.; Dong, C.; Qiang, J.B.; Zhang, W.; Inoue, A. Formation and soft magnetic properties of Co (-Fe)-Si-B-Nb bulk metallic glasses in relation to clusters. J. Phys. Conf. Ser. 2008, 98, 012017. [Google Scholar] [CrossRef]
- Sun, W.S.; Liang, X.B.; Kulik, T. Formation and magnetic properties of Co–Fe-based bulk metallic glasses with supercooled liquid region. J. Magn. Magn. Mater. 2006, 299, 492–495. [Google Scholar] [CrossRef]
- Sun, W.S.; Kulik, T.; Liang, X.B.; Ferenc, J. Thermal stability and magnetic properties of Co-Fe-Hf-Ti-Mo-B bulk metallic glass. Intermetallics 2006, 14, 1066–1068. [Google Scholar] [CrossRef]
- Lachowicz, H.K.; Kulik, T.; Żuberek, R.; Małkiński, L.; Kuźmiński, M.; Ślawska-Waniewska, A.; Muñoz, J.S. Tailoring soft and hard magnets by annealing Co-based metallic glass. J. Magn. Magn. Mater. 1998, 190, 267–276. [Google Scholar] [CrossRef]
- Chiriac, H.; Óvári, T.A. Amorphous glass-covered magnetic wires: Preparation, properties, applications. Prog. Mater. Sci. 1996, 40, 333–407. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.; Koshiba, H.; Kato, H.; Yavari, A.R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2003, 2, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.P.; Jang, J.S.C.; Huang, J.C.; Chou, H.S.; Yang, Y.; Ye, J.C.; Wang, Y.C.; Lee, J.W.; Liu, F.X.; Liaw, P.K.; et al. Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films 2012, 520, 5097–5122. [Google Scholar] [CrossRef]
- Chang, C.M.; Yang, C.J.; Wang, K.-K.; Liu, J.-K.; Hsu, J.H.; Huang, J.C. On the reflectivity and antibacterial/antifungal responses of Al-Ni-Y optical thin film metallic glass composites. Surf. Coat. Technol. 2017, 327, 75–82. [Google Scholar] [CrossRef]
- Lin, B.; Mu, R.; Yang, L.; Bian, X. Antibacterial effect of metallic glasses. Chin. Sci. Bull. 2012, 57, 1069–1072. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Chiang, P.T.; Chen, G.J.; Jian, S.R.; Shih, Y.H.; Jang, J.S.C.; Lai, C.H. Surface antimicrobial effects of Zr61Al7.5Ni10Cu17.5Si4thin film metallic glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans. Fooyin J. Health Sci. 2010, 2, 12–20. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef]
- Huiskes, R.I.K.; Weinans, H.; Van Rietbergen, B. The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials. Clin. Orthop. Relat. Res. 1992, 274, 124–134. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zheng, Y.F.; Wei, S.C.; Li, M. In vitro study on Zr-based bulk metallic glasses as potential biomaterials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 96B, 34–46. [Google Scholar] [CrossRef]
- Khan, M.M.; Deen, K.M.; Haider, W. Combinatorial development and assessment of a Zr-based metallic glass for prospective biomedical applications. J. Non-Cryst. Solids 2019, 523, 119544. [Google Scholar] [CrossRef]
- Wang, Y.B.; Li, H.F.; Zheng, Y.F.; Li, M. Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Mater. Sci. Eng. C 2012, 32, 599–606. [Google Scholar] [CrossRef]
- Wang, Y.B.; Li, H.F.; Cheng, Y.; Zheng, Y.F.; Ruan, L.Q. In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material. Mater. Sci. Eng. C 2013, 33, 3489–3497. [Google Scholar] [CrossRef] [PubMed]
