Effect of Alternating Magnetic Field on the Organization and Corrosion Resistance of 2205 Duplex Stainless Steel Narrow-Gap Laser-MIG Hybrid Weld Head
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Base Material and Welding Procedure
2.2. Microstructure Characterization
2.3. Corrosion Testing
3. Results and Discussion
3.1. Weld Shaping and Microstructure Morphology
3.2. Distribution of Two-Phase Orientation and Texture in Welds
3.3. Grain Boundary Orientation Difference and Grain Size of the Weld
3.4. Potentiodynamic Polarization
4. Conclusions
- Welded joints without an applied magnetic field suffer from unfused and porosity defects and poor weld shaping. The weld is well formed and free of unfused and porosity defects with the assistance of a 40 mT alternating magnetic field. This is due to the fact that the presence of the magnetic field changes the heat distribution of the laser arc hybrid heat source in the narrow-gap space.
- The two-phase homogeneity obtained by combining the two-phase contents of the four regions of the weld is 0.850, which is closer to 1.0 than the two-phase homogeneity of 0.657 in the absence of an alternating magnetic field. This indicates that the overall ratio of the two phases in the weld with the alternating magnetic field is more balanced than that without the magnetic field.
- Under the effect of alternating magnetic fields, the austenite grain orientation distribution density is enhanced from 5.88 to 6.46 and the ferrite grain orientation distribution density is enhanced from 19.82 to 21.69. The texture density of austenite is increased, while the texture density of ferrite does not change significantly.
- The ferrite and austenite phases are affected by the electromagnetic stirring effect of the applied magnetic field, and the average grain size of the austenite phase is reduced from 4.15 μm to 3.82 μm. The average grain size of the ferrite phase is reduced from 4.99 μm to 4.08 μm. The addition of the magnetic field results in the grain refinement of both phases. In addition, the density of twins in the tissue increases under the effect of an alternating magnetic field.
- The electrochemical test results show that the corrosion resistance and passivation ability of the weld are improved under the magnetic field-assisted action. The Ecorr of the weld under the magnetic field-assisted condition is 75.2 mV higher than that in the absence of a magnetic field, and the Epit is 134.5 mV higher than that in the absence of a magnetic field. The corrosion rate is about 1/7th of that without the magnetic field. The increase in corrosion resistance depends mainly on austenite changes including the austenite grain size and content.
- The quality of the weld is good with no unfused or porosity defects. Under the action of the magnetic field, the two phases are balanced, the organization is refined, and the corrosion resistance is improved. This provides support for the application of magnetic fields in the field of duplex stainless steel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosado-Carrasco, J.; Krupp, U.; López-Morelos, V.H.; Giertler, A.; García-Rentería, M.A.; González-Sánchez, J. Effect of a Magnetic Field Applied during Fusion Welding on the Fatigue Damage of 2205 Duplex Stainless Steel Joints. Int. J. Fatigue 2019, 121, 243–251. [Google Scholar] [CrossRef]
- Wu, J.; Cao, F.J.; Sun, T.; Huang, G.Q.; Li, M.S.; Hou, W.T.; Piao, Z.Y.; Shen, Z.K.; Shen, Y.F. Developing Ultrafine-Grained Structure with Balanced α/γ Fraction via Underwater Friction Stir Processing Enables Enhanced Wear and Corrosion Resistance of Duplex Stainless Steel. Surf. Coat. Technol. 2023, 457, 129295. [Google Scholar] [CrossRef]
