Novel Method for Assessing the Protection Lifetime of Building Coatings against Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Building Materials
2.2. Tested Fungal Strain
2.3. Stage 1—Evaluation of Methods of Determining the Degree of Fungal Overgrowth on Building Materials
2.3.1. Inoculation and Incubation of Samples
2.3.2. Visual Assessment
2.3.3. Culture Method
2.3.4. Luminometric ATP Measurement
2.3.5. Colour Change Analysis
2.3.6. Mathematical Analysis
2.4. Stage 2—Development of a Methodology for Evaluating the Durability of Building Materials on the Growth of Fungi, with Verification under Environmental Conditions
2.4.1. Microclimate Analysis
2.4.2. Strain Interaction Analysis
2.4.3. Determination of the Correlation between the Number of Fungal Spores/Cells in the Inoculum Suspension and its Optical Density on the McFarland Scale
2.4.4. Verification of the Developed Method of Evaluating the Durability of Building Materials on the Growth of Fungi
3. Results and Discussion
3.1. Stage 1—Evaluation of Methods for Determining the Degree of Fungal Overgrowth on Building Materials
3.1.1. Visual Assessment
3.1.2. Culture Method
3.1.3. Luminometric ATP Measurement
3.1.4. Colour Change Analysis
3.1.5. Comparison of Methods of Determining the Degree of Fungal Overgrowth of Building Materials
3.2. Stage 2—Development of a Methodology for Evaluating the Durability of Building Materials on the Growth of Fungi, with Verification in Environmental Conditions
3.2.1. Simulation of Environmental Conditions
3.2.2. Determination of the Correlation between the Number of Fungal Spores/Cells in the Inoculum Suspension and Its Optical Density on the McFarland Scale
3.2.3. Strain Interaction Analysis
3.2.4. Methodology for Evaluating the Durability of Building Materials on the Growth of Fungi
3.3. Verification of Proposed Methodology in Model and Environmental Conditions
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Microclimate Analysis of Poland Region
1991–2020 | 2020 | 2021 | 2022 | |
---|---|---|---|---|
Temperature [°C] a | 8.42 | 9.9 | 8.7 | 9.5 |
Precipitation sum [mmH2O] a | 657.34 | 645.4 | 632.2 | 539.5 |
Percentage of zones that exceeded PM10 levels (24 h) [%] b | ND | 36 | 54 | ND |
Percentage of zones that exceeded PM10 levels (annual) [%] b | ND | 2 | 4 | ND |
Percentage of zones that exceeded PM2.5 levels (annual) [%] b | ND | 31 | 38 | ND |
Appendix A.2. Characteristics of the Microclimate of Experimental Plots
Abbreviations
AgNPs | Silver nanoparticles |
ATP | Adenosine-5’-triphosphate |
AuNPs | Gold nanoparticles |
BRI | Building-Related Illness |
CFUs | Colony-forming units |
CIE | International Commission on Illumination |
DCOIT | 4,5-dichloro-2-octyl-4-isothiazolin-3-one |
DSM | Deutsche Sammlung von Mikroorganismen und Zellkulturen |
ETICS | External Thermal Insulation Composite Systems |
IMGW-PIB | Institute of Meteorology and Water Management—National Research Institute |
IPBC | Iodopropynyl butyl carbamate |
ITS | Internal Transcribed Spacer |
MEA | Malt Extract Agar |
NaCl | Sodium chloride |
NCBI | National Centre for Biotechnology Information |
OIT | 2-octyl-2H-isothiazolin-3-one |
PM10 | Particulate matter of diameter less than 10 µm |
PM2.5 | Particulate matter of diameter less than 2.5 µm |
rDNA | Ribosomal Deoxyribonucleic Acid |
RH | Relative humidity |
RLUs | Relative Light Units |
SBS | Sick Building Syndrome |
SCE | Specular Component Excluded mode |
SCI | Specular Component Included mode |
TBZ | Terbuthylazine |
TiO2 | Titanium dioxide |
UV/UVC | Ultraviolet radiation/ultraviolet C radiation |
ZnO | Zinc oxide |
ZnO2 | Zinc peroxide |
ZnONPs | Zinc oxide nanoparticles |
ZnP | Zinc pyrithion |
References
- Guerra, F.L.; Lopes, W.; Cazarolli, J.C.; Lobato, M.; Masuero, A.B.; Dal Molin, D.C.C.; Bento, F.M.; Schrank, A.; Vainstein, M.H. Biodeterioration of Mortar Coating in Historical Buildings: Microclimatic Characterization, Material, and Fungal Community. Build. Environ. 2019, 155, 195–209. [Google Scholar] [CrossRef]
