Isothermal Oxidation and Thermal Shock Resistance of Thick and Porous LaMgAl11O19 Abradable Topcoat
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. Coating Preparation
2.3. Isothermal Oxidation and Thermal Shock Tests
2.4. Characterization
3. Results and Discussion
3.1. Isothermal Oxidation
3.1.1. Bubble and Glassy Melt
3.1.2. Coating Microstructure
3.2. Thermal Shock
4. Conclusions
- The additional heat generated by the oxidation of the SiC/SiC substrate led to a localized temperature rise on the side surface of the coated sample. This in turn resulted in the formation of glassy melt through a eutectic reaction, further contributing to bubble formation due to its dense nature. The promotion of element diffusion by the melt led to an acceleration of the interfacial reaction between the YbMS and LMA layers at the chamfered edge, with the reaction front extending toward the YbMS side.
- During the initial stage of oxidation, a higher temperature rise and a lower melt viscosity occurred, resulting in the generation of numerous bubbles and the detachment of coatings covered. Subsequently, as the melt acted as a barrier to oxygen in-diffusion, there was a subsequent decrease in the temperature rise, an increase in melt viscosity, and, ultimately, the disappearance of bubbles.
- In the thermal shock test, the lack of coating protection on the backside of the sample resulted in continuous oxidation and cracking damage to the SiC/SiC substrate, ultimately leading to an overall transverse fracture. While the coated side did not experience coating delamination, the mud cracks contributed to the formation of a crack network within the substrate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sporer, D.; Wilson, S.; Giovannetti, I.; Refke, A.; Giannozzi, M. On The Potential Of Metal And Ceramic Based Abradables. In Tur-Bine Seal Applications, Proceedings of the Thirty-Sixth Turbomachinery Symposium, Houston, TX, USA, 10–13 September 2007; Texas A&M University, Turbomachinery Laboratories: Dallas, TX, USA, 2007; pp. 79–86. [Google Scholar]
- Dorfman, M.R.; Fiala, P.; Hajmrle, K.; Wilson, S. Future Abradable Requirements Needed by Aerospace OEM’s and Their Material and Equipment Suppliers. In Proceedings of the ASME Turbo Expo, Montreal, QC, Canada, 14–17 May 2007; pp. 17–24. [Google Scholar]
- Novinski, E.R. The Selection and Performance of Thermal Sprayed Abradable Seal Coatings for Gas Turbine Engines. In Proceedings of the Annual Aerospace/Airline Plating and Metal Finishing Forum and Exposition, New Orleans, LA, USA, 27–30 March 1989; pp. 60–63. [Google Scholar]
- Sporer, D.; Wilson, S.; Dorfman, M. Ceramics for Abradable Shroud Seal Applications. Ceram. Eng. Sci. Proc. 2009, 4, 39–54. [Google Scholar]
- Cao, X.Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Lashmi, P.; Ananthapadmanabhan, P.; Unnikrishnan, G.; Aruna, S. Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems. J. Eur. Ceram. Soc. 2020, 40, 2731–2745. [Google Scholar] [CrossRef]
- Luo, L.; Chen, Y.; Zhou, M.; Shan, X.; Lu, J.; Zhao, X. Progress update on extending the durability of air plasma sprayed thermal barrier coatings. Ceram. Int. 2022, 48, 18021–18034. [Google Scholar] [CrossRef]
