Eco-Innovative Concrete for Infrastructure Obtained with Alternative Aggregates and a Supplementary Cementitious Material (SCM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Aggregates
The Granularity of the Aggregates
Real Density and Water Absorption Coefficient of RCA
- ρw—volumetric mass of water at the test temperature (0.973 at T = 24 °C), Mg/m3;
- M1—mass in air of saturated and superficially dried aggregates, g;
- M2—mass of the pycnometer containing the sample of saturated aggregates, g;
- M3—pycnometer mass filled with water only, g;
- M4—mass in air of the test sample dried in the oven, g.
Resistance to Fragmentation and Abrasion
Abrasion Testing of Coarse Aggregate (MicroDeval Coefficient) for (RCA)
Flattening Coefficient of RCA
- M1—sum of the aggregate masses of the elements di/Di, (g);
- M2—sum of the masses of the granules passed through the slotted grate corresponding to the opening Di/2, (g).
2.1.2. Cement
2.1.3. WGP—Waste Glass Powder
2.1.4. Water and Additives
2.2. Methods
2.2.1. Design and Preparation of BcR4 Class Road Concrete Mix
2.2.2. Determinations of Fresh Properties of BcR Concrete
2.2.3. Mechanical Properties of BcR Concrete
- fct,fl is the tensile strength in MPa/s (N/mm2∙s);
- F is the maximum load in N;
- l the span between the supports in mm;
- d1 and d2 are the cross-sectional dimensions of the specimen in mm (as shown in Figure 6b).
- fct,sp—tensile splitting strength in MPa;
- F—maximum load in N;
- l—length of the contact line of the specimen in mm;
- d1 and d2—size of the cross-section in mm.
2.2.4. Durability Properties of BcR Concrete
- Rm—Arithmetic mean value of the compressive strengths of the control specimens, in N/mm2.
- Ri—Arithmetic mean of the compressive strength values of the freeze-thaw specimens, in N/mm2 or MPa.
- is the volume loss after 16 cycle, in mm3;
- is the loss of mass after 16 cycles in g;
- ρR is the density of the specimen in g/mm3.
2.2.5. Microstructural Determinations
3. Results
3.1. Characteristics of Fresh State for Road Pavement Concrete
3.2. Hardened BcR Composite Properties
3.3. Microstructural Determinations
3.3.1. Optical Microscopy Using Polarized Light
3.3.2. X-ray Diffraction Using the Powder Method (PXRD) for Qualitative Analysis
4. Discussion
4.1. Performance of the BcR Composites Fresh Properties
4.2. Performance of the BcR Composites’ Hard Properties
4.3. Performance of the BcR by PXRD Test
5. Conclusions
- The apparent density of the concrete mix decreases with the substitution of natural river aggregates (4/8 mm) with recycled concrete aggregates and by substituting cement by waste glass powder.
- High quality recycled concrete aggregates have little influence on the fresh properties of concrete, specifically on the slump values. However, the addition of glass powder leads to a decrease in the slump value due to its higher specific surface area and increased friction force between the particles.
- Increasing the volume of recycled concrete aggregates and cement replacement percentage by waste glass powder results in decreased values of the slump and significant decrease in workability. In order to counteract this drawback, a higher water/binder ratio is needed coupled with a higher dosage of superplasticizer. This leads to lower values for apparent density but increased air content.
- Substituting cement with waste glass powder and river aggregates by recycled aggregates results in a decrease in the value of flexural strength. On the other hand, the same substitution has little effect in terms of values of the compressive strength. Increasing the volume of 4/8 mm aggregates, from the total aggregate volume leads to a sharp decrease in the value of the compressive strength as well. Substituting 4/8 mm river aggregates with recycled concrete aggregates and cement with waste glass powder (20% by mass of cement) results in further decrease in mechanical properties.
- Volume loss in Böhme abrasion and loss of strength after 100 freeze–thaw cycles are significantly lower than the upper limit imposed by existing regulations for all investigated concrete mixes.
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hângănuţ, R. Economia de la Liniar la Circular. Available online: https://www.revistasinteza.ro/economia-de-la-liniar-la-circular (accessed on 24 May 2023).
- Romanian Government ORDONANȚĂ DE URGENȚĂ, nr. 92 din 19 August 2021 Privind Regimul Deșeurilor. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/253009 (accessed on 24 May 2023).
- Romanian Government Strategia Națională Privind Economia Circulară. Proiect. Available online: https://sgg.gov.ro/1/wp-content/uploads/2022/08/Strategia-economie-circulara_18.08.2022.pdf (accessed on 24 May 2023).