- Oak, J.-J.; Hwang, G.-W.; Park, Y.-H.; Kimura, H.; Yoon, S.-Y.; Inoue, A. Characterization of Surface Properties, Osteoblast Cell Culture in Vitro and Processing with Flow-Viscosity of Ni-Free Ti-Based Bulk Metallic Glass for Biomaterials. J. Biomech. Sci. Eng. 2009, 4, 384–391. [Google Scholar] [CrossRef]
- Xie, K.-F.; Yao, K.-F.; Huang, T.-Y. A Ti-based bulk glassy alloy with high strength and good glass forming ability. Intermetallics 2010, 18, 1837–1841. [Google Scholar] [CrossRef]
- Huang, L.; Yokoyama, Y.; Wu, W.; Liaw, P.K.; Pang, S.; Inoue, A.; Zhang, T.; He, W. Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 1472–1482. [Google Scholar] [CrossRef]
- He, W.; Chuang, A.; Cao, Z.; Liaw, P.K. Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications. Metall. Mater. Trans. A 2010, 41, 1726–1734. [Google Scholar] [CrossRef]
- Blanquer, A.; Pellicer, E.; Hynowska, A.; Barrios, L.; Ibáñez, E.; Baró, M.D.; Sort, J.; Nogués, C. In vitro biocompatibility assessment of Ti40Cu38Zr10Pd12 bulk metallic glass. J. Mater. Sci. Mater. Med. 2014, 25, 163–172. [Google Scholar] [CrossRef]
- Huang, X.B.; Lin, N.M.; Hang, R.Q.; Tang, B.; Qiao, J.W. Bio-Properties of Zr-Based BMGMC as Potential Hard Tissue Implants. Mater. Sci. Forum 2013, 745–746, 754–760. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Fan, H.; Wang, Y.; Ning, Z.; Liu, F.; Feng, D.; Jin, X.; Shen, J.; Sun, J.; et al. In vitro and in vivo biocompatibility of an Ag-bearing Zr-based bulk metallic glass for potential medical use. J. Non-Cryst. Solids 2015, 419, 82–91. [Google Scholar] [CrossRef]
- Li, H.F.; Zheng, Y.F.; Xu, F.; Jiang, J.Z. In vitro investigation of novel Ni free Zr-based bulk metallic glasses as potential biomaterials. Mater. Lett. 2012, 75, 74–76. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.-L.; Zhu, Z.; He, Q.; Ai, H.; Xu, J. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses. Mater. Sci. Eng. C 2013, 33, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Ramya, M.; Sarwat, S.G.; Udhayabanu, V.; Subramanian, S.; Raj, B.; Ravi, K.R. Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications. Mater. Des. 2015, 86, 829–835. [Google Scholar] [CrossRef]
- Gu, X.; Shiflet, G.J.; Guo, F.Q.; Poon, S.J. Mg–Ca–Zn Bulk Metallic Glasses with High Strength and Significant Ductility. J. Mater. Res. 2005, 20, 1935–1938. [Google Scholar] [CrossRef]
- Zberg, B.; Uggowitzer, P.J.; Löffler, J.F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 2009, 8, 887–891. [Google Scholar] [CrossRef]
- Gu, X.; Zheng, Y.; Zhong, S.; Xi, T.; Wang, J.; Wang, W. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials 2009, 31, 1093–1103. [Google Scholar] [CrossRef]
- Khan, M.M.; Rahman, Z.U.; Deen, K.M.; Shabib, I.; Haider, W. Sputtered Mg100-xZnx (0 ≤ x ≤ 100) systems as anode materials for a biodegradable battery aimed for transient bioelectronics. Electrochim. Acta 2020, 329, 135129. [Google Scholar] [CrossRef]
- Cao, J.D.; Kirkland, N.T.; Laws, K.J.; Birbilis, N.; Ferry, M. Ca–Mg–Zn bulk metallic glasses as bioresorbable metals. Acta Biomater. 2012, 8, 2375–2383. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Keppens, V.; Liaw, P.K. Development and Characterization of Low-Density Ca-Based Bulk Metallic Glasses: An Overview. Metall. Mater. Trans. A 2008, 39, 1888–1900. [Google Scholar] [CrossRef]
