Comparison of Mini-Tablets and Pellets as Multiparticulate Drug Delivery Systems for Controlled Drug Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sodium Benzoate Layering of Pellets and Ethylcellulose Coating in the Fluidized Bed
2.2.2. Tableting
2.2.3. In Vitro Release of Sodium Benzoate
2.2.4. Scanning Electron Microscopy (SEM)
2.2.5. Powder Characterization
2.2.6. Linearization of Release Curves
3. Results and Discussion
3.1. Manufacturing of Coated Pellets and Tableting and Coating of Tablets
3.2. Product Properties
3.2.1. EC Pellets
3.2.2. Mini-Tablets and Normal Tablets
3.3. Sodium Benzoate Release from EC Pellets, Mini-Tablets MT1, and Normal Tablets NT
3.3.1. Release versus Time, Zero-Order Kinetics
3.3.2. Linearization of the Sodium Benzoate Release Plots of MT1, MT2, and EC Pellets
3.3.3. Difference Factor and Similarity Factor of Sodium Benzoate Release from MT1, NT, and EC Pellets
3.3.4. Results for MT2 with Different Ethylcellulose Coatings
3.3.5. Linearization of the Release Plots for MT2 10% and MT2 20% in Comparison with EC Pellets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MT1 | mini-tablets compressed from coated pellets and excipients | |
MT2 | 10%, 20% w/w mini-tablets compressed from compression powder mixture of sodium benzoate and excipients and finally coated with 10% or 20% ethylcellulose | |
NT | normal tablets compressed from coated pellets and excipients | |
EC pellets | Cellets®200 layered with sodium benzoate and finally coated with 44.4% w/w ethylcellulose | |
RRSB | logarithmic distribution function of Rosin, Rammler, Sperling, and Bennet | |
SEM | scanning electron microscopy | |
UV | ultraviolet, visible | |
Notation | ||
M0 | dose, drug content | (%) |
Mt | released drug amount | (%) |
T | moment of drug release | (min) |
k0 | release rate constant, zero order release kinetics | (–) |
k1 | release rate constant, first order release kinetics | (1/min) |
kq | release rate constant, square root release kinetics | (–) |
kc | release rate constant, cubic root release kinetics | (–) |
A | form factor RRSB | (–) |
B | scale factor RRSB | (–) |
x50.3 | median of volume density distribution | (µm) |
f1 | difference factor | (–) |
f2 | similarity factor | (–) |
References
- Lennartz, P.; Mielck, J.B. Minitabletting: Improving the compactability of paracetamol powder mixtures. Int. J. Pharm. 1998, 173, 75–85. [Google Scholar] [CrossRef]
- Tissen, C.; Woertz, K.; Breitkreutz, J.; Kleinebudde, P. Development of mini-tablets with 1 mm and 2 mm diameter. Int. J. Pharm. 2011, 416, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Hagen, E.; Sandberg Loeding, F.; Mattsson, S.; Tho, I. Use of interactive mixtures to obtain mini-tablets with high dose homogeneity for paediatric drug delivery. J. Drug Del. Sci. Technol 2016, 34, 51–59. [Google Scholar] [CrossRef]
- Rumondor, A.C.F.; Harris, D.; Flanagan, F.; Biyyla, V.; Johnson, M.A.; Zhang, D.; Patel, S. Minitablets: Manufacturing, characterization methods, and future opportunities. Am. Pharm. Rev. 2016, 19, 5–13. [Google Scholar]
- Mitra, B.; Chang, J.; Wu, S.-J.; Wolfe, C.N.; Ternik, R.L.; Gunter, T.Z.; Victor, M.C. Feasibility of mini-tablets as a flexible drug delivery tool. Int. J. Pharm. 2017, 525, 149–159. [Google Scholar] [CrossRef]
- Czajkowska, M.; Kotlowska, H.; Madanecka, A.; Doniza, D.; Sosnowicz, A.; Sznitowska, M. Development of matrix type and coated prolonged release minitablets with carbamazepine. Int. J. Pharm. 2016, 511, 1132. [Google Scholar]
- Lopes, C.M.; Sousa Lobo, J.M.; Pinto, J.F.; Costa, P. Compressed mini-tablets as a biphasic delivery system. Int. J. Pharm. 2006, 323, 93–100. [Google Scholar] [CrossRef]
- Venkateswara Rao, K.; Venkatchalam, V.V. Mucoadhesive biphasic minitablets of cefuroxime axetil: Formulation development, characterization and in vivo bioavailability study. J. Drug Del. Sci. Technol. 2016, 35, 260–271. [Google Scholar]