- Ionescu, B.A.; Barbu, A.-M.; Lăzărescu, A.-V.; Rada, S.; Gabor, T.; Florean, C. The Influence of Substitution of Fly Ash with Marble Dust or Blast Furnace Slag on the Properties of the Alkali-Activated Geopolymer Paste. Coatings 2023, 13, 403. [Google Scholar] [CrossRef]
- Szilagyi, H.; Corbu, O.; Baera, C.; Puskas, A.; Pastrav, M. Opportunities for building materials waste recycling. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference and EXPO, SGEM 2014, Albena, Bulgaria, 17–26 June 2014; Volume 2, pp. 251–258. [Google Scholar]
- Toma, I.-O.; Covatariu, D.; Toma, A.-M.; Taranu, G.; Budescu, M. Strength and elastic properties of mortars with various percentages of environmentally sustainable mineral binder. Constr. Build. Mater. 2013, 43, 348–361. [Google Scholar] [CrossRef]
- Burlacu, A.; Racanel, C. Reducing Cost of Infrastructure Works Using New Technologies. In Proceedings of the 3rd International Conference on Road and Rail Infrastructure—CETRA 2014: Road and Rail Infrastructure III, Split, Croatia, 28–30 April 2014; pp. 189–194. [Google Scholar]
- Popescu, D.; Burlacu, A. Considerations on the Benefits of Using Recyclable Materials for Road Construction. Rom. J. Transp. Infrastruct. 2017, 6, 43–53. [Google Scholar] [CrossRef]
- Dimulescu, C.; Burlacu, A. Industrial Waste Materials as Alternative Fillers in Asphalt Mixtures. Sustainability 2021, 13, 8068. [Google Scholar] [CrossRef]
- Cadar, R.D.; Boitor, R.M.; Dragomir, M.L. An Analysis of Reclaimed Asphalt Pavement from a Single Source—Case Study: A Secondary Road in Romania. Sustainability 2022, 14, 7057. [Google Scholar] [CrossRef]
- Malhotra, V.M. Making Concrete “Greener” with Fly Ash. Concr. Int. 1999, 21, 61–66. [Google Scholar]
- Corbu, O.C.; Măgureanu, C.; Oneţ, T.; Szilágyi, H. Economia de Energie la Realizarea Betoanelor Performante. In Proceedings of the Ştiinţa Modernă şi Energia: Producerea, Transportul şi Utilizarea Energiei” SME 2010, Ediţia XXIX-a, 20–21 May 2010; Risoprint: Cluj-Napoca, Romania, 2010; pp. 343–354. [Google Scholar]
- Althoey, F.; Zaid, O.; Majdi, A.; Alsharari, F.; Alsulamy, S.; Arbili, M.M. Effect of fly ash and waste glass powder as a fractional substitute on the performance of natural fibers reinforced concrete. Ain Shams Eng. J. 2023, 102247. [Google Scholar] [CrossRef]
- The European Cement Association (CEMBUREAU) Reaching Climate Neutrality along the Cement and Concrete Value Chain by 2050. Available online: https://www.cembureau.eu/media/kuxd32gi/cembureau-2050-roadmap_final-version_web.pdf (accessed on 10 March 2023).
- United States Geological Survey (USGS) Mineral Commodity Summaries 2012. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/mineral-pubs/mcs/mcs2012.pdf (accessed on 28 February 2023).
- Aїtcin, P.-C. Cements of yesterday and today. Cem. Concr. Res. 2000, 30, 1349–1359. [Google Scholar] [CrossRef]
- Sandu, A.V. Obtaining and Characterization of New Materials. Materials 2021, 14, 6606. [Google Scholar] [CrossRef]
- Corbu, O.; Chira, N.; Szilágyi, H. Ecological Concrete by Use of Waste Glass. In Proceedings of the 13th SGEM GeoConference on Nano, Bio and Green—Technologies for a Sustainable Future, Albena, Bulgaria, 16–22 June 2013. [Google Scholar]
- The European Commission. EU Construction & Demolition Waste Management Protocol; The European Commission: Luxembourg, 2016. [Google Scholar]
- Corbu, O.; Puskás, A.; Szilágyi, H.; Baeră, C. C16/20 Concrete Strength Class Design With Recycled Aggregates. J. Appl. Eng. Sci. 2014, 4, 13–19. [Google Scholar]
- Puskás, A.; Corbu, O.; Szilágyi, H.; Moga, L.M. Construction waste disposal practices: The recycling and recovery of waste. In Proceedings of the Sustainable City IX: Urban Regeneration and Sustainability, Siena, Italy, 23–25 September 2014; pp. 1313–1321. [Google Scholar]
- Corbu, O.; Puskás, A.; Moga, L.M.; Szilágyi, H. Opportunities for Increasing the Recycling Rate of Mineral Waste in Construction Industry. In Proceedings of the 15th International Multidisciplinary Scientific Geo-Conference Surveying Geology and Mining Ecology Management, Albena, Bulgaria, 18–24 June 2015; pp. 203–210. [Google Scholar]
- Frondistou-Yannas, S. Waste Concrete as Aggregate for New Concrete. ACI J. Proc. 1977, 74, 373–376. [Google Scholar] [CrossRef]
- Corbu, O.; Puskás, A.; Sandu, A.V.; Ioani, A.M.; Hussin, K.; Sandu, I.G. New Concrete with Recycled Aggregates from Leftover Concrete. Appl. Mech. Mater. 2015, 754–755, 389–394. [Google Scholar] [CrossRef]
- TrustGod, J.A.; Stevyn, A.I.; Manfred, A.D. Use of Calcined Waste Glass Powder As a Pozzolanic Material. Eur. J. Eng. Technol. Res. 2019, 4, 53–56. [Google Scholar] [CrossRef]