- Vaßen, R.; Bakan, E.; Mack, D.E.; Guillon, O. A Perspective on Thermally Sprayed Thermal Barrier Coatings: Current Status and Trends. J. Therm. Spray Technol. 2022, 31, 685–698. [Google Scholar] [CrossRef]
- Vassen, R.; Stuke, A.; Stöver, D. Recent Developments in the Field of Thermal Barrier Coatings. J. Therm. Spray Technol. 2009, 18, 181–186. [Google Scholar] [CrossRef]
- Aussavy, D.; Bolot, R.; Montavon, G.; Peyraut, F.; Szyndelman, G.; Gurt-Santanach, J.; Selezneff, S. YSZ-Polyester Abradable Coatings Manufactured by APS. J. Therm. Spray Technol. 2015, 25, 252–263. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, Z.; Dai, S.; Wang, S. Fabrication of ceramic sealing coatings for shell bionic structures and their failure mecha-nism during thermal cycling. Ceram. Int. 2023, 49, 8962–8975. [Google Scholar] [CrossRef]
- Sporer, D.R.; Taeck, U.; Dorfman, M.R.; Nicoll, A.R.; Giannozzi, M.; Giovannetti, I. Novel Ceramic Abradable Coatings with En-hanced Performance. In Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, 8–11 May 2006; pp. 1017–1023. [Google Scholar]
- Lima, R.S.; Marple, B.R. Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Struc-tural, Thermal Barrier and Biomedical Applications: A Review. J. Therm. Spray Technol. 2007, 16, 40–63. [Google Scholar] [CrossRef]
- Ali, R.; Huang, T.; Song, P.; Zhang, D.; Ali, S.; Arif, M.; Awais, S.; Hanifi, D.; Lu, J. Tribological performance and phase transition of MAX-phase/YSZ abradable seal coating produced by air plasma spraying. Ceram. Int. 2022, 48, 4188–4199. [Google Scholar] [CrossRef]
- Tejero-Martin, D.; Bennett, C.; Hussain, T. A review on environmental barrier coatings: History, current state of the art and future developments. J. Eur. Ceram. Soc. 2020, 41, 1747–1768. [Google Scholar] [CrossRef]
- Lee, K.N.; Zhu, D.; Lima, R.S. Perspectives on Environmental Barrier Coatings (EBCs) Manufactured via Air Plasma Spray (APS) on Ceramic Matrix Composites (CMCs): A Tutorial Paper. J. Therm. Spray Technol. 2021, 30, 40–58. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Xu, F.; Li, K. Rare earth silicate environmental barrier coatings: Present status and prospective. Ceram. Int. 2017, 43, 5847–5855. [Google Scholar] [CrossRef]
- Qin, D.; Niu, Y.; Li, H.; Zhong, X.; Zheng, X.; Sun, J. Fabrication and characterization of Yb2Si2O7-based composites as novel abradable sealing coatings. Ceram. Int. 2021, 47, 23153–23161. [Google Scholar] [CrossRef]
- Guo, M.; Cui, Y.; Wang, C.; Jiao, J.; Bi, X.; Tao, C. Design and characterization of BSAS-polyester abradable environmental barrier coatings (A/EBCs) on SiC/SiC composites. Surf. Coat. Technol. 2023, 465, 129617. [Google Scholar] [CrossRef]
- Jońca, J.; Malard, B.; Soulié, J.; Sanviemvongsak, T.; Selezneff, S.; Vande Put, A. Oxidation behaviour of a CoNiCrAlY/h-BN based abradable coating. Corros. Sci. 2019, 153, 170–177. [Google Scholar] [CrossRef]
- Sporer, D.; Refke, A.; Dratwinski, M.; Dorfman, M.; Metco, S.; Giovannetti, I.; Giannozzi, M.; Bigi, M. New high-temperature seal system for increased efficiency of gas turbines. Seal. Technol. 2008, 2008, 9–11. [Google Scholar] [CrossRef]