- Sauer, A.; Schmalz, D. Modifying mini-tablet dissolution with cellulose ethers. Pharm. Ind. 2017, 79, 1556–1559. [Google Scholar]
- Aleksovski, A.; Luštrik, M.; Šibanc, R.; Dreu, R. Design and evaluation of a specific, bi-phase extended release system based on differently coated mini-tablets. Eur. J. Pharm. Sci. 2015, 75, 114–122. [Google Scholar] [CrossRef]
- Angyal, N.; Dávid, A.Z.; Ujhelyi, G.; Szabó, A.; Marosi, G.; Klebovich, I.; Antal, I. Combination of film coating and matrix forming effect of Eudragit® copolymers in controlled release minitablets. Eur. J. Pharm. Sci. 2007, 32, 40. [Google Scholar] [CrossRef]
- Munday, D.L.; Fassihi, A.R. Controlled release delivery: Effect of coating composition on release characteristics of mini-tablets. Int. J. Pharm. 2017, 52, 109–114. [Google Scholar] [CrossRef]
- Hautala, J.; Heinämäki, J.; Hietala, S.; Juppo, A.M. Development of novel flavored Eudragit® E films for feline minitablet coatings. J. Drug Del. Sci. Technol. 2016, 34, 41–50. [Google Scholar] [CrossRef]
- Omari, D.M. Formulation and in vitro / in vivo evaluation of esomeprazole enteric coated minitablets. J. Drug Del. Sci. Technol. 2017, 39, 156–165. [Google Scholar] [CrossRef]
- LaFountaine, J.S.; Kumari Prasad, L.; Miller, D.A.; McGinity, J.W.; William, R.O., III. Mucoadhesive amorphous solid dispersions for sustained release of poorly water soluble drugs. Eur. J. Pharm. Biopharm. 2017, 113, 157–167. [Google Scholar] [CrossRef]
- Ceulemans, J.; Vermeire, A.; Adriaens, E.; Remon, J.P.; Ludwig, A. Evaluation of a mucoadhesive tablet for ocular use. J. Contr. Rel. 2001, 77, 333–344. [Google Scholar] [CrossRef]
- Weyenberg, W.; Bozdag, S.; Foreman, P.; Remon, J.P.; Ludwig, A. Characterization and in vivo evaluation of ocular minitablets prepared with different bioadhesive Carbopol-starch components. Eur. J. Pharm. Biopharm. 2006, 62, 202–209. [Google Scholar] [CrossRef]
- Goole, J.; Vanderbist, F.; Amighi, K. Development and evaluation of new multiple-unit levodopa sustained-release floating dosage forms. Int. J. Pharm. 2007, 334, 35–41. [Google Scholar] [CrossRef]
- Goole, J.; Deleuze, P.; Vanderbist, F.; Amighi, K. New levodopa sustained-release floating minitablets coated with insoluble acrylic polymer. Eur. J. Pharm. Biopharm. 2008, 68, 310–318. [Google Scholar] [CrossRef]
- Goole, J.; Vanderbist, F.; Amighi, K. In vitro evaluation of two concepts of sustained release floating minitablets according to the model drug used. J. Drug Del. Sci. Technol. 2008, 18, 133–138. [Google Scholar] [CrossRef]
- Van der Merwe, S.M.; Verhoef, J.C.; Kotzé, A.F.; Junginger, H.E. N-Trimethyl chitosan chloride as absorption enhancer in oral peptide drug delivery. Development and characterization of minitablets and granule formulations. Eur. J. Pharm. Biopharm. 2004, 57, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Salústio, P.J.; Cabral-Marques, H.M.; Costa, P.C.; Pinto, J.F. Comparison of ibuprofen release from minitablets and capsules containing ibuprofen: β-Cyclodextrin complex. Eur. J. Pharm. Biopharm. 2011, 78, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.; Pein, M.; Breitkreutz, J. Lean production of taste improved lipidic sodium benzoate formulations. Eur. J. Pharm. Biopharm. 2014, 88, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.T.; Brachkova, M.I.; Fernandes, A.I.; Pinto, J.F. Evaluation of the ability of powdered milk to produce minitablets containing paracetamol for paediatric population. Chem. Eng. Res. Des. 2016, 110, 171–182. [Google Scholar] [CrossRef]
- Albanez, R.; Nitz, M.; Pereira Taranto, O. Influence of the type of enteric coating suspension, coating layer and process conditions on dissolution profile and stability of coated pellets of diclofenac sodium. Powder Technol. 2015, 269, 185–192. [Google Scholar] [CrossRef]