- Raza, A. Mechanical Performance of Lean Mortar by Using Waste Glass Powder as a Replacement of Cement. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 1447–1453. [Google Scholar] [CrossRef]
- Yassen, M.M.; Hama, S.M.; Mahmoud, A.S. Shear behavior of reinforced concrete beams incorporating waste glass powder as partial replacement of cement. Eur. J. Environ. Civ. Eng. 2023, 27, 2194–2209. [Google Scholar] [CrossRef]
- Majeed, W.Z.; Aboud, R.K.; Naji, N.B.; Mohammed, S.D. Investigation of the Impact of Glass Waste in Reactive Powder Concrete on Attenuation Properties for Bremsstrahlung Ray. East Eur. J. Phys. 2023, 102–108. [Google Scholar] [CrossRef]
- Mahajan, L.S.; Bhagat, S.R. Utilization of Pozzolanic Material and Waste Glass Powder in Concrete. In Recent Trends in Construction Technology and Management; Springer: Singapore, 2023; pp. 201–206. [Google Scholar]
- Baikerikar, A.; Mudalgi, S.; Ram, V.V. Utilization of waste glass powder and waste glass sand in the production of Eco-Friendly concrete. Constr. Build. Mater. 2023, 377, 131078. [Google Scholar] [CrossRef]
- Bompa, D.V.; Xu, B.; Corbu, O. Evaluation of One-Part Slag–Fly-Ash Alkali-Activated Mortars Incorporating Waste Glass Powder. J. Mater. Civ. Eng. 2022, 34, 05022001. [Google Scholar] [CrossRef]
- Pashtoon, M.I.; Miakhil, S.; Behsoodi, M.M. Waste Glass Powder “An Alternative of Cement in Concrete”: A Review. Int. J. Curr. Sci. Res. Rev. 2022, 05, 2541–2549. [Google Scholar] [CrossRef]
- Manikandan, P.; Vasugi, V. The potential use of waste glass powder in slag-based geopolymer concrete—An environmental friendly material. Int. J. Environ. Waste Manag. 2023, 31, 291–307. [Google Scholar] [CrossRef]
- Shalan, A.H.; El-Gohary, M.M. Long-Term Sulfate Resistance of Blended Cement Concrete with Waste Glass Powder. Pract. Period. Struct. Des. Constr. 2022, 27, 04022047. [Google Scholar] [CrossRef]
- Shankar, H.S.; Gurubasav, S.H.; Shashikanth, A.K.; Akash, A.C. The effect of partial replacement of cement by waste green glass powder with waste plastic as coarse aggregate. I-Manager’s J. Struct. Eng. 2022, 11, 1. [Google Scholar] [CrossRef]
- Shi, C.; Zheng, K. A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recycl. 2007, 52, 234–247. [Google Scholar] [CrossRef]
- Federico, L.M.; Chidiac, S.E. Waste glass as a supplementary cementitious material in concrete—Critical review of treatment methods. Cem. Concr. Compos. 2009, 31, 606–610. [Google Scholar] [CrossRef]
- Jani, Y.; Hogland, W. Waste glass in the production of cement and concrete—A review. J. Environ. Chem. Eng. 2014, 2, 1767–1775. [Google Scholar] [CrossRef]
- Abendeh, R.M.; AbuSalem, Z.T.; Bani Baker, M.I.; Khedaywi, T.S. Concrete containing recycled waste glass: Strength and resistance to freeze–thaw action. Proc. Inst. Civ. Eng.—Constr. Mater. 2021, 174, 75–87. [Google Scholar] [CrossRef]
- Hornea, L.; Gorea, M.; Har, N. Study of (Pb, Ba)—CRT glass waste behavior as a partial aggregate replacement in cement mortars. Stud. Univ. Babeș-Bolyai Chem. 2017, 62, 343–356. [Google Scholar] [CrossRef]
- Topçu, İ.B.; Şengel, S. Properties of concretes produced with waste concrete aggregate. Cem. Concr. Res. 2004, 34, 1307–1312. [Google Scholar] [CrossRef]
- NE 014-2002; Normativ Pentru Executarea Îmbrăcăminților Rutiere din Beton de Ciment în Sistem de Cofraje Fixe și Glisante. Ministry of Development, Public Works and Administration: Bucharest, Romania, 2002.
- SR EN 206-1:2021; Concrete—Specification, Performance, Production and Conformity. ASRO (Romanian Standards Association): Bucharest, Romania, 2021.
- Tobo, H.; Miyamoto, Y.; Watanabe, K.; Kuwayama, M.; Ozawa, T.; Tanaka, T. Solidification Conditions to Reduce Porosity of Air-cooled Blast Furnace Slag for Coarse Aggregate. J. Iron Steel Inst. Jpn. 2013, 99, 532–541. [Google Scholar] [CrossRef]
- Verian, K.P.; Panchmatia, P.; Olek, J.; Nantung, T. Pavement Concrete with Air-Cooled Blast Furnace Slag and Dolomite as Coarse Aggregates. Transp. Res. Rec. J. Transp. Res. Board 2015, 2508, 55–64. [Google Scholar] [CrossRef]
- Ta, Y.; Tobo, H.; Watanabe, K. Development of Manufacturing Process for Blast Furnace Slag Coarse Aggregate with Low Water Absorption. JFE Tech. Rep. 2018, 23, 97–101. [Google Scholar]
- Roy, S.; Ahmad, S.I.; Rahman, M.S.; Salauddin, M. Experimental investigation on the influence of induction furnace slag on the fundamental and durability properties of virgin and recycled brick aggregate concrete. Results Eng. 2023, 17, 100832. [Google Scholar] [CrossRef]
- SR EN 933-1:2012; Tests for Geometrical Properties of Aggregates. Part 1: Determination of Particle Size Distribution—Sieving Method. ASRO (Romanian Standards Association): Bucharest, Romania, 2012.
