Failure Mechanism of Thermal Barrier Coatings on Nozzle Guide Vanes Fabricated from Nickel-Based Single-Crystal Superalloy under Gas Thermal Shock Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Characterization Methods
3. Results
3.1. Microstructure and Phase Composition of the As-Prepared Coating
3.2. Structure Morphology of the Thermal Barrier Coating after Thermal Shock
3.3. Composition and Microhardness Analysis of the Mixed Layer
3.4. Phase Structure Analysis of Substrate and Ceramic Layers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Zhen, Z.; Qu, C.; Fu, D.H. Characterization of the internal stress evolution of an EB-PVD thermal barrier coating during a long-term thermal cycling. Materials 2023, 16, 2910. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Zhang, T.; Wang, Z.; Yu, J.; Guo, W.; Yang, Y. Effect of thermal growth oxide composition and morphology on local stresses in thermal barrier coatings. Materials 2023, 15, 8442. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Wang, K.; Dong, X.; Wang, R.; Duan, W.; Mei, X.; Wang, W.; Cui, J.; Zhang, S.; Xu, C. The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4 + V2O5). Corros. Sci. 2017, 115, 56–67. [Google Scholar] [CrossRef]
- Wu, J.; Gao, Y.; Guo, C.; Guo, L. Laser surface modification to improve the resistance of CMAS + molten salt coupling corrosion to thermal barrier coatings. Ceram. Int. 2023, 49, 32283–32291. [Google Scholar] [CrossRef]
- Huang, S.; Huang, M.M.; Lyu, Y.J. Seismic performance analysis of a wind turbine with a monopile foundation affected by sea ice based on a simple numerical method. Eng. Appl. Comp. Fluid. 2021, 15, 1113–1333. [Google Scholar] [CrossRef]
- Bakan, E.; Vaßen, R. Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties. J. Therm. Spray. Tech. 2017, 26, 992–1010. [Google Scholar] [CrossRef]
- Moon, J.; Choi, H.; Kim, H.; Lee, C. The effects of heat treatment on the phase transformation behavior of plasma-sprayed stabilized ZrO2 coating. Surf. Coat. Tech. 2002, 155, 1–10. [Google Scholar] [CrossRef]
- Lv, B.; Fan, X.; Xie, H.; Wang, T.J. Effect of neck formation on the sintering of air-plasma-sprayed thermal barrier coating system. J. Eur. Ceram. Soc. 2017, 37, 811–821. [Google Scholar] [CrossRef]
- Torkashvand, K.; Poursaeidi, E.; Mohammadi, M. Effect of TGO thickness on the thermal barrier coatings life under thermal shock and thermal cycle loading. Ceram. Int. 2018, 44, 9283–9293. [Google Scholar] [CrossRef]
- Peng, H.; Wang, L.; Guo, L.; Miao, W.; Guo, H.; Gong, S. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Prog. Nat. Sci. 2012, 22, 461–467. [Google Scholar] [CrossRef]
- Iqbal, A.; Moskal, G. Recent development in advance ceramic materials and understanding the mechanisms of thermal barrier coatings degradation. Arch. Comput. Method. Eng. 2023, 30, 4855–4896. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, Y.; Gu, T.; Guo, Y.; Xu, F.; Hou, H. Cooperative effect of strength and ductility processed by thermomechanical treatment for Cu–Al–Ni alloy. Mater. Sci. Eng. A. 2022, 849, 143485–143495. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, J.; Gou, G.; Chen, H.; Li, P. Ameliorated Longitudinal Critically Refracted -Attenuation Velocity Method for Welding Residual Stress Measurement. J. Mater. Process Technol. 2017, 246, 267–275. [Google Scholar] [CrossRef]
- Vaßen, R.; Mack, D.E.; Tandler, M.; Sohn, Y.J.; Sebold, D.; Guillon, O. Unique performance of thermal barrier coatings made of yttria-stabilized zirconia at extreme temperatures (>1500 °C). J. Am. Ceram. Soc. 2021, 104, 463–471. [Google Scholar] [CrossRef]
- Toriz, F.C.; Thakker, A.B.; Gupta, S.K. Flight service evaluation of thermal barrier coatings by physical vapour deposition at 5200h. Surf. Coat. Technol. 1989, 39–40, 161–172. [Google Scholar] [CrossRef]