- Zhao, K.; Li, J.F.; Zhao, D.Q.; Pan, M.X.; Wang, W.H. Degradable Sr-based bulk metallic glasses. Scr. Mater. 2009, 61, 1091–1094. [Google Scholar] [CrossRef]
- Jiao, W.; Zhao, K.; Xi, X.K.; Zhao, D.Q.; Pan, M.X.; Wang, W.H. Zinc-based bulk metallic glasses. J. Non-Cryst. Solids 2010, 356, 1867–1870. [Google Scholar] [CrossRef]
- Inoue, A.; Nishiyama, N. New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials. MRS Bull. 2007, 32, 651–658. [Google Scholar] [CrossRef]
- Kim, S.C.; Yamaura, S.-I.; Shimizu, Y.; Nakashima, K.; Igarashi, T.; Makino, A.; Inoue, A. Production of Ni65Cr15P16B4 metallic glass-coated bipolar plate for fuel cell by high velocity oxy-fuel (HVOF) spray coating method. Mater. Trans. 2010, 51, 1609–1613. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Kumar, S.; Lu, G. First-Principles Prediction of Oxygen Reduction Activity on Pd−Cu−Si Metallic Glasses. J. Phys. Chem. C 2014, 118, 48. [Google Scholar] [CrossRef]
- Tian, R.; Qin, Z. Bulk metallic glass Zr55Cu30Al10Ni5 bipolar plates for proton exchange membrane fuel cell. Energy Convers. Manag. 2014, 86, 927–932. [Google Scholar] [CrossRef]
- Jayalakshmi, S.; Vasantha, V.S.; Fleury, E.; Gupta, M. Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications. Appl. Energy 2012, 90, 94–99. [Google Scholar] [CrossRef]
- Tkachov, V.I. Problems of hydrogen degradation of metals. Mater. Sci. 2000, 36, 481–488. [Google Scholar] [CrossRef]
- Kirchheim, R. Hydrogen solubility and diffusivity in defective and amorphous metals. Prog. Mater. Sci. 1988, 32, 261–325. [Google Scholar] [CrossRef]
- Huang, J.C.; Chu, J.P.; Jang, J.S.C. Recent progress in metallic glasses in Taiwan. Intermetallics 2009, 17, 973–987. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Piqué, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451. [Google Scholar] [CrossRef]
- Hartnagel, H.L.; Dawar, A.L.; Jain, A.K. Semiconducting Transparent Thin Films. MRS Bull. 1997, 22, 66–69. [Google Scholar]
- Lee, C.J.; Lin, H.K.; Sun, S.Y.; Huang, J.C. Characteristic difference between ITO/ZrCu and ITO/Ag bi-layer films as transparent electrodes deposited on PET substrate. Appl. Surf. Sci. 2010, 257, 239–243. [Google Scholar] [CrossRef]
- Wang, W.H.; Hsu, J.H.; Huang, J.C. Optical reflectivity improvement by upgrading metallic glass film quality. Appl. Phys. Lett. 2013, 103, 161906. [Google Scholar] [CrossRef]
- Hu, T.T.; Hsu, J.H.; Huang, J.C.; Kuan, S.Y.; Lee, C.J.; Nieh, T.G. Correlation between reflectivity and resistivity in multi-component metallic systems. Appl. Phys. Lett. 2012, 101, 011902. [Google Scholar] [CrossRef]
- Seddon, A.B. Chalcogenide glasses: A review of their preparation, properties and applications. J. Non-Cryst. Solids 1995, 184, 44–50. [Google Scholar] [CrossRef]
- Burgess, T.; Ferry, M. Nanoindentation of metallic glasses. Mater. Today 2009, 12, 24–32. [Google Scholar] [CrossRef]
- Henao, J.; Conctustell, A.; Cano, I.G.; Dosta, S.; Cinca, N.; Guilemany, J.M.; Suhonen, T. Novel Al-based metallic glass coatings by Cold Gas Spray. Mater. Des. 2016, 94, 253–261. [Google Scholar] [CrossRef]