- SR EN 1097-6:2022; Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. ASRO (Romanian Standards Association): Bucharest, Romania, 2022.
- SR EN 1097-2:2020; Tests for Mechanical and Physical Properties of Aggregates—Part 2: Methods for the Determination of Resistance to Fragmentation. ASRO (Romanian Standards Association): Bucharest, Romania, 2020.
- SR EN 1097-1:2011; Tests for Mechanical and Physical Properties of Aggregates—Part 1: Determination of the Resistance to Wear (Micro-Deval). ASRO (Romanian Standards Association): Bucharest, Romania, 2011.
- SR EN 933-3:2012; Tests for Geometrical Properties of Aggregates. Part 3: Determination of Particle Shape—Flatness Index. BASRO (Romanian Standards Association): Bucharest, Romania, 2012.
- SR EN 197-1; Cement. Part I: Composition, Specifications and Conformity Criteria for Normal Use Cements. ASRO (Romanian Standards Association): Bucharest, Romania, 2011.
- SR EN 196-2:2013; Method of Testing Cement—Part 2: Chemical Analysis of Cement. ASRO (Romanian Standards Association): Bucharest, Romania, 2013.
- SR EN 196-3:2017; Methods of Testing Cement. Determination of Setting Times and Soundness. ASRO (Romanian Standards Association): Bucharest, Romania, 2017.
- SR EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. ASRO (Romanian Standards Association): Bucharest, Romania, 2016.
- Corbu, O.; Ioani, A.M.; Al Bakri Abdullah, M.M.; Meiţă, V.; Szilagyi, H.; Sandu, A.V. The Pozzolanic Activity Level of Powder Waste Glass in Comparisons with other Powders. Key Eng. Mater. 2015, 660, 237–243. [Google Scholar] [CrossRef]
- Taha, B.; Nounu, G. Properties of concrete contains mixed colour waste recycled glass as sand and cement replacement. Constr. Build. Mater. 2008, 22, 713–720. [Google Scholar] [CrossRef]
- Vafaei, M.; Allahverdi, A. High strength geopolymer binder based on waste-glass powder. Adv. Powder Technol. 2017, 28, 215–222. [Google Scholar] [CrossRef]
- Meena, M.K.; Gupta, J.; Nagar, B. Performance of Concrete by Using Glass Powder—An Experimental Study. Int. Res. J. Eng. Technol. 2018, 5, 840–844. [Google Scholar]
- Corbu, O.; Bompa, D.V.; Szilagyi, H. Eco-efficient cementitious composites with large amounts of waste glass and plastic. Proc. Inst. Civ. Eng.—Eng. Sustain. 2022, 175, 64–74. [Google Scholar] [CrossRef]
- Mansour, M.A.; Ismail, M.H.B.; Imran Latif, Q.B.a.; Alshalif, A.F.; Milad, A.; Bargi, W.A.A. A Systematic Review of the Concrete Durability Incorporating Recycled Glass. Sustainability 2023, 15, 3568. [Google Scholar] [CrossRef]
- Wikipedia Pozzolanic Activity. Available online: https://en.wikipedia.org/wiki/Pozzolanic_activity (accessed on 20 April 2023).
- ASTM C618-22; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2022.
- Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; Sato, T. Cement and Concrete Nanoscience and Nanotechnology. Materials 2010, 3, 918–942. [Google Scholar] [CrossRef]
- Shayan, A.; Xu, A. Value-added utilisation of waste glass in concrete. Cem. Concr. Res. 2004, 34, 81–89. [Google Scholar] [CrossRef]
- Khairul Nizar, I.; Al Bakri, A.M.M.; Rafiza, A.R.; Kamarudin, H.; Abdullah, A.; Yahya, Z. Study on Physical and Chemical Properties of Fly Ash from Different Area in Malaysia. Key Eng. Mater. 2013, 594–595, 985–989. [Google Scholar] [CrossRef]
- Liu, S.; Li, L. Influence of fineness on the cementitious properties of steel slag. J. Therm. Anal. Calorim. 2014, 117, 629–634. [Google Scholar] [CrossRef]
- Matos, A.M.; Sousa-Coutinho, J. Waste glass powder in cement: Macro and micro scale study. Adv. Cem. Res. 2016, 28, 423–432. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Q.; Xie, C.; Xue, Y.; Duan, Y.; Cui, X. The Effect of Fineness on the Hydration Activity Index of Ground Granulated Blast Furnace Slag. Materials 2019, 12, 2984. [Google Scholar] [CrossRef]
- Lucaci, G. Imbracaminti rutiere rigide. Available online: https://www.ct.upt.ro/studenti/cursuri/lucaci/Imbr_rutiere_rigide.pdf (accessed on 15 May 2023).