- Hajmrle, K.; Fiala, P.; Chilkowich, A.P.; Shiembob, L.T. Abradable Seals for Gas Turbines and Other Rotary Equipment. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004; pp. 673–682. [Google Scholar]
- Ebert, S.; Mücke, R.; Mack, D.; Vaßen, R.; Stöver, D.; Wobst, T.; Gebhard, S. Failure mechanisms of magnesia alumina spinel abradable coatings under thermal cyclic loading. J. Eur. Ceram. Soc. 2013, 33, 3335–3343. [Google Scholar] [CrossRef]
- Tejero-Martin, D.; Bai, M.; Romero, A.R.; Wellman, R.G.; Hussain, T. Steam Degradation of Ytterbium Disilicate Environ-mental Barrier Coatings: Effect of Composition, Microstructure and Temperature. J. Therm. Spray Technol. 2023, 32, 29–45. [Google Scholar] [CrossRef]
- Turcer, L.R.; Padture, N.P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyro-silicate solid-solution ceramics. Scr. Mater. 2018, 154, 111–117. [Google Scholar] [CrossRef]
- Huang, J.; Liu, R.; Hu, Q.; Guo, X.; Li, G.; Tu, Y.; Lu, X.; Xu, M.; Deng, L.; Jiang, J.; et al. High temperature abradable sealing coating for SiCf/SiC ceramic matrix composites. Ceram. Int. 2023, 49, 1779–1790. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Y.; Guo, X.; Tu, Y.; Liu, R.; Song, G.; Lu, X.; Huang, J.; Yuan, M.; Jiang, J.; et al. Oxidation inhibition behaviors of environmental barrier coatings with a Si-Yb2SiO5 mixture layer for SiCf/SiC composites at 1300 °C. Surf. Coat. Technol. 2022, 438, 128421. [Google Scholar] [CrossRef]
- Deijkers, J.A.; Wadley, H.N. A duplex bond coat approach to environmental barrier coating systems. Acta Mater. 2021, 217, 117167. [Google Scholar] [CrossRef]
- Sun, J.; Hui, Y.; Jiang, J.; Deng, L.; Cao, X. Crystallization mechanism of plasma-sprayed LaMgAl11O19 coating. Appl. Surf. Sci. 2019, 504, 144509. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Zhou, X.; Dong, S.; Deng, L.; Jiang, J.; Cao, X. Microstructure and thermal cycling behavior of plasma-sprayed LaMgAl11O19 coatings. Ceram. Int. 2018, 44, 5572–5580. [Google Scholar] [CrossRef]
- Abuhasan, A.; Balasingh, C.; Predecki, P. Residual Stresses in Alumina/Silicon Carbide (Whisker) Composites by X-ray Diffrac-tion. J. Am. Ceram. Soc. 1990, 73, 2474–2484. [Google Scholar] [CrossRef]
- Zou, B.; Khan, Z.S.; Gu, L.; Fan, X.; Huang, W.; Wang, Y.; Zhao, Y.; Wang, C.; Yang, K.; Ma, H.; et al. Microstructure, oxidation protection and failure mechanism of Yb2SiO5/LaMgAl11O19 coating deposited on C/SiC composites by atmospheric plasma spraying. Corros. Sci. 2012, 62, 192–200. [Google Scholar] [CrossRef]
- Kim, S.-H.; Nagashima, N.; Matsushita, Y.; Kim, B.-N.; Jang, B.-K. Corrosion behavior of calcium–magnesium–aluminosilicate (CMAS) on sintered Gd2SiO5 for environmental barrier coatings. J. Am. Ceram. Soc. 2021, 104, 3119–3129. [Google Scholar] [CrossRef]