- Hallmann, C.; Hoppert, M.; Mudimu, O.; Friedl, T. Biodiversity of Green Algae Covering Artificial Hard Substrate Surfaces in a Suburban Environment: A Case Study Using Molecular Approaches. J. Phycol. 2016, 52, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Gaylarde, C.C.; Morton, L.H.G.; Loh, K.; Shirakawa, M.A. Biodeterioration of External Architectural Paint Films—A Review. Int. Biodeterior. Biodegrad. 2011, 65, 1189–1198. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their Role in Deterioration of Cultural Heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Brzyski, P.; Barnat-Hunek, D.; Suchorab, Z.; Lagód, G. Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials 2017, 10, 510. [Google Scholar] [CrossRef]
- Garbacz, M.; Malec, A.; Duda-Saternus, S.; Suchorab, Z.; Guz, L.; Lagód, G. Methods for Early Detection of Microbiological Infestation of Buildings Based on Gas Sensor Technologies. Chemosensors 2020, 8, 7. [Google Scholar] [CrossRef]
- Verdier, T.; Coutand, M.; Bertron, A.; Roques, C. A Review of Indoor Microbial Growth across Building Materials and Sampling and Analysis Methods. Build. Environ. 2014, 80, 136–149. [Google Scholar] [CrossRef]
- Maddalena, R.; Mendell, M.J.; Eliseeva, K.; Chan, W.R.; Sullivan, D.P.; Russell, M.; Satish, U.; Fisk, W.J. Effects of Ventilation Rate per Person and per Floor Area on Perceived Air Quality, Sick Building Syndrome Symptoms, and Decision-Making. Indoor Air 2015, 25, 362–370. [Google Scholar] [CrossRef]
- Nielsen, K.F. Mycotoxin Production by Indoor Molds. Fungal Genet. Biol. 2003, 39, 103–117. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor Air Humidity, Air Quality, and Health—An Overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Gutarowska, B. Moulds in Biodeterioration of Technical Materials. Folia Biol. Oecologica 2014, 10, 27–39. [Google Scholar] [CrossRef]
- Dyshlyuk, L.; Babich, O.; Ivanova, S.; Vasilchenco, N.; Atuchin, V.; Korolkov, I.; Russakov, D.; Prosekov, A. Antimicrobial Potential of ZnO, TiO2 and SiO2 Nanoparticles in Protecting Building Materials from Biodegradation. Int. Biodeterior. Biodegrad. 2020, 146, 104821. [Google Scholar] [CrossRef]
- Moreau, C.; Vergès-Belmin, V.; Leroux, L.; Orial, G.; Fronteau, G.; Barbin, V. Water-Repellent and Biocide Treatments: Assessment of the Potential Combinations. J. Cult. Herit. 2008, 9, 394–400. [Google Scholar] [CrossRef]
- Munafò, P.; Goffredo, G.B.; Quagliarini, E. TiO2-Based Nanocoatings for Preserving Architectural Stone Surfaces: An Overview. Constr. Build. Mater. 2015, 84, 201–218. [Google Scholar] [CrossRef]
- Carrillo-González, R.; Martínez-Gómez, M.A.; González-Chávez, M.D.C.A.; Mendoza Hernández, J.C. Inhibition of Microorganisms Involved in Deterioration of an Archaeological Site by Silver Nanoparticles Produced by a Green Synthesis Method. Sci. Total Environ. 2016, 565, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Komar, M.; Szulc, J.; Kata, I.; Szafran, K.; Gutarowska, B. Development of a Method for Assessing the Resistance of Building Coatings to Phoatoautotrophic Biofouling. Appl. Sci. 2023, 13, 8009. [Google Scholar] [CrossRef]
- Viegas, C.A.; Borsoi, G.; Moreira, L.M.; Parracha, J.L.; Nunes, L.; Malanho, S.; Veiga, R.; Flores-Colen, I. Diversity and Distribution of Microbial Communities on the Surface of External Thermal Insulation Composite Systems (ETICS) Facades in Residential Buildings. Int. Biodeterior. Biodegrad. 2023, 184, 105658. [Google Scholar] [CrossRef]
- Cutler, N.; Viles, H. Eukaryotic Microorganisms and Stone Biodeterioration. Geomicrobiol. J. 2010, 27, 630–646. [Google Scholar] [CrossRef]
- Gaylarde, C. Influence of Environment on Microbial Colonization of Historic Stone Buildings with Emphasis on Cyanobacteria. Heritage 2020, 3, 1469–1482. [Google Scholar] [CrossRef]
- Luvidi, L.; Mecchi, A.M.; Ferretti, M.; Sidoti, G. Treatments with Self-Cleaning Products for the Maintenance and Conservation of Stone Surfaces. Int. J. Conserv. Sci. 2016, 7, 311–322. [Google Scholar]
- Li, T.; Hu, Y.; Zhang, B. Evaluation of Efficiency of Six Biocides against Microorganisms Commonly Found on Feilaifeng Limestone, China. J. Cult. Herit. 2020, 43, 45–50. [Google Scholar] [CrossRef]
- EN 15457:2022; Paints and Varnishes—Laboratory Method for Testing the Efficacy of Film Preservatives in a Coating against Fungi. Polish Committee for Standardization: Warsaw, Poland, 2022. Available online: https://sklep.pkn.pl/pn-en-15458-2022-08e.html (accessed on 20 November 2023).