- SR EN 1008:2003; Mixing Water for Concrete. ASRO (Romanian Standards Association): Bucharest, Romania, 2003.
- SR EN 934-2+A1:2012; Concrete Admixtures. ASRO (Romanian Standards Association): Bucharest, Romania, 2012.
- SR EN 12620+A1:2008; Aggregates for Concrete. ASRO (Romanian Standards Association): Bucharest, Romania, 2008.
- SR EN 12043:2013; Natural Aggregates and Processed Stone for Roads. ASRO (Romanian Standards Association): Bucharest, Romania, 2013.
- Hansen, T.C.; Narud, H. Strength of Recycled Concrete Made from Crushed Concrete Coarse Aggregate. Concr. Int. 1983, 5, 79–83. [Google Scholar]
- Babafemi, A.J.; Sirba, N.; Paul, S.C.; Miah, M.J. Mechanical and Durability Assessment of Recycled Waste Plastic (Resin8 & PET) Eco-Aggregate Concrete. Sustainability 2022, 14, 5725. [Google Scholar] [CrossRef]
- SR EN 12350-2:2019; Testing Fresh Concrete—Part 2: Slump-Test. ASRO (Romanian Standards Association): Bucharest, Romania, 2019.
- SR EN 12350-6:2019; Testing Fresh Concrete—Part 6: Density. ASRO (Romanian Standards Association): Bucharest, Romania, 2019.
- SR EN 12350-7:2019; Testing Fresh Concrete—Part 7: Air Content—Pressure Methods. ASRO (Romanian Standards Association): Bucharest, Romania, 2019.
- SR EN 12390-5:2019; Test on Hardened Concrete—Part 5: Bending Tensile Strength of Specimens. ASRO (Romanian Standards Association): Bucharest, Romania, 2019.
- SR EN 12390-3/2009; Testing hardened concrete. Part 3: Compressive Strength of Test Specimens. ASRO (Romanian Standards Association): Bucharest, Romania, 2009.
- SR EN 12390-6/2010; Testing Hardened Concrete. Part 6: Tensile Splitting strength of Test Specimens. ASRO (Romanian Standards Association): Bucharest, Romania, 2010.
- SR EN 12390-7:2019; Testing Hardened Concrete—Part 7: Density of Hardened Concrete. ASRO (Romanian Standards Association): Bucharest, Romania, 2019.
- SR 3518:2009; Tests on Concrete. Determining the Freeze-Thaw Resistance by Measuring the Variation of the Compressive Strength and/or the Relative Dynamic Modulus of Elasticity. ASRO (Romanian Standards Association): Bucharest, Romania, 2009.
- SR EN 1338:2004; Concrete Paving Blocks—Requirements and Test Methods. ASRO (Romanian Standards Association): Bucharest, Romania, 2004.
- SR EN 1339:2004; Concrete Paving Flags—Requirements and Test Methods. ASRO (Romanian Standards Association): Bucharest, Romania, 2004.
- SR EN 1340:2004; Concrete Kerb Units—Requirements and Test Methods. ASRO (Romanian Standards Association): Bucharest, Romania, 2004.
- SR CR 12793:2002; Determination of the Depth of the Carbonation Layer of Hardened Concrete. ASRO (Romanian Standards Association): Bucharest, Romania, 2002.
- Hosseini, P.; Abolhasani, M.; Mirzaei, F.; Kouhi Anbaran, M.R.; Khaksari, Y.; Famili, H. Influence of Two Types of Nanosilica Hydrosols on Short-Term Properties of Sustainable White Portland Cement Mortar. J. Mater. Civ. Eng. 2018, 30, 04017289. [Google Scholar] [CrossRef]
- Ahmad, J.; Tufail, R.F.; Aslam, F.; Mosavi, A.; Alyousef, R.; Faisal Javed, M.; Zaid, O.; Khan Niazi, M.S. A Step towards Sustainable Self-Compacting Concrete by Using Partial Substitution of Wheat Straw Ash and Bentonite Clay Instead of Cement. Sustainability 2021, 13, 824. [Google Scholar] [CrossRef]
- NE 012/1-2022; Normativ Privind Producerea și Executarea Lucrărilor Din Beton, Beton Armat și Beton Precomprimat—Partea 1: Producerea Betonului. Ministry of Development, Public Works and Administration: Bucharest, Romania, 2022.