- Müller, D.; Dingwell, D.B. The influence of thermal barrier coating dissolution on CMAS melt viscosities. J. Eur. Ceram. Soc. 2020, 41, 2746–2752. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Nakayama, T.; Suematsu, H.; Iwasawa, H.; Suzuki, T.; Otsuka, Y.; He, L.; Takahashi, T.; Niihara, K. Self-healing be-havior and strength recovery of ytterbium disilicate ceramic reinforced with silicon carbide nanofillers. J. Eur. Ceram. Soc. 2019, 39, 3139–3152. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Y.; Guo, X.; Huang, Z.; Tu, Y.; Liu, R.; Song, G.; Huang, Z.; Lu, X.; Huang, J.; et al. Oxidation resistance of SiCf/SiC composites with three-layer environmental barrier coatings up to 1360 °C in air atmosphere. Ceram. Int. 2021, 48, 9610–9620. [Google Scholar] [CrossRef]
- Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings 2011, 1, 17–52. [Google Scholar] [CrossRef]
- Lamkin, M.; Riley, F.; Fordham, R. Oxygen mobility in silicon dioxide and silicate glasses: A review. J. Eur. Ceram. Soc. 1992, 10, 347–367. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, Y.; Niu, Y.; Huang, L.; Li, Q.; Zheng, X. Corrosion behaviors and mechanisms of ytterbium silicate environ-mental barrier coatings by molten calcium-magnesium-alumino-silicate melts. Corros. Sci. 2021, 191, 109718. [Google Scholar] [CrossRef]
- Turcer, L.R.; Krause, A.R.; Garces, H.F.; Zhang, L.; Padture, N.P. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7. J. Eur. Ceram. Soc. 2018, 38, 3914–3924. [Google Scholar] [CrossRef]
- Huang, J.; Liu, R.; Hu, Q.; Wang, Y.; Guo, X.; Lu, X.; Xu, M.; Tu, Y.; Yuan, J.; Deng, L.; et al. Effect of deposition temperature on phase composition, morphology and mechanical properties of plasma-sprayed Yb2Si2O7 coating. J. Eur. Ceram. Soc. 2021, 41, 7902–7909. [Google Scholar] [CrossRef]
- Kassem, R.; Al Nasiri, N. A comprehensive study on the mechanical properties of Yb2SiO5 as a potential environmental barrier coating. Surf. Coat. Technol. 2021, 426, 127783. [Google Scholar] [CrossRef]
- Shinde, S.V.; Johnson, C.A.; Sampath, S. Segmentation crack formation dynamics during air plasma spraying of zirconia. Acta Mater. 2019, 183, 196–206. [Google Scholar] [CrossRef]
- Richards, B.T.; Zhu, D.; Ghosn, L.J.; Wadley, H.N.G. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Systems: Preliminary Assessments. In Developments in Strategic Ceramic Materials: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, USA, 25–30 January 2015; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 219–237. [Google Scholar] [CrossRef]
- Richards, B.T.; Begley, M.R.; Wadley, H.N. Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coating Failure During Thermal Cycling in Water Vapor. J. Am. Ceram. Soc. 2015, 98, 4066–4075. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Achadu, O.-I.M.; Thompson, C.E.; Eldosouky, A.M.; Abdelrahman, K.; Andráš, P. Thermal Cycling Behavior of Air Plasma-Sprayed and Low-Pressure Plasma-Sprayed Environmental Barrier Coatings. Coatings 2021, 11, 868. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Lu, X.; Lü, K.; Huang, J.; Huang, Y.; Chen, W.; Deng, L.; Jiang, J.; Dong, S.; et al. Oxidation behavior and interface evolution of tri-layer Si/Yb2SiO5/LaMgAl11O19 thermal and environmental barrier coatings under isothermal heat treatment at 1300 °C. Surf. Coat. Technol. 2023, 464, 129554. [Google Scholar] [CrossRef]