- Kim, C.H.; Jang, Y.H.; Hwang, H.J.; Sun, Z.H.; Moon, H.B.; Cho, J.H. Observation of bistable resistance memory switching in CuO thin films. Appl. Phys. Lett. 2009, 94, 102107. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Y.X.; Liu, L.F.; Xu, N.; Wang, Y.; Liu, X.Y.; Han, R.Q.; Kang, J.F. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices. J. Appl. Phys. 2009, 105, 061630. [Google Scholar] [CrossRef]
- Hong, S.; Long, D.X.; Hwang, I.; Kim, J.-S.; Park, Y.C.; Kang, S.-O.; Park, B.H. Unipolar resistive switching mechanism speculated from irreversible low resistance state of Cu2O films. Appl. Phys. Lett. 2011, 99, 052105. [Google Scholar] [CrossRef]
- Kim, K.M.; Choi, B.J.; Koo, B.W.; Choi, S.; Jeong, D.S.; Hwang, C.S. Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures. Electrochem. Solid-State Lett. 2006, 9, 343–346. [Google Scholar] [CrossRef]
- Tulu, B.; Chang, W.Z.; Chu, J.P.; Wang, S.F. Forming-free resistive switching characteristics of 15 nm-thick multicomponent oxide. Appl. Phys. Lett. 2013, 103, 252904. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Xie, H.; Fan, T.; Zhang, L.; Li, K.; Cao, Y.; Yang, X.; Liu, B.; Bai, P. Effects of Al and La elements on mechanical properties of CoNiFe0.6Cr0.6 high-entropy alloys: A first-principles study. J. Mater. Res. Technol. 2023, 23, 1130–1140. [Google Scholar] [CrossRef]
- Zhang, L.T.; Pelletier, J.M.; Qiao, J.C. Dynamic mechanical behavior of (La0.7Ce0.3)65Al10Co25 bulk metallic glass: Influence of the physical aging and heat treatment. J. Alloys Compd. 2023, 869, 159271. [Google Scholar] [CrossRef]
- Zhang, C.; Khorshidi, H.; Najafi, E.; Ghasemi, M. Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review. J. Clean. Prod. 2023, 384, 135390. [Google Scholar] [CrossRef]
Metallic Glass System | Atomic Size Mismatch (%) (rbase − rO)/rbase | Heat of Mixing (kJ/mol) | Fabrication Route | Ref. |
---|---|---|---|---|
Zr41.2Ti13.8Cu12.5Ni10Be22.5 | Zr:Ti = 9.6; Zr:Cu = 20 Zr:Ni = 22.3 Zr:Be = 29.6 | Zr-Ti = 0; Zr-Cu = −23 Zr-Ni = −49; Zr-Be = −43 Ti-Cu = −9; Ti-Ni = −35 Ti-Be = −30; Cu-Ni = 4 Cu-Be = 0; Ni-Be = −4 | Casting in copper molds | [11] |
Pt57.5Cu14.7Ni5.3P22.5 | Pt:Cu = 7.8 Pt:Ni = 10.2 Pt:P = 23.5 | Pt-Cu = −12; Pt-Ni = −5 Pt-P = −34.5; Cu-Ni = 4 Cu-P = −17.5; Ni-P = −34.5 | Water quenching | [55] |
Zr-Ti-Nb-Cu-Be | Zr:Ti = 9.6 Zr:Nb = 10.7 Zr:Cu = 20 Zr:Be = 29.6 | Zr-Ti = 0; Zr-Nb = 4 Zr-Cu = −23; Zr-Be = −43 Ti-Nb = 2; Ti-Cu = −9 Ti-Be = −30; Nb-Cu = 3 Nb-Be = −25; Cu-Be = 0 | Arc-melting and heated via induction | [56] |
Cu47.5Zr47.5Al5 | Cu:Zr = 20 Cu:Al = 10.7 Zr:Al = 10.6 | Cu-Zr = −23; Cu-Al = −1 Zr-Al = −44 | Arc-melting | [57] |
Pd40Ni40P20 | Pd:Ni = 9.4 Pd:P = 23 Ni:P = 14.8 | Pd-Ni = 0; Pd-P = −36.5 Ni-P = −34.5 | Fluxing | [8] |
Zr39Cu39Ag22 | Zr:Cu = 20 Zr:Ag = 9.8 | Zr-Cu = −23; Zr-Ag = −20; Cu-Ag = 2 | DC reactive magnetron sputtering | [58] |
Zr59Ti22Ag19 | Zr:Ti = 9.6 Zr:Ag = 9.8 | Zr-Ti = 0; Zr-Ag = −69; Ti-Ag = −2 | Magnetron sputtering | [59] |
Zr-Ti-Fe | Zr:Ti = 9.6 Zr:Fe = 22.5 Ti:Fe = 8.8 | Zr-Ti = 0; Zr-Fe = −25; Ti-Fe = −17 | Magnetron co-sputtering | [60] |
Zr-Ni-Al-Si | Zr:Ni = 22.3 Zr:Al = 10.6 Zr:Si = 28 | Zr-Ni = −49; Zr-Al = −44; Zr-Si = −84; Ni-Al = −22; Ni-Si = −40; Al-Si = −19 | RF and DC reactive magnetron sputtering | [61] |