- Fédération Internationale du Béton (FIB). Constitutive Modelling of High Strength/High Performance Concrete—State of the Art Report; FIB: Lausanne, Switzerland, 2008. [Google Scholar]
- Jain, S.; Santhanam, M.; Rakesh, S.; Kumar, A.; Gupta, A.K.; Kumar, R.; Sen, S.; Ramna, R.V. Utilizationof air-cooled blast furnace slag as a 100% replacement of river sand in mortar and concrete. Indian Concr. J. 2022, 96, 6–21. [Google Scholar]
- Pimienta, P.; Albert, B.; Huet, B.; Dierkens, M.; Fransisco, P.; Rougeau, P. Durability performance assessment of non-standard cementitious materials for buildings: A general method applied to the French context. RILEM Tech. Lett. 2016, 1, 102–108. [Google Scholar] [CrossRef]
Size of Aggregate [mm] | Type of Aggregate |
---|---|
0/4 | Natural river aggregate (NRA) for all mixes (gravel) |
4/8 | Crushed river aggregates (CRA) (crushed gravel) |
4/8 | Recycled concrete aggregates (RCA) |
8/16 mm, 16/25 | Crushed aggregates/chippings (CAC) for all mixes |
Aggregate | Passes, in %, through the Size Sieve (mm): | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.125 | 0.250 | 0.500 | 1 | 2 | 4 | 8 | 16 | 31.5 | |
0/4 mm | 4.23 | 15.18 | 38.30 | 64.70 | 86.30 | 99.43 | 100 | 100 | 100 |
Aggregate | Passes, in %, through the Size Sieve (mm): | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.125 | 0.250 | 0.500 | 1 | 2 | 4 | 8 | 16 | 31.5 | |
4/8 mm | 0.19 | 0.22 | 0.24 | 0.27 | 1.33 | 27.50 | 96.90 | 100 | 100 |
8/16 mm | 0.05 | 0.06 | 0.06 | 0.07 | 0.07 | 0.09 | 1.76 | 94.62 | 100 |
Aggregate | Passes, in %, through the Size Sieve (mm): | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.125 | 0.250 | 0.500 | 1 | 2 | 4 | 8 | 16 | 31.5 | |
4/8 mm | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.12 | 79.90 | 100 | 100 |
Aggregate | Passes, in %, through the Size Sieve (mm): | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.125 | 0.250 | 0.500 | 1 | 2 | 4 | 8 | 16 | 25 | |
8/16 mm | 1.00 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 7.27 | 95.51 | 100 |
16/25 mm | 0.08 | 0.09 | 0.09 | 0.09 | 0.10 | 0.10 | 0.10 | 5.02 | 100 |
Symbol Aggreg. Sorts | Characteristics of Aggregates | |||
---|---|---|---|---|
(mm) | ρa (Mg/m3) | ρrd (Mg/m3) | ρssd (Mg/m3) | WA24 (%) |
NRA_0/4 | 2.70 | 2.57 | 2.63 | 3.00 |
CRA_4/8 | 2.68 | 2.59 | 2.62 | 2.40 |
RCA_4/8 | 2.70 | 2.32 | 2.46 | 6.00 |
CAC_8/16 | 2.65 | 2.56 | 2.61 | 1.40 |
CAC_16/25 | 2.67 | 2.59 | 2.62 | 1.20 |
Symbol of Aggregate | Sorts of Aggregates | LAmed (%) | Traffic Class |
---|---|---|---|
RCA | 4/8 mm | 30.9 | Reduced |
CRA | 4/8 mm | 31.0 | Reduced |
CAC | 8/16 mm | 16.0 | Intensive |
CAC | 16/25 mm | 15.0 | Intensive |
Symbol of Aggregate | Sorts of Aggregates | MDEmed (%) | Traffic Class |
---|---|---|---|
RCA | 4/8 mm | 20.8 | Medium |
CRA | 4/8 mm | 10.1 | Intensive |
CAC | 8/16, 16/25 mm | 14.0 | Intensive |
Sorts/Elementary Aggregates di/Di | The Nominal Opening of the Grill Slots, mm | Ai | M1 | M2 | A | |
---|---|---|---|---|---|---|
4/8 mm | 8/10 | 5 | 0 | 600 | 76 | 13 |
6.3/8 | 4 | 5 | ||||
5/6.3 | 3.15 | 29 | ||||
4/5 | 2.5 | 26 |
Characteristics CEM I 42, 5R | Value | According to | |
---|---|---|---|
Composition | Clincher Portland (%) | 95–100 | SR EN 197-1 [53] |
Minor component (%) | 0–5 | SR EN 197-1 [53] | |
Chemical Characteristics | Sulphate content (in the form of SO, %) | ≤4 | SR EN 196-2 [54] |
Chloride content (%) | ≤0.1 | SR EN 196-2 [54] | |
Loss of calcination (%) | ≤5 | SR EN 196-2 [54] | |
Insoluble residue (%) | ≤5 | SR EN 196-2 [54] | |