- Wellman, R.G.; Nicholls, J.R. A mechanism for the erosion of EB-PVD TBCs. Mater. Sci. Forum. 2001, 369–372, 531–538. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.M.; Song, G.M.; Li, X.W. The Improvement of oxidation resistance of a Re-based diffusion barrier/Ni–Al coating on the single-crystal Ni-based TMS-82+ superalloy. Oxid. Met. 2011, 76, 419–431. [Google Scholar] [CrossRef]
- Pillai, R.; Sloof, W.G.; Chyrkin, A. A new computational approach for modelling the microstructural evolution and residual lifetime assessment of MCrAlY coatings. Mater. High. Temp. 2015, 32, 57–67. [Google Scholar] [CrossRef]
- Yu, S.; Wang, C.Y.; Yu, T.; Cai, J. Self-diffusion in the intermetallic compounds NiAl and Ni3Al-An embedded atom method study. Phys. B 2007, 396, 138–144. [Google Scholar] [CrossRef]
- Shillington, E.A.G.; Clarke, D.R. Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat. Acta. Mater. 1999, 47, 1297–1305. [Google Scholar] [CrossRef]
- Che, C.; Wu, G.Q.; Qi, H.Y.; Huang, Z.; Yang, X.G. Depletion model of aluminum in bond coat for plasma-sprayed thermal barrier coatings. Adv. Mat. Res. 2009, 75, 31–35. [Google Scholar] [CrossRef]
- Shen, Q.; Yang, L.; Zhou, Y.C.; Wei, Y.G.; Zhu, W. Effects of growth stress in finite-deformation thermally grown oxide on failure mechanism of thermal barrier coatings. Mech. Mater. 2017, 114, 228–242. [Google Scholar] [CrossRef]
- Shamsipoor, A.; Farvizi, M.; Razavi, M.; Keyvani, A.; Mousavi, B.; Pan, W. High-temperature oxidation behavior in YSZ coated Cr2AlC and CoNiCrAlY substrates. Surf. Coat. Tech. 2020, 401, 126239–126248. [Google Scholar] [CrossRef]
- Karaoglanli, A.C.; Dikici, H.; Kucuk, Y. Effects of heat treatment on adhesion strength of thermal barrier coating systems. Eng. Fail. Anal. 2013, 32, 16–22. [Google Scholar] [CrossRef]
- Rätzer-Scheibe, H.J.; Schulz, U. The effects of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings. Surf. Coat. Tech. 2007, 201, 7880–7888. [Google Scholar] [CrossRef]
Ni | Cr | Al | Y | Si |
---|---|---|---|---|
Bal. | 23.5 | 15.8 | 1.1 | 1.3 |
Y2O3 | Total Impurities (Si/Mn/Ni/Cr/Fe/V) | ZrO2 |
---|---|---|
8.2 | ≤0.10 | Bal. |
Spectrum Element | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
O | 26.9 | 26.7 | 22.9 | 31.8 | 11.1 | 35.9 | 37.7 | / |
Al | / | 1.5 | 1.3 | 3.2 | 8.9 | 38.0 | 36.1 | 10.2 |
Si | / | / | 0.5 | 3.5 | 0.6 | / | / | 0.5 |
Cr | / | 1.4 | 1.6 | 27.5 | 18.3 | 13.8 | 5.3 | 31.3 |
Ni | / | 17.4 | 56.1 | 9.9 | 61.1 | 5.0 | 6.5 | 57.7 |
Y | 6.9 | / | 2.1 | 1.7 | / | 2.0 | / | 0.3 |
Zr | 66.2 | 52.9 | 15.5 | 22.5 | / | 5.2 | 14.5 | / |
Position | Microhardness/MPa | Standard Deviation | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Average | ||
Bonding layer | 460 | 483 | 479 | 456 | 489 | 473 | 13.03 |
Mixed layer | 632 | 619 | 637 | 628 | 633 | 630 | 6.11 |
Ceramic layer | 739 | 728 | 746 | 719 | 734 | 733 | 9.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fu, Q.; Yang, C.; Peng, H.; Zhang, H. Failure Mechanism of Thermal Barrier Coatings on Nozzle Guide Vanes Fabricated from Nickel-Based Single-Crystal Superalloy under Gas Thermal Shock Conditions. Coatings 2023, 13, 2062. https://doi.org/10.3390/coatings13122062
Wang Y, Fu Q, Yang C, Peng H, Zhang H. Failure Mechanism of Thermal Barrier Coatings on Nozzle Guide Vanes Fabricated from Nickel-Based Single-Crystal Superalloy under Gas Thermal Shock Conditions. Coatings. 2023; 13(12):2062. https://doi.org/10.3390/coatings13122062
Chicago/Turabian StyleWang, Yufeng, Qiangang Fu, Chenxi Yang, Hui Peng, and Hua Zhang. 2023. "Failure Mechanism of Thermal Barrier Coatings on Nozzle Guide Vanes Fabricated from Nickel-Based Single-Crystal Superalloy under Gas Thermal Shock Conditions" Coatings 13, no. 12: 2062. https://doi.org/10.3390/coatings13122062
APA StyleWang, Y., Fu, Q., Yang, C., Peng, H., & Zhang, H. (2023). Failure Mechanism of Thermal Barrier Coatings on Nozzle Guide Vanes Fabricated from Nickel-Based Single-Crystal Superalloy under Gas Thermal Shock Conditions. Coatings, 13(12), 2062. https://doi.org/10.3390/coatings13122062