Zr-Cu-Al-Ag | Zr:Cu = 20 Zr:Al = 10.6 Zr:Ag = 9.8 | Zr-Cu = −23; Zr-Al = −44 Zr-Ag = −69; Cu-Al = −1 Cu-Ag = 2; Al-Ag = −4 | DC magnetron sputtering | [62] |
Cu48Zr42Ti4Al6 | Cu:Zr = 20 Cu:Ti = 14.3 Cu:Al = 10.7 | Cu-Zr = −23; Cu-Ti = −9 Cu-Al = −1; Zr-Ti = 0 Zr-Al = −44; Ti-Al = −30 | RF magnetron sputtering | [63] |
Zr60.14Cu22.31Fe4.85Al9.7Ag3 | Zr:Cu = 20 Zr:Fe = 22.5 Zr:Al = 10.6 Zr:Ag = 9.8 | Zr-Cu = −23; Zr-Fe = −25 Zr-Al = −44; Zr-Ag = −69 Cu-Fe = 13; Cu-Al = −1 Cu-Ag = 2; Fe-Al = −11 Fe-Ag = 28; Al-Ag = −4 | DC Magnetron sputtering | [64] |
Zr59Cu20Al10Ni8Ti3 | Zr:Cu = 20 Zr:Al = 10.6 Zr:Ni = 22.3 Zr:Ti = 9.6 | Zr-Cu = −23; Zr-Al = −44 Zr-Ni = −49; Zr-Ti = 0 Cu-Al = −1; Cu-Ni = 4 Cu-Ti = −9; Al-Ni = −22; Ni-Ti = −35 | Arc-melting | [65] |
Fe40Ni40P14B6 | Fe:Ni = 0.3 Fe:P = 14.5 Fe:B = 34.1 Ni:P = 14.8 Ni:B = 34.1 | Fe-Ni = −2; Fe-P = −39.5 Fe-B = −26; Ni-P = −34.5 Ni-B = −24; P-B = 0.5 | Induction melting, fluxing, re-melt, and quenching | [66] |
Fe50.26B2.62Si2.41Cr23.86Mo20.85 | Fe:B = 34.1 Fe:Si = 7.1 Fe:Cr = 0.6 Fe:Mo = 9.8 | Fe-B = −26; Fe-Si = −35 Fe-Cr = −1; Fe-Mo = −2 B-Si = −14; B-Cr = −31 B-Mo = −7; Si-Cr = −37 Si-Mo = −35; Cr-Mo = 0 | Atmospherically plasma-sprayed | [67] |
Ti–Ni–Cu–Sn, Ti–Ni–Cu–Sn–Be and Ti–Ni–Cu–Sn–Be–Zr | Ti:Ni = 14.8 Ti:Cu = 12.6 Ti-Sn = 8.1 Ti:Be = 22.8 Ti:Zr = 9.6 | Ti-Ni = −35; Ti-Cu = −9 Ti-Sn = −21; Ti-Be = −30; Ti-Zr = 0; Ni-Cu = 4 Ni-Sn = −4; Ni-Be = −4 Ni-Zr = −49; Cu-Sn = 7 Cu-Be = 0; Cu-Zr = −23 Sn-Be = 15; Sn-Zr = −43 Be-Zr = −43 | Injection casting | [68] |
Cu47Ti34Zr11Ni8, Cu47Ti33Zr11Ni8Fe1 and Cu47Ti33Zr11Ni8Si1 | Cu:Ti = 14.3 Cu:Zr = 25.4 Cu:Ni = 2.6 Cu:Fe = 2.9 Cu:Si = 9.8 | Cu-Ti = −9; Cu-Zr = −23 Cu-Ni = 4; Cu-Fe = 13 Cu-Si = −19; Ti-Zr = 0 Ti-Ni = −35; Ti-Fe = −17 Ti-Si = −66; Zr-Ni = −49 Zr-Fe = −25; Zr-Si = −84 Ni-Fe = −2; Ni-Si = −40 | Copper mold casting | [69] |
Solidification Technique | Cooling Rate (K/s) | Fabricated System | Ref. |
---|---|---|---|
Conventional die casting | 101–103 | Zr46.75Ti8.25Cu7.5Ni10Be27.5, Zr–Al–Cu, La55Al25Ni20, Mg80Cu10Y10, | [6,12,53,73] |
Melt spinning | 105–106 | Fe57.2Co30.8Zr7−xHfxB4Cu1 (x = 3, 5, and 7), Zr61Cu17.5Ni10Al7.5Si4 | [74,75,76] |
Liquid splat-quenching | ∼109–1010 | Zr46.7Ti8.3Cu7.5Ni10Be27.5 Au-Si, Au0.778Ge0.138Si0.084 | [2,77,78,79] |
Pulsed laser quenching | ∼1012–1013 | Cu-Ti-Zr, Cu-Ti, NixNb100−x | [80,81,82,83] |
Nano calorimetry | 104–106 | Au–Cu–Si | [84,85] |
Liquid-state welding | Metallic Glass System | Welded to | Welding Technique | Parameters | Ref. | ||
Thickness (mm) | Power (kW) | Scanning Speed (mm/s) | |||||
Zr41Be23Ti14Cu12Ni10 | Zr55Al10Ni5Cu30 | Electron-beam | 3.5 | 9 | 33 | [104] | |
Zr41Ti14Cu12Ni10Be23 | Polycrystalline Zr metal | Electron-beam | 3 | 9 | 33 | [105] | |
Zr41Be23Ti14Cu12Ni10 | Ti metal | Electron-beam | 3 | 9 | 66 | [106] | |
Zr41Be23Ti14Cu12Ni10 | Stainless steel | Electron-beam | 2 | 9 | 66 | [107] | |
Zr45Cu48Al7 | Zr45Cu48Al7 | Laser | 1 | 1.2 | 33–133 | [90] | |
Cu54Ni6Zr22Ti18 | Cu54Ni6Zr22Ti18 | Pulsed Nd:YAG | 6 | 1.5 | 0.33 and 1 | [108] | |
Zr55Al10Ni5Cu30 | 304 austenitic stainless steel | Fiber-laser | 9 | 2–10 | 1.2 | [109] | |