Physicomechanical Characteristics | Setting time (min.) | ≥60 | SR EN 196-3 [55] |
Stability (mm) | ≤10 | SR EN 196-3 [55] | |
Compressive strength at 2 days (MPa) | ≥20 | SR EN 196-1 [56] | |
Compressive strength at 28 days (MPa) | ≥42.5 ≤62.5 | SR EN 196-1 [56] |
Oxides | SiO2 | K2O | Fe2SiO3 | CaO | Al2O3 | MgO | Na2O | Oder |
---|---|---|---|---|---|---|---|---|
CEM I 42.5R | 14.30 | 1.08 | 3.70 | 71.46 | 2.90 | 0.86 | 5.70 | - |
WGP | 77.70 | 1.01 | 0.44 | 13.6 | 0.06 | 0.01 | 5.27 | 1.92 |
WGP | Passing (in %) through the Sieve (Size in mm) | |||
---|---|---|---|---|
0.63 | 0.125 | 0.250 | 0.500 | |
≤0.125 mm | 43.80 | 100.00 | 100 | 100 |
Properties | Mechanical Strength | Shrinkage | Abrasion Resistance | Freeze–Thaw Resistance | Modulus of Elasticity | Hydration Rate |
---|---|---|---|---|---|---|
C3S | Very high | Low | Good | Very good | Very high | Moderate |
Pavements Realized | Nature of Aggregates | Sorts of Aggregates | Gradation of Total Aggregates |
---|---|---|---|
Single layer | Natural Sand | 0/4 | |
Two layers | Crushed Gravel | 4/8 | 0/25 |
Chipping | 8/16 | ||
Wearing course | Chipping | 16/25 |
Total Gradation Curves for the Concrete Mixes | Passing % through Sieve with Size (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.125 | 0.250 | 0.5 | 1 | 2 | 4 | 8 | 16 | 25 | |
Concrete mixture with natural aggregates [38] | 1.29 | 4.64 | 11.59 | 19.51 | 26.06 | 32.86 | 47.58 | 70.43 | 100 |
Concrete mixture with recycled aggregates | 0.81 | 4.02 | 11.24 | 19.17 | 25.92 | 29.99 | 44.56 | 70.43 | 100 |
Lower limit | 1.5 | 2 | 5 | 8 | 15 | 20 | 35 | 62 | 100 |
Upper limit | 7 | 8 | 17.5 | 27 | 34 | 42 | 60 | 83 | 100 |
Design Parameters BcR4 | Min. Cement Ratio CEM I 42,5 | (w/c) | Consistency Class S1 (mm) | Air Void Content (%) | Freeze-Throw Circles | fc 28 Days MPa | fct,fl 28 Days MPa |
---|---|---|---|---|---|---|---|
NE 014 [42] and SR EN 206-1: 2021 [43] | 330 kg/m3 | max. 0.45 | 10–40 | 3.5 ± 0.5 | 100 | min. 35 max. 50 | min. 4 max. 5 |
Mix Components | BcR-NA-1 | BcR-RCA-1 | BcR-RCA-WGP10 |
---|---|---|---|
Water/Cement ratio | 0.45 | 0.45 | 0.45 |
Cement I 42.5R | 330 | 330 | 297 |
DSP(WGP) < 0.125 mm—10% | - | - | 33 |
NRA—0/4 mm | 569 | 569 | 569 |
CRA—4/8 mm | 303 | - | - |
RCA—4/8 mm | - | 303 | 303 |
CAC—8/16 mm | 455 | 455 | 455 |
CAC—16/25 mm | 569 | 569 | 569 |
Admixture 1 (Master Glenium 115)—1.80% | 5.94 | 5.94 | 5.94 |
Admixture 2 (MICROAir 107-2)—0.25% | 0.285 | 0.285 | 0.285 |
Mix Components | BcR-NA-2 | BcR-RCA-2 | BcR-RCA-WGP20 |
---|---|---|---|
Water/Cement ratio | 0.55 | 0.55 | 0.55 |
Cement I 42.5R | 330 | 330 | 264 |
DSP(WGP) < 0.125 mm—20% | - | - | 66 |
NRA—0/4 mm | 607 | 569 | 569 |
CRA—4/8 mm | 379 | - | - |
RCA—4/8 mm | - | 379 | 379 |
CAC—8/16 mm | 341 | 341 | 341 |
CAC—16/25 mm | 569 | 569 | 569 |
Admixture 1 (Master Glenium 115)—2.30% | 7.59 | 7.59 | 7.59 |
Admixture 2 (MICROAir 107-2)—0.25% | 0.285 | 0.285 | 0.285 |
Fresh Property | UM | Performance Level | Mix Design | |||||
---|---|---|---|---|---|---|---|---|
BcR-NA | BcR-RCA | BcR-RCA-WGP | ||||||
Var. I | Var. II | Var. I | Var. II | 10% | 20% | |||
Temperature (T) | °C | 5–30 | 23 | 22 | 22 | 21 | 23 | 22 |
Consistency (S) | mm | 10–40 | 35 | 40 | 35 | 37 | 27 | 31 |
Apparent Density (ρ) | kg/m3 | 2400 | 2374 | 2370 | 2364 | 2352 | 2358 | 2347 |
Entrained Air for Aggreg. dmax-25 mm | % | 3.5–4.5 (±0.5) | 4.0 | 4.2 | 3.7 | 3.9 | 3.8 | 4.2 |
Hard Property | UM | Performance Level | Mix Design | |||||
---|---|---|---|---|---|---|---|---|
BcR-NA | BcR-RCA | BcR-RCA-WGP | ||||||
Var. I | Var. II | Var. I | Var. II | 10% | 20% | |||