- Bouffard, J.; Dumont, H.; Bertrand, F.; Legros, R. Optimization and scale-up of a fluid bed tangential spray rotogranulation process. Int. J. Pharm. 2007, 335, 54–62. [Google Scholar] [CrossRef]
- Kovacevic, J.; Mladenovic, A.; Djuris, J.; Ibric, S. Evaluation of powder, solution and suspension layering for the preparation of enteric coated pellets. Eur. J. Pharm. Sci. 2016, 85, 84–93. [Google Scholar] [CrossRef]
- Kuang, C.; Sun, Y.; Li, B.; Fan, R.; Zhang, J.; Yao, Y.; He, Z. Preparation and evaluation of duloxetine hydrochloride enteric-coated pellets with different enteric polymers. Asian J. Pharm. Sci. 2017, 12, 216–226. [Google Scholar] [CrossRef]
- Yang, M.; Xie, S.; Li, Q.; Wang, Y.; Chang, X.; Shan, L.; Sun, L.; Huang, X.; Gao, C. Effects of polyvinylpyrrolidone both as binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int. J. Pharm. 2014, 465, 187–196. [Google Scholar] [CrossRef]
- Marucci, M.; Andersson, H.; Hjärtstam, J.; Stevenson, G.; Baderstedt, J.; Stading, M.; Larsson, A.; von Corswandt, C. New insight on how to adjust the release profile from coated pellets by varying the molecular weight of ethyl cellulose in coating films. Int. J. Pharm. 2013, 458, 218–223. [Google Scholar] [CrossRef]
- Xu, M.; Heng, P.W.S.; Liew, C.V. Formulation and process strategies to minimize coat damage for compaction of coated pellets in a rotary tablet press: A mechanistic view. Int. J. Pharm. 2016, 499, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Kazlauske, J.; Cafaro, M.M.; Caccavo, D.; Marucci, M.; Lamberti, G.; Barba, A.A.; Larsson, A. Determination of the release mechanism of theophylline from pellets coated with Surelease®—A water dispersion of ethyl cellulose. Int. J. Pharm. 2017, 528, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Villar López, E.; Luzardo Alvarez, A.; Méndez, J.B.; Otero Espinar, F.J. Cellulose-polysaccharide film-coating of cyclodextrin based pellets for controlled drug release. J. Drug Del. Sci. Technol. 2017, 42, 273–283. [Google Scholar] [CrossRef]
- Priese, F.; Frisch, T.; Wolf, B. Comparison of film-coated retarded release pellets manufactured by layering technique or by bed rotor pelletization. Pharm. Dev. Technol. 2015, 20, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Priese, F.; Wolf, B. Development of high drug loaded pellets by Design of Experiment and population balance model calculation. Powder Technol. 2013, 241, 149–157. [Google Scholar] [CrossRef]
- Antal, I.; Kállai, N.; Angyal, N.; Balogh, E.; Dredán, J.; Dévay, A.; Klebovich, I. Development of modified release multiple unit dosage forms. Eur. J. Pharm. Sci. 2017, 32, S10. [Google Scholar] [CrossRef]
- Gaber, D.M.; Nafee, N.; Abdallah, O.Y. Mini-tablets versus pellets as promising multiparticulate modified release delivery systems for highly soluble drugs. Int. J. Pharm. 2015, 488, 86–94. [Google Scholar] [CrossRef]
- Czajkowska, M.; Sznitowska, M.; Kleinebudde, P. Determination of coating thickness of minitablets and pellets by dynamic image analysis. Int. J. Pharm. 2015, 495, 347–353. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, P.; Margel, S. Containers for drug delivery. In Micro-and Nano-Containers for Smart Applications; Springer Nature: Singapore, 2022; pp. 127–153. [Google Scholar]
- Patel, D.K.; Patil, T.V.; Ganguly, K.; Dutta, S.D.; Luthfikasari, R.; Lim, K.T. Polymer Nanohybrid-Based Smart Platforms for Controlled Delivery and Wound Management. In Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine; Springer International Publishing: Cham, Switzerland, 2022; pp. 171–199. [Google Scholar]
- Pereira de Almeida, L.; Simões, S.; Brito, P.; Portugal, A.; Figueiredo, M. Modeling dissolution of sparingly soluble multisized powders. J. Pharm. Sci. 1997, 86, 726–732. [Google Scholar] [CrossRef]
- Javadzadeh, Y.; Monajjemzadeh, F.; Safaei, E.; Adibkia, K. Release kinetics of sodium diclofenac from controlled release device. Pharm. Ind. 2016, 76, 1786–1793. [Google Scholar]