(Zr53Cu30Ni9Al8)Si0.5 | (Zr53Cu30Ni9Al8)Si0.5 | Pulsed Nd:YAG | 1 | 1.3–1.7 | 1 | [110] | |
Pd43Cu27Ni10P20 | Pd43Cu27Ni10P20 | Pulsed laser beam | 1 | 0.750–1.125 | 0.33 | [111] | |
Solid-state welding | Metallic glass system | Welded to | Welding process | Parameters | |||
Rotational speed (rpm) | Time (s) | ||||||
Ti40Zr25Ni3Cu12Be20 | Ti40Zr25Ni3Cu12Be20 | Friction | 1800–2200 | 5–7 | [103] | ||
Zr41.5Ti13.8Cu12.5Ni10Be22.5 | Zr41.5Ti13.8Cu12.5Ni10Be22.5 | Friction | 2700 | 0–35 | [112] | ||
Zr55Al10Ni5Cu30 | Zr55Al10Ni5Cu30 | Friction | 1800 | 0.4–1.0 | [113] | ||
Pd40Ni40P20 | Pd40Cu30Ni10P20 | Friction | 6000 | 0.2 | [114] |
Materials Systems | Laser Power (W) | Scanning Speed (mm/s) | Hatch Spacing (μm) | Ref. |
---|---|---|---|---|
Zr55Cu30Ni5Al10 | 240 | 1200 | 100 | [120] |
Al86Ni6Y4.5Co2La1.5 | 120 | 750 | 100 | [132] |
Al85N5Y6Co2Fe2 | 200 | 625 | 150 | [131] |
Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 | 60 | 2000 | 140 | [133] |
Zr52.5Cu17.9Ni14.6Al10Ti5 | 30–120 | 250–2000 | 100–200 | [134] |
Fe74Mo4P10C7.5B2.5Si2 | 320 | 3470 | 124 | [123] |
Zr52.5Ti5Cu17.9Ni14.6Al10 | 200 | 500 | 150 | [130] |
Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9 | 150–350 | 200–1000 | - | [135] |
Fe54.35Cr18.47Mn2.05Mo13.93W5.77B3.22C0.90Si1.32 | 220–380 | 2000 | 90 | [136] |
Zr50Ti5Cu27Ni10Al8 | 200 | 13.3 | - | [137] |
Name of the System | Powder Production Technique | Densification Process | Ref. |
---|---|---|---|
Ni59Zr20Ti16Si2Sn3 | Argon gas atomization | Warm extrusion | [143] |
Cu50Ti32Zr12Ni5Si1 | High-pressure gas-atomization | Equal channel angular extrusion | [144] |
Mg65Cu25Gd10 | Mechanically milled | Spark plasma sintering | [138] |
Ni53Nb20Ti10Zr8Co6Ta3 | Mechanical alloying | Spark plasma sintering | [139] |
Al82La10Ni4Fe4, | Mechanical alloying | Spark plasma sintering | [158] |
Ni52.5Nb10Zr15Ti15Pt7.5 | Argon gas atomization | Spark plasma sintering | [159] |
Zr55Cu30Al10Ni5 | Argon gas atomization | Spark plasma sintering | [155] |
Ni59Zr15Ti13Si3Sn2Nb7Al1 | Gas-atomization | Spark plasma sintering | [160] |
(Fe0.72B0.24Nb0.04)95.5Y4.5 | Gas-atomization | Spark plasma sintering | [161] |
Fe73Si7B17Nb3 | Argon gas atomization | Spark plasma sintering | [162] |
Fe48Cr15Mo14Y2C15B6 | Argon gas atomization | Spark plasma sintering | [163] |
Fe67Co9.5Nd3Dy0.5B20 | Mechanically rotor-milled | Spark plasma sintering | [164] |
Ti50Cu23Ni20Sn7 | Mechanically milled | Spark plasma sintering | [165] |
System | Sputtering Type | Parameters | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
DC Power (W) | RF Power (W) | Base Pressure (Pa) | Working Pressure (Pa) | Target-Substrate Distance (mm) | Sputtering Rates (nm/min) | Thickness (µm) | |||
Zr–Ni–Al–Si | Reactive magnetron co-sputtering | Zr: 700 Ni: 120 | Al: 240 Si: 300 | 2 × 10−4 | 0.4 | 250 | 2.1–6.1 | - | [61] |
Zr61All7.5Ni10Cu17.5Si4 | DC plus magnetron sputtering | 30 | - | 7.9 × 10−4 | 0.53 | 60 | - | 0.5 | [170] |
ZrCuAl | RF magnetron sputtering | - | Zr: 225 Cu: 50 Al: 26 | 6.6 × 10−5 | 1.3 | 165 | - | 2 | [171] |
Zr55Cu31Ti14 | DC co-sputtering | 300 | - | 6.6 × 10−5 | - | - | - | 2–3 | [172] |
Zr-Pd | RF magnetron sputtering | - | 70 | 2–4 × 10−4 | 2 | 70 | 6.6 | - | [173] |