- Chaudhari, A.N.; Dixit, K.; Bhatia, G.S.; Singh, B.; Singhal, P.; Saxena, K.K. Welding Behaviour of Duplex Stainless Steel AISI 2205: A Review. Mater. Today Proc. 2019, 18, 2731–2737. [Google Scholar] [CrossRef]
- Luo, J.; Yan, P.; Fan, Y.; Luo, S.; Long, Y. Investigation of Corrosion Behavior of 2205 Duplex Stainless Steel Coiled Tubing in Complex Operation Environments of Oil and Gas Wells. Eng. Fail. Anal. 2023, 151, 107355. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Ke, W.; Jin, P.; Kong, H.; Chen, M.; Sun, Q. A Novel Pathway to Weld Forming Control and Microstructure Improvement of Duplex Stainless Steel via Alternating Magnetic Field. J. Manuf. Process. 2022, 80, 581–590. [Google Scholar] [CrossRef]
- Wu, M.; Xin, R.; Wang, Y.; Zhou, Y.; Wang, K.; Liu, Q. Microstructure, Texture and Mechanical Properties of Commercial High-Purity Thick Titanium Plates Jointed by Electron Beam Welding. Mater. Sci. Eng. A 2016, 677, 50–57. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, L.-J.; Yang, J.; Yin, X.-Q.; Wang, X.-W.; Wu, J. Characteristics of Multi-Pass Narrow-Gap Laser Welding of D406A Ultra-High Strength Steel. J. Mater. Process. Technol. 2019, 270, 168–181. [Google Scholar] [CrossRef]
- Sokolov, M.; Salminen, A.; Kuznetsov, M.; Tsibulskiy, I. Laser Welding and Weld Hardness Analysis of Thick Section S355 Structural Steel. Mater. Des. 2011, 32, 5127–5131. [Google Scholar] [CrossRef]
- Cho, W.-I.; Woizeschke, P. Analysis of Molten Pool Behavior with Buttonhole Formation in Laser Keyhole Welding of Sheet Metal. Int. J. Heat Mass Transf. 2020, 152, 119528. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Yan, K.; Liu, C.; Zou, J. Microstructure and Properties of Cu/Ti Laser Welded Joints. J. Mater. Process. Technol. 2018, 257, 244–249. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Zhang, T.; Zhang, S.; Liu, Y.; Feng, J. Arc Characteristics in Alternating Magnetic Field Assisted Narrow Gap Pulsed GTAW. J. Mater. Process. Technol. 2018, 254, 254–264. [Google Scholar] [CrossRef]
- Raoelison, R.N.; Racine, D.; Zhang, Z.; Buiron, N.; Marceau, D.; Rachik, M. Magnetic Pulse Welding: Interface of Al/Cu Joint and Investigation of Intermetallic Formation Effect on the Weld Features. J. Manuf. Process. 2014, 16, 427–434. [Google Scholar] [CrossRef]
- Rong, Y.; Huang, Y.; Xu, J.; Zheng, H.; Zhang, G. Numerical Simulation and Experiment Analysis of Angular Distortion and Residual Stress in Hybrid Laser-Magnetic Welding. J. Mater. Process. Technol. 2017, 245, 270–277. [Google Scholar] [CrossRef]
- Yin, X.; Gou, J.; Zhang, J.; Sun, J. Numerical Study of Arc Plasmas and Weld Pools for GTAW with Applied Axial Magnetic Fields. J. Phys. Appl. Phys. 2012, 45, 285203. [Google Scholar] [CrossRef]
- Li, L.; Huang, C.; Han, G.; Chen, R. Recent Progress on External Magnetic Field Assisted Laser Welding: Mechanism, Effect and Technology. Int. J. Adv. Manuf. Technol. 2023, 125, 1–23. [Google Scholar] [CrossRef]
- Yang, C.; Yang, F.; Meng, X.; Putra, S.N.; Bachmann, M.; Rethmeier, M. Phase-Field Simulation of the Dendrite Growth in Aluminum Alloy AA5754 during Alternating Current Electromagnetic Stirring Laser Beam Welding. Int. J. Heat Mass Transf. 2024, 218, 124754. [Google Scholar] [CrossRef]
- Yue, J.; Zhou, H.; Xie, C.; Zhou, W.; Liu, W. Temperature Field Simulation and Asymmetric Heat Transfer Distribution of Dissimilar Steel Welded with External Transverse Magnetic Field. Mater. Today Commun. 2023, 37, 107141. [Google Scholar] [CrossRef]
