Simulating the Effect of Depositing an 8YSZ Buffer Layer in P92/Al2O3 on the Thermal Cycles Endurance and Fracture Toughness of the System
Abstract
:1. Introduction
2. Material and Methods
2.1. Analytic Model
2.2. Model Geometry and Material Properties
2.3. Meshing
2.4. Boundary Condition and Load
2.5. Fracture Toughness Analysis
3. Result and Discussion
4. Conclusions
- The 8YSZ buffer layer with proper CTE between the Al2O3 and P92 and good deformability could relieve local stress concentration and decrease the thermal stress in the coating system.
- The 8YSZ buffer layer can significantly reduce the KI and J-integral by 2 orders of magnitude in the coatings, given the coating system’s better crack propagation resistance. The optimal thickness of the 8YSZ buffer layer was 100 nm.
- The 8YSZ buffer layer can improve the thermal cycle endurance of the coating system. The P92/8YSZ/Al2O3 coating system can stay intact without cracking after a thermal shock test, while the P92/Al2O3 can not.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, S.P. Power Generation from Coal; International Energy Agency (IEA): Paris, France, 2010. [Google Scholar]
- Hasti, S.; Aroonwilas, A.; Veawab, A. Exergy Analysis of Ultra Super-critical Power Plant. Energy Procedia 2013, 37, 2544–2551. [Google Scholar] [CrossRef]
- Holcomb, G.R. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines. ECS Trans. 2009, 16, 81–92. [Google Scholar] [CrossRef]
- Basu, S.; Debnath, A.K. Power Plant Instrumentation and Control Handbook; Academic Press: Cambridge, MA, USA, 2015; pp. 875–887. [Google Scholar]
- Barnard, P. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants; Woodhead Publishing: Sawston, UK, 2017; pp. 99–119. [Google Scholar]
- Boissonnet, G.; Bonnet, G.; Pedraza, F. Thermo-Physical Properties of HR3C and P92 Steels at High-Temperature. J. Mater. Appl. 2019, 8, 59–64. [Google Scholar] [CrossRef]
- Ni, J.; Wang, X.; Gong, J.; Wahab, M.A. Thermal, metallurgical and mechanical analysis of circumferentially multi-pass welded P92 steel pipes. Int. J. Press. Vessel. Pip. 2018, 165, 164–175. [Google Scholar] [CrossRef]
- Shi, R.-X.; Liu, Z.-D. Hot Deformation Behavior of P92 Steel Used for Ultra-Super-Critical Power Plants. J. Iron Steel Res. Int. 2011, 18, 53–58. [Google Scholar] [CrossRef]
- El-Magd, E.; Gebhard, J.; Stuhrmann, J. Simulation of the creep behaviour of P92 sandwich structures at 650 °C with loading transverse to the intermediate layer. Comput. Mater. Sci. 2007, 39, 446–452. [Google Scholar] [CrossRef]
- Zhao, L.; Jing, H.; Xu, L.; Han, Y.; Xiu, J. Analysis of creep crack growth behavior of P92 steel welded joint by experiment and numerical simulation. Mater. Sci. Eng. A 2012, 558, 119–128. [Google Scholar] [CrossRef]
- Xu, L.; Liu, S.; Wang, M.; Zhou, S. Crack initiation and propagation mechanism of Al2O3-DBC substrate during thermal cycling test. Eng. Fail. Anal. 2020, 116, 104720. [Google Scholar] [CrossRef]
- Huang, J.; Xie, H.; Luo, L.; Zan, X.; Liu, D.; Wu, Y. Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316 L stainless steel. Surf. Coatings Technol. 2020, 383, 125282. [Google Scholar] [CrossRef]
- Yang, H.; Shao, Z.; Wang, W.; Ji, X.; Li, C. A composite coating of GO-Al2O3 for tritium permeation barrier. Fusion Eng. Des. 2020, 156, 111689. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, F.; Yi, L.-B. Simulation of the effects of different substrates, temperature, and substrate roughness on the mechanical properties of Al2O3 coating as tritium penetration barrier. Nucl. Sci. Tech. 2019, 30, 62. [Google Scholar] [CrossRef]
- Wang, W.-J.; Yu, Q.-H.; Liu, X.-P.; Huang, K.-Z.; Mi, J.; Hao, L.; Lu, Z. Microstructure and deuterium resistance of Al2O3/Y2O3 composite coating with different annealing atmospheres. Rare Met. 2022, 41, 877–882. [Google Scholar] [CrossRef]
- Pint, B.; Zhang, Y.; Walker, L.; Wright, I. Long-term performance of aluminide coatings on Fe-base alloys. Surf. Coatings Technol. 2007, 202, 637–642. [Google Scholar] [CrossRef]
