The Effect of Different Particle Sizes of SiO2 in Sintering on the Formation of Ternesite
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Samples Preparation
2.2. Characterization
2.2.1. X-ray Diffraction (XRD) Characterization and Analysis
2.2.2. Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS) Analysis
2.2.3. Thermal Analysis
2.2.4. Hydration Heat
3. Results and Discussion
3.1. Formation of Ternesite
3.2. SEM/EDS
3.3. Thermal Analysis
3.4. Hydration Heat
4. Conclusions
- Different particle sizes of SiO2 have a significant impact on the formation of C5S2S−. Specifically, C5S2S− prepared using 500 nm SiO2 as a raw material can achieve a purity as high as 99.47%, whereas C5S2S− prepared with 10 μm SiO2 as a raw material exhibits a purity of only 67.01%. Additionally, the presence of CS is detected in the samples prepared with 10 μm SiO2.
- In the samples prepared using SiO2 particles with sizes of 20 nm, 25 nm, and 500 nm, S elements are evenly distributed within each particle, facilitating the relatively smooth formation of C5S2S−. Conversely, in the samples prepared with 10 μm SiO2 particles, C5S2S− containing S elements coats the edges of the spherical particles dominated by SiO2 and C2S. Due to the influence of the SiO2′s specific surface area, the formation of C5S2S− is relatively challenging.
- In the TG and DTA tests, the 500 nm_1700 °C_sample exhibits the best thermal stability, primarily due to its superior crystallinity. In the hydration heat test, also influenced by the better crystallinity of the 500 nm_1700 °C_sample, CSA cement doped with this sample displays the slowest hydration rate and lowest cumulative heat release.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Dong, D.; Wang, X.; Zhang, Z.; Zhao, P.; Cui, N.; Lu, L. Ternesite-calcium sulfoaluminate cement: Preparation and hydration. Constr. Build. Mater. 2022, 344, 128187. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.; Ren, X.; Ye, J.; Zhang, J.; Qian, J. Formation, structure, and thermal stability evolution of ternesite based on a single-stage sintering process. Cem. Concr. Res. 2021, 147, 106519. [Google Scholar] [CrossRef]
- Sherman, N.; Beretka, J.; Santoro, L.; Valenti, G.L. Long-term behaviour of hydraulic binders based on calcium sulfoaluminate and calcium sulfosilicate. Cem. Concr. Res. 1995, 25, 113–126. [Google Scholar] [CrossRef]
- Dickens, B.; Brown, W.E. The Crystal Structure of Ca5(PO4)2SiO4 (Silieo-Carnotite). Miner. Petrol. 1971, 16, 1–27. [Google Scholar] [CrossRef]
- Hanein, T.; Galan, I.; Glasser, F.P.; Skalamprinos, S.; Elhoweris, A.; Imbabi, M.S.; Bannerman, M.N. Stability of ternesite and the production at scale of ternesite-based clinkers. Cem. Concr. Res. 2017, 98, 91–100. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, P.; Chen, X.; Zhang, W.; Qian, J. Synthesis, characterisation and hydration of ternesite. Constr. Build. Mater. 2021, 270, 121392. [Google Scholar] [CrossRef]
- Skalamprinos, S.; Jen, G.; Galan, I.; Whittaker, M.; Elhoweris, A.; Glasser, F. The synthesis and hydration of ternesite, Ca5(SiO4)2SO4. Cem. Concr. Res. 2018, 113, 27–40. [Google Scholar] [CrossRef]
- Beretka, J.; de Vito, B.; Santoro, L.; Sherman, N.; Valenti, G.L. Utilisation of industrial wastes and by-products for the synthesis of special cements. Resour. Conserv. Recycl. 1993, 9, 179–190. [Google Scholar] [CrossRef]
- Beretka, J.; de Vito, B.; Santoro, L.; Sherman, N.; Valenti, G.L. Hydraulic behaviour of calcium sulfoaluminate-based cements derived from industrial process wastes. Cem. Concr. Res. 1993, 23, 1205–1214. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Zajac, M.; Ben Haha, M. CSA raw mix design: Effect on clinker formation and reactivity. Mater. Struct. 2015, 48, 3895–3911. [Google Scholar] [CrossRef]
- Al Horr, Y.; Elhoweris, A.; Elsarrag, E. The development of a novel process for the production of calcium sulfoaluminate. Int. J. Sustain. Built Environ. 2017, 6, 734–741. [Google Scholar] [CrossRef]
- Adolfsson, D.; Menad, N.; Viggh, E.; Björkman, B. Steelmaking slags as raw material for sulphoaluminate belite cement. Adv. Cem. Res. 2007, 19, 147–156. [Google Scholar] [CrossRef]
- Pliego-Cuervo, Y.B.; Glasser, F.P. The role of sulphates in cement clinkering Subsolidus phase relations in the system CaO-Al2O3-SiO2-SO3. Cem. Concr. Res. 1979, 9, 51–55. [Google Scholar] [CrossRef]
- Carmona, Q.P.M.; Montes, M.; Pato, E.; Fernández, J.A.; Blanco, V.M.T. Study on the activation of ternesite in CaO·Al2O3 and 12CaO·7Al2O3 blends with gypsum for the development of low-CO2 binders. J. Clean. Prod. 2020, 291, 125726. [Google Scholar] [CrossRef]
- Montes, M.; Pato, E.; Carmona-Quiroga, P.M.; Blanco-Varela, M.T. Can calcium aluminates activate ternesite hydration? Cem. Concr. Res. 2018, 103, 204–215. [Google Scholar] [CrossRef]