ZrCuAlAg | DC magnetron sputtering | 15–30 | - | - | 0.4 | 60 | 7.6–14.5 | 0.2 | [62] |
Zr47Cu31Al13Ni9 | RF magnetron sputtering | - | 100 | - | 0.27 | - | - | 0.2 | [174] |
Al48Ag37Ti15 | Magnetron sputtering | - | - | 6.6 × 10−5 | 0.4 | - | - | 0.5 | [59] |
Ta-Ti-Zr-Si | DC co-sputtering | - | - | 6.6 × 10−5 | - | - | - | 0.6 | [175] |
Zr60.14Cu22.31Fe4.85Al9.7Ag3 | DC magnetron sputtering | 120 | - | 2 × 10−4 | 0.65 | - | - | 0.53 | [64] |
Name of the Systems | Strength (GPa) | Elastic Modulus (GPa) | Hardness (GPa) | Measurement Technique | Ref. | |
---|---|---|---|---|---|---|
Zr-based MGs | Zr41.25Ti13.75Cu12.5Ni10Be22.5 | 1.9 (U) | 96 | 5.23 (V) | Tensile and compression test | [223] |
(Zr55Al10Ni5Cu30)98.5Si1.5 | 1.8 (U) | 87 | 5.2 (V) | Tensile and compression test | [224] | |
Zr61Cu17.5Ni10Al7.5Si4 | 1.8 (C) | -- | 5 (C) | Compressive strength and hardness | [75] | |
Zr46Cu37.6Ag8.4Al8 | 1.9 (Y) | 92 | 5.4 (V) | Vickers microhardness | [216] | |
Zr40Ti14Ni10Cu12Be24 | 2.3 (Y) | 114 | 9.7 | Nanoindentation | [225] | |
ZrTiCuNiAl | 1.96 (Y) | -- | 5.5 | Nanoindentation | [226] | |
Zr52.5Al10Ti5Cu17.9Ni14.6 | 0.82 (Y) | 109 | -- | Nanoindentation | [227] | |
Zr69.5Cu12Ni11Al7.5 | -- | 93.86 | 5.66 | Nanoindentation | [228] | |
ZrTiAlFeCuAg (Zr = 60%) | 1.58 ± 0.03 (Y) | 78 ± 1 | 4.5 ± 0.06 (V) | Compression, notch-toughness tests, and ultrasound spectroscopy | [214] | |
Ti-based MGs | (Ti40Zr10Cu38Pd12)100–x Nbx (x = 0, 2, 3, 4) | 1.2–2 (F) | 100–106 | 6–8 (V) | Compression test | [229] |
Ti40Zr25Ni3Cu12Be20 (10nm/2.50mN/s) | -- | -- | 8.29 ± 0.13 | Nanoindentation | [230] | |
Ti75Zr10Si15 | 2.6 (Y) | -- | 0.007 | Microhardness | [54] | |
Ti60Nb15Zr10Si15 | 2.2 (Y) | -- | 0.006 | Microhardness | [54] | |
Ti40Cu36Pd14Zr10 | -- | 110 | 7.7 | Microscratch | [231] | |
Ti50Cu25Ni15Sn3Be7 | 2.17 (C) | -- | 6.5 | Uniaxial compression | [232] | |
Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 | 2.08 (C) | 100.4 ± 0.1 | 5.7 ± 0.05 | Compression | [178] | |
Cu-based MGs | Cu60Zr30Ti10 | 1.78 (Y) 2 (F) | 112 | 6.4 (V) | Tensile and compression deformation | [233] |
Cu60Hf25Ti15 | 1.92 (Y) 2.13 (F) | 120 | 6.6 (V) | Tensile and compression deformation | [233] | |
Cu60Zr30Ti10 | -- | 93.88 ± 1.7 | 7.61 ± 0.33 | Nanoindentation | [234] | |
(Cu0.6Hf0.25Ti0.15)90Nb10 | 2.073 (Y) 2.232 (F) | 106 | -- | Compression test | [235] | |
Cu47Ti33Zr12Ni8Si1 | 2.087 (F) | 118.6 | -- | Compression test | [236] | |
(Cu50Zr50)90Al10 | -- | 117.3 | 5.3 (V) 8.7 | Microhardness nanoindentation | [237] | |
Cu49Hf42Al9 | 2.408 (Y) 2.620 (F) | 102 | -- | Compression test | [238] | |
(Cu0.50Hf0.35Ti0.10Ag0.05)97Ta3 | 2.510 (F) | 151.2 | 6.04 | Compression test nanoindentation | [239] | |
Fe-based MG | Fe59Cr6Mo14C15B6 | 3.8 (Y) 4.4 (F) | 204 | ∼11 | Compression tests | [222] |
Fe41Co7Cr15Mo14Y2C15B6 | 3.5 (F) | 265 | 12.3 (V) | Compression, bending and hardness tests | [240] | |
Fe36Co36B19.2Si4.8Nb4 | >4 (Y) | 201 ± 10 192 ± 0.5 | 14 | Compression test nanoindentation | [241] | |
(Fe0.75B0.15Si0.1)96Nb | 3.25 (Y) | 175 | 10.4 (V) | Compression Test | [242] | |
[(Fe0.8Co0.2)0.75B0.2Si0.05]96Nb4 | 4.05 (Y) 4.17 (F) | 205 | 12.01 (V) | Vickers hardness compression test | [243] | |