- Kuppusamy, M.; Ramanathan, T. Experimental analysis of the thermal-barrier coating for an Al2O3-TiO2 ceramic coated CI engine operating on calophyllum inophyllum oil. Mater. Teh. 2021, 55, 121–126. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, N.; Xu, H. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Mater. Sci. Eng. A 2007, 452–453, 569–574. [Google Scholar] [CrossRef]
- Zhang, J.-G.; Tan, X.; Fan, X.-J.; Mao, J.; Deng, C.-M.; Liu, M.; Zhou, K.-S.; Zhang, X.-F. Thermal insulation performance of 7YSZ TBCs adjusted via Al modification. Rare Met. 2023, 42, 994–1004. [Google Scholar] [CrossRef]
- Li, X.-K.; Zhu, S.-P.; Liao, D.; Correia, J.A.; Berto, F.; Wang, Q. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory. Int. J. Fatigue 2022, 159, 106788. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, S.-P.; Keshtegar, B.; Qian, G.; Wang, Q. Probabilistic framework for fatigue life assessment of notched components under size effects. Int. J. Mech. Sci. 2020, 181, 105685. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Q.; Liu, X.; Lu, Z. Preparation of Al2O3/Y2O3 composite coating for deuterium permeation reduction. J. Rare Earths 2020, 38, 1237–1242. [Google Scholar] [CrossRef]
- Huang, K.; Wang, W.; Yu, Q.; Hao, L.; Mi, J.; Li, S.; Liu, H.; Li, S.; Liu, J.; Wang, J. Simulation of the Residual Stress of the Y2O3/Al2O3 Composite Deuterium Permeation Barrier under Thermal Shock. Int. J. Photoenergy 2021, 2021, 6684802. [Google Scholar] [CrossRef]
- Lefrou, C.; Nogueira, R.P.; Huet, F.; Takenouti, H. Basic Concepts, High Temperature Corrosion. Shreir’s Corros. 2010, 1, 13–51. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S. Rethinking the Role That the “Step” in the Load–Displacement Curves Can Play in Measurement Of Fracture Toughness for Hard Coatings. Thin Solid Films 2012, 520, 3423–3428. [Google Scholar] [CrossRef]
- Dillard, D.A. Improving Adhesive Joint Design Using Fracture Mechanics. In Advances in Structural Adhesive Bonding; Woodhead Publishing: Sawston, UK, 2010; pp. 350–388. [Google Scholar] [CrossRef]
- Qiang, B.; Yong, B. 12-Fatigue and Fracture. In Subsea Pipeline Design, Analysis, and Installation, Subsea Pipeline Design, Analysis, and Installation; Gulf Professional Publishing: Houston, TX, USA, 2014; pp. 283–318. [Google Scholar] [CrossRef]
- Barmak, K.; Kevin, R.C. Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties; Woodhead Publishing: Sawston, UK, 2013; pp. 1–634. [Google Scholar]
- Gu, B.; Phelan, P.E. Thermal Peeling Stress Analysis of Thin-Film High-Tc Superconductors. Appl. Supercond. 1998, 6, 19–29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Liu, Y.; Wang, W.; Yu, Q.; Mi, J.; Hao, L.; Liu, H.; Yuan, B.; Xiao, W.; Chen, X.; et al. Simulating the Effect of Depositing an 8YSZ Buffer Layer in P92/Al2O3 on the Thermal Cycles Endurance and Fracture Toughness of the System. Coatings 2023, 13, 1999. https://doi.org/10.3390/coatings13121999
Huang K, Liu Y, Wang W, Yu Q, Mi J, Hao L, Liu H, Yuan B, Xiao W, Chen X, et al. Simulating the Effect of Depositing an 8YSZ Buffer Layer in P92/Al2O3 on the Thermal Cycles Endurance and Fracture Toughness of the System. Coatings. 2023; 13(12):1999. https://doi.org/10.3390/coatings13121999
Chicago/Turabian StyleHuang, Kezhi, Yu Liu, Weijing Wang, Qinghe Yu, Jing Mi, Lei Hao, Hao Liu, Baolong Yuan, Wei Xiao, Xiaotao Chen, and et al. 2023. "Simulating the Effect of Depositing an 8YSZ Buffer Layer in P92/Al2O3 on the Thermal Cycles Endurance and Fracture Toughness of the System" Coatings 13, no. 12: 1999. https://doi.org/10.3390/coatings13121999
APA StyleHuang, K., Liu, Y., Wang, W., Yu, Q., Mi, J., Hao, L., Liu, H., Yuan, B., Xiao, W., Chen, X., Dong, Z., & Wang, P. (2023). Simulating the Effect of Depositing an 8YSZ Buffer Layer in P92/Al2O3 on the Thermal Cycles Endurance and Fracture Toughness of the System. Coatings, 13(12), 1999. https://doi.org/10.3390/coatings13121999