- Liu, P.; Zhong, X.; Niu, Y.; Huang, L.; Li, H.; Fan, D.; Li, Q.; Zheng, X.; Sun, J. Reaction behaviors and mechanisms of tri-layer Yb2SiO5/Yb2Si2O7/Si environmental barrier coatings with molten calcium-magnesium-alumino-silicate. Corros. Sci. 2022, 197, 110069. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, H.; Sun, X.; Liu, J.; Hou, F.; Zhou, Y. Thermal properties of a prospective thermal barrier material: Yb3Al5O12. J. Mater. Res. 2014, 29, 2673–2681. [Google Scholar] [CrossRef]
APS Layers | Power (kW) | Primary Gas Ar (SLPM) | Secondary Gas H2 (SLPM) | Feeding Rate (%) | Spraying Distance (mm) | Coating Thickness (μm) |
---|---|---|---|---|---|---|
Si | 32 | 35 | 12 | 6 | 100 | 100 |
Si + YbDS | 32 | 35 | 12 | 6 | 100 | 50 |
YbMS | 32 | 35 | 12 | 6 | 100 | 50 |
LMA–polyester | 28 | 35 | 12 | 15 | 130 | 500/1000 |
Point | Yb (at%) | Si (at%) | La (at%) | Mg (at%) | Al (at%) | O (at%) |
---|---|---|---|---|---|---|
1 | 1.18 | 27.55 | 1.15 | 1.59 | 8.17 | 60.36 |
2 | 0.22 | 9.78 | 0.13 | 0.08 | 26.75 | 63.04 |
3 | 1.13 | 36.83 | 1.84 | 2.15 | 5.94 | 52.11 |
4 | 19.38 | 20.52 | 1.41 | 0.32 | 0.55 | 57.82 |
Point | Yb (at%) | Si (at%) | O (at%) |
---|---|---|---|
1 | - | 94.56 | 5.44 |
2 | 19.78 | 19.85 | 60.37 |
3 | 25.71 | 12.60 | 61.69 |
4 | 31.61 | 5.30 | 63.09 |
Point | Yb (at%) | Si (at%) | La (at%) | Mg (at%) | Al (at%) | O (at%) | Phase Composition |
---|---|---|---|---|---|---|---|
1 | 0.22 | 0.73 | 3.44 | 2.65 | 36.02 | 56.94 | LaMgAl11O19 |
2 | 12.80 | 2.75 | 0.25 | 3.24 | 19.73 | 61.23 | Yb3Al5O12, MgSiO3 |
3 | 14.29 | 14.26 | 12.03 | 0.73 | - | 58.69 | LaXYb2-XSiO5 |
4 | 25.26 | 13.31 | 1.01 | 0.77 | - | 59.65 | Yb2SiO5 |
5 | 14.09 | 2.27 | 0.75 | 3.09 | 22.47 | 57.33 | Yb3Al5O12, MgSiO3 |
6 | 7.88 | 17.17 | 13.33 | 0.8 | - | 60.82 | LaXYb2-XSi2O7 |
7 | 20.72 | 21.31 | 0.66 | 1.12 | - | 56.19 | Yb2Si2O7 |
8 | 24.99 | 11.08 | 1.31 | 1.19 | - | 61.43 | Yb2SiO5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Chen, W.; Lu, X.; Xu, M.; Li, G.; Deng, L.; Jiang, J.; Dong, S.; Liu, L.; Chen, M.; et al. Isothermal Oxidation and Thermal Shock Resistance of Thick and Porous LaMgAl11O19 Abradable Topcoat. Coatings 2024, 14, 426. https://doi.org/10.3390/coatings14040426
Huang J, Chen W, Lu X, Xu M, Li G, Deng L, Jiang J, Dong S, Liu L, Chen M, et al. Isothermal Oxidation and Thermal Shock Resistance of Thick and Porous LaMgAl11O19 Abradable Topcoat. Coatings. 2024; 14(4):426. https://doi.org/10.3390/coatings14040426
Chicago/Turabian StyleHuang, Jingqi, Wenbo Chen, Xiangrong Lu, Mingyi Xu, Gui Li, Longhui Deng, Jianing Jiang, Shujuan Dong, Li Liu, Meizhu Chen, and et al. 2024. "Isothermal Oxidation and Thermal Shock Resistance of Thick and Porous LaMgAl11O19 Abradable Topcoat" Coatings 14, no. 4: 426. https://doi.org/10.3390/coatings14040426
APA StyleHuang, J., Chen, W., Lu, X., Xu, M., Li, G., Deng, L., Jiang, J., Dong, S., Liu, L., Chen, M., & Cao, X. (2024). Isothermal Oxidation and Thermal Shock Resistance of Thick and Porous LaMgAl11O19 Abradable Topcoat. Coatings, 14(4), 426. https://doi.org/10.3390/coatings14040426