Flexural strength (fct,fl) | MPa | 4.0–5.0 | 6.7 | 5.4 | 5.6 | 5.5 | 5.4 | 4.3 |
Compressive strength (fc) | MPa | 35–45 | 84.2 | 69.2 | 83.1 | 69.4 | 80 | 62.0 |
Splitting strength (fct,sp) | MPa | - | 4.5 | 3.7 | 4.4 | 3.7 | 4.5 | 3.5 |
Density (ρa) | kg/m3 | 2400 ± 40 | 2430 | 2417 | 2425 | 2410 | 2420 | 2406.6 |
Loss of strength (η) | % | ≤25 | 14.11 | 16.8 | 14.60 | 17.6 | 16.0 | 20.2 |
Volume loss due to abrasion (η) | ΔV/5000 mm2 | ΔV ≤ 18,000 mm3 | 11,301 | 9371 | 11,500 | 9494 | 11,220 | 9436 |
Depth of carbonation (dk) | mm | - | 0.5 | - | 0.5 | 0.2 | 0.5 |
Hard Property | UM | Performance Level | Mix Design | |||||
---|---|---|---|---|---|---|---|---|
BcR-NA | BcR-RCA | BcR-RCA-WGP | ||||||
Var. I | Var. II | Var. I | Var. II | 10% | 20% | |||
Flexural Strength (fct,fl) | MPa | 4.0–5.0 | 6.7 | 5.4 | 5.6 | 5.5 | 5.4 | 4.3 |
Compressive Strength (fc) | MPa | 35–45 | 84.2 | 69.2 | 83.1 | 69.4 | 80.0 | 62.0 |
Loss of Strength (η) | % | 25 | 14.11 | 16.8 | 14.60 | 17.6 | 16.0 | 20.2 |
Achieved Strength Class | BcR | BcR4–BcR5 | BcR 5 | BcR 5 | BcR 5 | BcR 5 | BcR 5 | BcR 4 |
Source | Mathematical Relation (Cylinders with H/ Φ- 300/150 or Cube with l = 150 mm) |
---|---|
fib Bulletin 42 [95] | (a) fcm = fck + Δf, Δf = 8 MPa |
NE 012-1: 2022 [94] | (b) fcm = fck + (6–12) MPa |
Mix | fct,fl | Cv1 | Cv2 | fc | Cv1 | Cv2 | η | Cv1 | Cv2 | ΔV | Cv1 | Cv2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Var. I | MPa | MPa | % | /5000 mm2 | ||||||||
BcR-NA-1 | 6.7 | 0.75 | 84.2 | 0.65 | 14.11 | 1.77 | 11,301 | 1.59 | ||||
BcR-RCA-1 | 5.6 | 1.20 | 0.89 | 83.1 | 1.01 | 0.66 | 14.60 | 0.97 | 1.71 | 11,500 | 0.98 | 1.57 |
BcR-RCA-WGP10 | 5.4 | 1.24 | 0.93 | 80.0 | 1.05 | 0.69 | 16.00 | 0.88 | 1.56 | 11,220 | 1.01 | 1.60 |
Var. II | ||||||||||||
BcR-NA-2 | 5.4 | 0.93 | 69.2 | 0.79 | 16.80 | 1.49 | 9371 | 1.92 | ||||
BcR-RCA-2 | 5.5 | 0.98 | 0.91 | 69.4 | 0.997 | 0.79 | 17.60 | 0.95 | 1.42 | 9494 | 0.98 | 1.90 |
BcR-RCA-WGP20 | 4.3 | 1.26 | 0.93 | 62.0 | 1.12 | 0.89 | 20.20 | 0.83 | 1.24 | 9436 | 0.99 | 1.91 |
Var. I & II | ||||||||||||
BcR-NA | 6.7 | 84.2 | 14.11 | 11,301 | ||||||||
5.4 | 1.24 | 69.2 | 1.22 | 16.80 | 0.84 | 9371 | 1.21 | |||||
BcR-RCA | 5.6 | 83.1 | 14.60 | 11,500 | ||||||||
5.5 | 1.02 | 69.4 | 1.20 | 17.60 | 0.83 | 9494 | 1.21 | |||||
BcR-RCA-WGP | 5.4 | 80.0 | 16.00 | 11,220 | ||||||||
4.3 | 1.26 | 62.0 | 1.29 | 20.20 | 0.79 | 9436 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbu, O.; Puskas, A.; Dragomir, M.-L.; Har, N.; Toma, I.-O. Eco-Innovative Concrete for Infrastructure Obtained with Alternative Aggregates and a Supplementary Cementitious Material (SCM). Coatings 2023, 13, 1710. https://doi.org/10.3390/coatings13101710
Corbu O, Puskas A, Dragomir M-L, Har N, Toma I-O. Eco-Innovative Concrete for Infrastructure Obtained with Alternative Aggregates and a Supplementary Cementitious Material (SCM). Coatings. 2023; 13(10):1710. https://doi.org/10.3390/coatings13101710
Chicago/Turabian StyleCorbu, Ofelia, Attila Puskas, Mihai-Liviu Dragomir, Nicolae Har, and Ionuț-Ovidiu Toma. 2023. "Eco-Innovative Concrete for Infrastructure Obtained with Alternative Aggregates and a Supplementary Cementitious Material (SCM)" Coatings 13, no. 10: 1710. https://doi.org/10.3390/coatings13101710
APA StyleCorbu, O., Puskas, A., Dragomir, M. -L., Har, N., & Toma, I. -O. (2023). Eco-Innovative Concrete for Infrastructure Obtained with Alternative Aggregates and a Supplementary Cementitious Material (SCM). Coatings, 13(10), 1710. https://doi.org/10.3390/coatings13101710