- Ben, H.M.; Bullerjahn, F.; Zajac, M. On the Reactivity of Ternesite. In Proceedings of the 14th International Congress on the Chemistry of Cement, Beijing, China, 13–16 October 2015; p. 1. [Google Scholar]
- Dienemann, W.; Schmitt, D.; Bullerjahn, F.; Haha, M.B. Belite-Calciumsulfoaluminate-Ternesite (BCT)—A new low-carbon clinker Technology. Cem. Int. 2013, 11, 100–109. [Google Scholar]
- Maheswaran, S.; Kalaiselvam, S.; Karthikeyan, S.K.S.S.; Kokila, C.; Palani, G.S. β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume. Cem. Concr. Compos. 2016, 66, 57–65. [Google Scholar] [CrossRef]
- Hargis, C.W.; Telesca, A.; Monteiro, P.J.M. Calcium sulfoaluminate (Ye’elimite) hydration in the presence of gypsum, calcite, and vaterite. Cem. Concr. Res. 2014, 65, 15–20. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Schmitt, D.; Haha, M.B. Effect of raw mix design and of clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker. Cem. Concr. Res. 2014, 59, 87–95. [Google Scholar] [CrossRef]
- Shen, Y.; Qian, J.; Huang, Y.; Yang, D. Synthesis of belite sulfoaluminate-ternesite cements with phosphogypsum. Cem. Concr. Compos. 2015, 63, 67–75. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, X.; Zhang, W.; Li, X.; Qian, J. Influence of ternesite on the properties of calcium sulfoaluminate cements blended with fly ash. Constr. Build. Mater. 2018, 193, 221–229. [Google Scholar] [CrossRef]
- Böhme, N.; Hauke, K.; Neuroth, M.; Geisler, T. In Situ Hyperspectral Raman Imaging of Ternesite Formation and Decomposition at High Temperatures. Minerals 2020, 10, 287. [Google Scholar] [CrossRef]
- Dvořák, K.; Gazdič, D.; Fridrichová, M. The influence of firing parameters on the crystallinity of ternesite. J. Cryst. Growth 2020, 542, 125691. [Google Scholar] [CrossRef]
- Hou, P.; Qian, J.; Wang, Z.; Deng, C. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue. Cem. Concr. Compos. 2012, 34, 248–254. [Google Scholar] [CrossRef]
- Jing, G.; Zhang, J.; Lu, X.; Xu, J.; Gao, Y.; Wang, S.; Cheng, X.; Ye, Z. Comprehensive evaluation of formation kinetics in preparation of ternesite from different polymorphs of Ca2SiO4. J. Solid State Chem. 2020, 292, 121725. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Ren, X.; Ye, J.; Zhang, J.; Cao, L.; An, N.; Qian, J. The Impact of Calcination Regimen on the Structure and Hydration Performance of Calcium Silicate Sulfate. J. Chin. Ceram. Soc. 2022, 10, 2712–2721. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Ren, X.; Zhang, H.; Ye, J.; Zhang, J.; Cao, L.; An, N.; Qian, J. Mechanisms of Alkali Metal Doping Effects on the Hydration Performance of Calcium Silicate Sulfate. J. Chin. Ceram. Soc. 2023, 51, 290–302. [Google Scholar] [CrossRef]
- Wang, X.; Guo, W.; Hu, Y.; Chen, Q.; Qiu, J.; Li, Z.; Chen, J.; Guan, R. Synthesis and Hydration Performance Study of Calcium Silicate Sulfate. Mater. Rep. 2020, 34, 169–172, 188. [Google Scholar]
- Shi, L.; Zhao, Y.; Xue, J.; Zhang, X. Effect of Particle Size and Compaction Pressure on Sintering Behavior of α-Al2O3 Powder. Dev. Appl. Mater. 2020, 35, 1–4. [Google Scholar]
- Toby, B.H. R factors in rietveld analysis how good is good enough. Powder Diffr. 2012, 21, 67–70. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Portnyagin, A.S.; Yu, M.V.; Yu, B.I.; Merkulov, E.B.; Kaidalova, T.A.; Modin, E.B.; Afonin, I.S.; et al. Sol-gel (template) synthesis of osteoplastic CaSiO3/HAp powder biocomposite: “In vitro” and “in vivo” biocompatibility assessment. Powder Technol. 2020, 367, 762–773. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.; Ren, X.; Ye, J.; Zhang, J.; Luo, Z.; Qian, J. Sintering behaviour and structure-thermal stability relationships of alkali-doped ternesite. Cem. Concr. Res. 2023, 164, 107043. [Google Scholar] [CrossRef]
Mineral Name | Phase | ICSD Codes |
---|---|---|
Ternesite | C5S2S− | 85123 |
Belite | C2S | 79552 |
Anhydrite | CaSO4 | 40043 |
Lime | CaO | 52783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, F.; Huo, D.; Wang, Y.; Su, D.; Liu, X. The Effect of Different Particle Sizes of SiO2 in Sintering on the Formation of Ternesite. Coatings 2023, 13, 1826. https://doi.org/10.3390/coatings13111826
Song F, Huo D, Wang Y, Su D, Liu X. The Effect of Different Particle Sizes of SiO2 in Sintering on the Formation of Ternesite. Coatings. 2023; 13(11):1826. https://doi.org/10.3390/coatings13111826
Chicago/Turabian StyleSong, Fengyu, Didi Huo, Yanmin Wang, Dunlei Su, and Xiaocun Liu. 2023. "The Effect of Different Particle Sizes of SiO2 in Sintering on the Formation of Ternesite" Coatings 13, no. 11: 1826. https://doi.org/10.3390/coatings13111826
APA StyleSong, F., Huo, D., Wang, Y., Su, D., & Liu, X. (2023). The Effect of Different Particle Sizes of SiO2 in Sintering on the Formation of Ternesite. Coatings, 13(11), 1826. https://doi.org/10.3390/coatings13111826