- Tan, C.; Liu, Y.; Xu, B.; Wang, H.; Liu, F.; Gong, X.; Zeng, Z.; Chen, B.; Song, X. Numerical and Experimental Study of Thermal Fluid Flow and Keyhole Dynamic in Laser Welding of Aluminum Alloy Assisted by Electromagnetic Field. Opt. Laser Technol. 2023, 157, 108718. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, Y.; Zou, J.; Liu, X.; Pan, Y. Influence of the Magnetic Field on the Melting and Solidification Behavior of Narrow-Gap Laser Welding with Filler Wire. Int. J. Adv. Manuf. Technol. 2022, 123, 1123–1131. [Google Scholar] [CrossRef]
- Ding, L.; Wang, H.; Zeng, Z.; Vladyslav, K.; Chen, L.; Li, F.; Zhang, Y.; Qin, B. The Influence Mechanism of Alternating Magnetic Field on Microstructure and Mechanical Properties of Ti-6Al-4V Alloy. J. Mater. Eng. Perform. 2023. [Google Scholar] [CrossRef]
- Xu, T.; Shi, Y.; Jiang, Z.; Liu, B.; Zhan, J.; Wang, Z. An Extraordinary Improvement in Cryogenic Toughness of K-TIG Welded 9Ni Steel Joint Assisted by Alternating Axial Magnetic Field. J. Mater. Res. Technol. 2023, 25, 3071–3077. [Google Scholar] [CrossRef]
- García Rentería, M.A.; López Morelos, V.H.; García Hernández, R.; Curiel López, F.; Lemus-Ruíz, J. Effect on the Microstructure and Mechanical Properties of the Electromagnetic Stirring during GMA Welding of 2205 DSS Plates. Mater. Sci. Forum 2013, 755, 61–68. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Jin, P.; Chen, M.; Ke, W.; Du, Y.; Liu, J.; Sun, Q. Appreciable-Tuned Ferrite/Austenite Phase Balance in the Fusion Zone of GTAW Welds via an Assisted Magnetic Field. J. Alloys Compd. 2021, 885, 160851. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, Y.; Liu, R. Study of Twin Tungsten Electrode—Wire Electrode Indirect Arc Welding Assisted by Alternating Magnetic Field. J. Manuf. Process. 2023, 101, 171–180. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, X.; Wang, C.; Mi, G. Grain Refinement and Orientation Alternation of 10 mm 316L Welds Prepared by Magnetic Field Assisted Narrow Gap Laser-MIG Hybrid Welding. Mater. Charact. 2020, 164, 110311. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A.; Sharma, S.; Ganjoo, R.; Assad, H. Computational and Experimental Studies on the Efficiency of Sonchus Arvensis as Green Corrosion Inhibitor for Mild Steel in 0.5 M HCl Solution. Mater. Today Proc. 2022, 66, 609–621. [Google Scholar] [CrossRef]
- García-Rentería, M.A.; López-Morelos, V.H.; González-Sánchez, J.; García-Hernández, R.; Dzib-Pérez, L.; Curiel-López, F.F. Effect of Electromagnetic Interaction during Fusion Welding of AISI 2205 Duplex Stainless Steel on the Corrosion Resistance. Appl. Surf. Sci. 2017, 396, 1187–1200. [Google Scholar] [CrossRef]
- Zhong, Y.; Zheng, Z.; Li, J.; Wang, C. Effect of In-Situ Transverse Magnetic Field on Microstructure, Mechanical Properties and Corrosion Resistance of the Directed Energy Deposited 316L Stainless Steel. Addit. Manuf. 2023, 68, 103508. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Xu, J. Numerical Simulation of Arc-Droplet-Weld Pool Behaviors during the External Magnetic Field-Assisted MIG Welding-Brazing of Aluminum to Steel. Int. J. Therm. Sci. 2023, 194, 108530. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, X.; Mi, G.; Wang, C. Electron Microscopy Study of Laser Welded GH909 Superalloy Joint. J. Mater. Res. Technol. 2020, 9, 15525–15536. [Google Scholar] [CrossRef]