- Cascone, S. Modeling and comparison of release profiles: Effect of the dissolution method. Eur. J. Pharm. Sci. 2017, 106, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Krueger, C.; Thommes, M.; Kleinebudde, P. Influence of storage conditions on properties of MCC II-based pellets with theophylline-monohydrate. Eur. J. Pharm. Biopharm. 2014, 88, 483–491. [Google Scholar] [CrossRef] [PubMed]
Components of Pellet Lot | Content (%) |
---|---|
Microcrystalline cellulose (Cellets®200) | 23.2 |
Sodium benzoate | 30.2 |
Polyvinylpyrrolidone | 1.6 |
Talcum | 0.6 |
Ethylcellulose | 44.4 |
Total | 100.0 |
Components of (Mini) Tablets | MT1/NT Content (%) | MT2 Content (%) |
---|---|---|
Microcrystalline cellulose | 36.6 | 38.8 |
Sodium benzoate | 15.1 | 15.5 |
Polyvinylpyrrolidone | 0.8 | |
Talcum | 0.3 | |
Ethylcellulose | 22.2 | 20.0 |
Lactose monohydrate | 18.5 | 19.0 |
Carboxymethylcellulose, sodium salt | 5.0 | 5.2 |
Magnesium stearate | 1.0 | 1.0 |
High dispersed silicon dioxide | 0.5 | 0.5 |
Total | 100.0 | 100.0 |
Process Parameters | Sodium Benzoate Layering | EC Pellets Ethylcellulose Coating | MT2 Ethylcellulose Coating |
---|---|---|---|
Batch size (kg) | 3.0 | 1.6 | 2.0 |
Process air rate (m3/h) | 125 | 125 | 200 |
Process air temperature (°C) | 70 | 60 | 70 |
Product temperature (°C) | 43 | 41 | 55 |
Spray pressure (bar) | 2.0 | 2.0 | 2.0 |
Spray rate (g/min) | 30 | 15 | 10 |
Spray nozzle diameter (mm) | 1 | 1 | 1 |
Samples | Avg. Weight (mg) | Weight Uniformity (%) | Diameter (mm) | Thickness (mm) | Friability (%) |
---|---|---|---|---|---|
MT1 | 8.46 | 4 | 2 | 3 | 0.5 |
MT2 | 7.36 | 4 | 2 | 3 | 0.0 |
NT | 151.8 | 1 | 6 | 3 | 0.1 |
Coefficient of Determination R2 | MT1 (11 kN) | NT (31 kN) | Pellets |
---|---|---|---|
Zero-Order | 0.87 | 0.91 | 0.90 |
Square Root | 0.95 | 0.96 | 0.88 |
Sigma Minus Plot (First-Order) | 0.99 | 0.99 | 0.95 |
RRSB (First-Order) | 0.99 | 0.98 | 0.95 |
Parameter | MT1 (11 kN) | NT (31 kN) | Pellets |
---|---|---|---|
Ascent Sigma Minus | 0.04 | 0.03 | 0.04 |
RRSB: 1/a (scale) | 0.22 | 0.23 | 0.10 |
RRSB: b (form) | 1.27 | 1.15 | 2.47 |
RRSB: t63.2% (time in min) | 35 | 46 | 60 |
Parameter | Evaluation | MT1/NT | MT1/ EC Pellets | NT/ EC Pellets |
---|---|---|---|---|
Difference Factor | “similar” 0–15 | 11 | 32 | 21 |
Similarity Factor | “similar” 50–100 | 77 | 68 | 73 |
Parameter | Evaluation | MT2 10%/20% | MT2 10%/ EC Pellets | MT2 20%/ EC Pellets |
---|---|---|---|---|
Difference Factor | “similar” 0–15 | 64 | 56 | 23 |
Similarity Factor | “similar 50–100 | 57 | 58 | 68 |
Coefficient of Determination R2 | MT2 10% | MT2 20% | EC Pellets |
---|---|---|---|
Zero-Order | 0.47 | 0.73 | 0.90 |
Square Root | 0.75 | 0.85 | 0.88 |
Sigma Minus Plot (First-Order) | 0.79 | 0.92 | 0.95 |
RRSB (First-Order) | 0.81 | 0.92 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priese, F.; Wiegel, D.; Funaro, C.; Mondelli, G.; Wolf, B. Comparison of Mini-Tablets and Pellets as Multiparticulate Drug Delivery Systems for Controlled Drug Release. Coatings 2023, 13, 1891. https://doi.org/10.3390/coatings13111891
Priese F, Wiegel D, Funaro C, Mondelli G, Wolf B. Comparison of Mini-Tablets and Pellets as Multiparticulate Drug Delivery Systems for Controlled Drug Release. Coatings. 2023; 13(11):1891. https://doi.org/10.3390/coatings13111891
Chicago/Turabian StylePriese, Florian, Dimitri Wiegel, Caterina Funaro, Giusi Mondelli, and Bertram Wolf. 2023. "Comparison of Mini-Tablets and Pellets as Multiparticulate Drug Delivery Systems for Controlled Drug Release" Coatings 13, no. 11: 1891. https://doi.org/10.3390/coatings13111891
APA StylePriese, F., Wiegel, D., Funaro, C., Mondelli, G., & Wolf, B. (2023). Comparison of Mini-Tablets and Pellets as Multiparticulate Drug Delivery Systems for Controlled Drug Release. Coatings, 13(11), 1891. https://doi.org/10.3390/coatings13111891