Fe66Mo10P12C10B2 | 2.55 (Y) 3.25 (F) | 176 | 8.83 (V) | Microhardness, compression and resonant ultrasound spectroscopy test | [244] | |
Fe0.432Co0.288B0.192Si0.048Nb0.04)98Cr2 | ∼4.0 (Y) | -- | 11.51–12.51 | Nanoindentation | [245] | |
Pd,Ni,Mg,Ca,Al-Based MGs | Pd40Ni40P20 | 1.78 (Y) | 103–108 | -- | Nanoindentation | [246] |
Ni60Nb37Sn3 | 3.7 | -- | 8.83 (V) | Vickers hardness measurements | [247] | |
Mg66Zn29Ca4Ag1 | -- | -- | 2.35 ± 0.03 | Microhardness | [248] | |
Ca20Mg20Zn20Sr20Yb20 | 0.37 ± 0.025 (F) | 19.4 ± 3.4 | -- | Uniaxial compression test | [249] | |
Al85Y10Ni5 | 0.92 | 62.8 | 3.7 | Microhardness and tensile | [250] | |
Mg65Cu25Gd10 | ∼0.8 (C) | -- | ∼2.5 | Compression test | [75] |
Name of the Systems | Coercivity (A/m) | Saturation Magnetization (T) | Permeability | Currie Temperature (K) | Ref. | |
---|---|---|---|---|---|---|
Fe-based | Fe70Al5Ga2P9.65C5.75B4.6Si3 | 2.2 | 1.2 | 110,000 | 620 | [318] |
[(Fe1−xCox)75B20Si5]93Nb4Y3 Ribbon (x = 0, 0.2, 0.4, 0.6) | 2–15 | ∼0.4–0.6 | -- | -- | [319] | |
Fe72Al5Ga2P11C6B4 | 5.1 | 1.07 | 9000 | 596–605 | [320] | |
[(Fe1−xCox)0.75B0.2Si0.05]96Nb4 | 1.5–2.7 | 0.84–1.13 | >1.2 × 104 | 600–690 | [321] | |
Fe76Si9B10P5 | 0.8 | 1.51 | -- | -- | [322] | |
Fe76−xC7.0-Si3.3B5.0P8.7Cux (x = 0, 0.3, 0.7, 1.0 at.%) | 11 | 1.79 | -- | -- | [323] | |
Fe66Co10Mo3.5P10C4B4Si2.5 | 1.0 | 1.23 | 450,000 | -- | [324] | |
Fe82.75Si4B8P4Cu1.25 | 2.1 | 1.83 | 31,600 | -- | [325] | |
Fe-Si-B-M (M = Cu, Nb, Mo, W, Ta) | 6.9 | 1.41 | 6000 | 631 | [326] | |
Fe55Co30Cu1Nb7Si1B8 | 5.9 | 1.71 | 1150 | -- | [327] | |
Co-based | Co66Fe4Mo2Si16B1 | -- | -- | ∼109,000 | -- | [328] |
CobalFe4Ni2Si15B14 | <1–2 | -- | 24,000 | 490 | [329] | |
Co33.9Fe33.9B22.5Si5.7Nb4 | 4.9 | 0.98 | -- | -- | [330] | |
Co40Fe27Zr3Ti3Mo1.5Si1.5B24 (Cylinder) | 8 | 1.2 | -- | -- | [331] | |
Co42Fe20Hf3Mo3Ti3B29 | 2 | 0.6 | -- | -- | [332] | |
Co67Fe4Mo2Si17B11 (annealed at 360°) | ∼0.1 | ∼1.2 | -- | -- | [333] | |
Co68.15Fe4.35Si12.5B15 | 210 | 0.81 | -- | -- | [334] | |
Co43Fe20Ta5.5B31.5 | 0.25 | 0.49 | 550,000 | -- | [335] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabed, A.; Bhuiyan, M.N.; Haider, W.; Shabib, I. Distinctive Features and Fabrication Routes of Metallic-Glass Systems Designed for Different Engineering Applications: A Review. Coatings 2023, 13, 1689. https://doi.org/10.3390/coatings13101689
Jabed A, Bhuiyan MN, Haider W, Shabib I. Distinctive Features and Fabrication Routes of Metallic-Glass Systems Designed for Different Engineering Applications: A Review. Coatings. 2023; 13(10):1689. https://doi.org/10.3390/coatings13101689
Chicago/Turabian StyleJabed, Akib, M. Nabil Bhuiyan, Waseem Haider, and Ishraq Shabib. 2023. "Distinctive Features and Fabrication Routes of Metallic-Glass Systems Designed for Different Engineering Applications: A Review" Coatings 13, no. 10: 1689. https://doi.org/10.3390/coatings13101689
APA StyleJabed, A., Bhuiyan, M. N., Haider, W., & Shabib, I. (2023). Distinctive Features and Fabrication Routes of Metallic-Glass Systems Designed for Different Engineering Applications: A Review. Coatings, 13(10), 1689. https://doi.org/10.3390/coatings13101689