- Santos, R.M.; Rodrigues, D.G.; Dias Santos, M.L.; Santos, D.B. Martensite Reversion and Strain Hardening of a 2304 Lean Duplex Stainless Steel Subjected to Cold Rolling and Isochronous Annealing at Low Temperatures. J. Mater. Res. Technol. 2022, 16, 168–186. [Google Scholar] [CrossRef]
- Cai, B.; Fu, J.; Zhao, Y.; Chen, F.; Qin, Y.; Song, S. Effect of Alternating Magnetic Field on Arc Plasma Characteristics and Droplet Transfer during Narrow Gap Laser-MIG Hybrid Welding. Metals 2021, 11, 1712. [Google Scholar] [CrossRef]
- Fu, J.; Rao, Z.; Zhao, Y.; Zou, J.; Liu, X.; Pan, Y. Microstructure and Texture Characterization of Duplex Stainless Steel Joints Welded by Alternating Magnetic Field-Assisted Hybrid Laser-GMAW Welding. Materials 2022, 15, 8741. [Google Scholar] [CrossRef]
- Cui, S.; Pang, S.; Pang, D.; Zhang, Z. Influence of Welding Speeds on the Morphology, Mechanical Properties, and Microstructure of 2205 DSS Welded Joint by K-TIG Welding. Materials 2021, 14, 3426. [Google Scholar] [CrossRef]
- You, J.; Li, Z.; Li, Y.; Cai, Z. Microstructure and Properties of Underwater Wet Laser Welded 0Cr25Ni6Mo3N Duplex Stainless Steel Joints. Mater. Today Commun. 2023, 36, 106622. [Google Scholar] [CrossRef]
- Sun, Y.; Tan, X.; Lan, R.; Ran, G.; Li, J.; Jiang, Y. Mechanisms of Inclusion-Induced Pitting of Stainless Steels: A Review. J. Mater. Sci. Technol. 2024, 168, 143–156. [Google Scholar] [CrossRef]
Material | C | S | P | Ni | Cr | Mo | N | Mn | Si | Fe |
---|---|---|---|---|---|---|---|---|---|---|
2205 | 0.024 | 0.001 | 0.023 | 5.68 | 22.39 | 3.13 | 0.17 | 1.38 | 0.39 | Bal. |
ER2209 | 0.019 | 0.0008 | 0.016 | 9.41 | 22.59 | 3.1 | 0.16 | 1.66 | 0.17 | Bal. |
No. | P (kW) | I (A) | V (m/min) | Δf (mm) | DLA (mm) | B (mT) | f (Hz) |
---|---|---|---|---|---|---|---|
1 | 2.3 | 220 | 0.8 | +5 | 2 | 40 | 15 |
2 | 2.0 | 220 | |||||
3~4 | 2.0 | 240 | |||||
5~6 | 2.0 | 260 | |||||
7 | 1.7 | 240 |
Magnetic Field | Phase (%) | CB | FB | OB | HAZ |
---|---|---|---|---|---|
Without AMF | γ | 36.5 | 40.1 | 46.1 | 35.7 |
δ | 63.5 | 59.9 | 53.9 | 64.3 | |
With AMF | γ | 39.9 | 43.4 | 53.6 | 40.2 |
δ | 60.1 | 56.6 | 46.4 | 59.8 |
Magnetic Field | Ecorr (V) | Icorr (A·cm−2) | Epass (V) | Ipass (A·cm−2) | Epit (V) | Corrosion Rate (mm/y) |
---|---|---|---|---|---|---|
Without AMF | −0.2150 | 1.82 × 10−7 | 0.1439 | 6.26 × 10−7 | 1.1775 | 2.14 × 10−3 |
With AMF | −0.1398 | 2.64 × 10−8 | 0.0637 | 4.21 × 10−7 | 1.312 | 0.28 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Zhao, Y.; Fu, J.; Chen, F.; Chen, G.; Qin, Y. Effect of Alternating Magnetic Field on the Organization and Corrosion Resistance of 2205 Duplex Stainless Steel Narrow-Gap Laser-MIG Hybrid Weld Head. Coatings 2023, 13, 2000. https://doi.org/10.3390/coatings13122000
He Z, Zhao Y, Fu J, Chen F, Chen G, Qin Y. Effect of Alternating Magnetic Field on the Organization and Corrosion Resistance of 2205 Duplex Stainless Steel Narrow-Gap Laser-MIG Hybrid Weld Head. Coatings. 2023; 13(12):2000. https://doi.org/10.3390/coatings13122000
Chicago/Turabian StyleHe, Zhenxing, Yong Zhao, Juan Fu, Fugang Chen, Guoqiang Chen, and Yonghui Qin. 2023. "Effect of Alternating Magnetic Field on the Organization and Corrosion Resistance of 2205 Duplex Stainless Steel Narrow-Gap Laser-MIG Hybrid Weld Head" Coatings 13, no. 12: 2000. https://doi.org/10.3390/coatings13122000
APA StyleHe, Z., Zhao, Y., Fu, J., Chen, F., Chen, G., & Qin, Y. (2023). Effect of Alternating Magnetic Field on the Organization and Corrosion Resistance of 2205 Duplex Stainless Steel Narrow-Gap Laser-MIG Hybrid Weld Head. Coatings, 13(12), 2000. https://doi.org/10.3390/coatings13122000