- ASTM D3273-21; Standard Test Method for Resistance to Growth of Mold on the Surface of Interior Coatings in an En-Vironmental Chamber. ASTM International: West Conhohocken, PA, USA, 2021. Available online: https://www.astm.org/d3273-21.html (accessed on 20 November 2023).
- BS 3900-G6; Methods of Test for Paints—Part G6: Assessment of Resistance to Fungal Growth. BSI: London, UK, 1989. Available online: https://standards.globalspec.com/std/946108/bs%203900-g6 (accessed on 20 November 2023).
- European Organization for Technical Assessment (EOTA). External Thermal Insulation Composite Systems (ETICS) with Renderings; EAD (European Assessment Document) 040083-00-0404; EOTA: Brussels, Belgium, 2020. [Google Scholar]
- EN 13501-1:2019; Fire Classification of Construction Products and Building Elements—Part 1: Classification Using Data from Reaction to Fire Tests. iTeh Standards: Erbicoke, ON, Canada, 2019. Available online: https://infostore.saiglobal.com/en-us/standards/pn-en-13501-1-2019-920840_saig_pkn_pkn_2704940/ (accessed on 20 November 2023).
- Gutarowska, B.; Piotrowska, M. Methods of Mycological Analysis in Buildings. Build. Environ. 2007, 42, 1843–1850. [Google Scholar] [CrossRef]
- Andersen, B.; Frisvad, J.C.; Søndergaard, I.; Rasmussen, I.S.; Larsen, L.S. Associations between Fungal Species and Water-Damaged Building Materials. Appl. Environ. Microbiol. 2011, 77, 4180–4188. [Google Scholar] [CrossRef] [PubMed]
- Stępień, Ł.; Koczyk, G.; Waśkiewicz, A. Genetic and Phenotypic Variation of Fusarium Proliferatum Isolates from Different Host Species. J. Appl. Genet. 2011, 52, 487–496. [Google Scholar] [CrossRef] [PubMed]
- PN-EN 15458; Paints and Varnishes—Laboratory Method for Testing the Efficacy of Film Preservatives in a Coating against Algae. European Standards: Brussels, Belgium, 2014.
- Gaylarde, C.; Otlewska, A.; Cellikol-Aydi, S.; Skóra, J.; Sulyok, M.; Pielech-Przybylska, K.; Gillatt, J.; Beech, I.; Gutarowska, B. Interactions between Fungi of Standard Paint Test Method BS3900. Int. Biodeterior. Biodegrad. 2015, 104, 411–418. [Google Scholar] [CrossRef]
- Jennings, D.H. The Physiology of Fungal Nutrition; Cambridge University Press: Cambridge, UK, 1995; ISBN 9780521355247. [Google Scholar]
- Rakotonirainy, M.S.; Héraud, C.; Lavédrine, B. Detection of Viable Fungal Spores Contaminant on Documents and Rapid Control of the Effectiveness of an Ethylene Oxide Disinfection Using ATP Assay. Luminescence 2003, 18, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Møretrø, T.; Normann, M.A.; Sæbø, H.R.; Langsrud, S. Evaluation of ATP Bioluminescence-Based Methods for Hygienic Assessment in Fish Industry. J. Appl. Microbiol. 2019, 127, 186–195. [Google Scholar] [CrossRef]
- Mokrzycki Cardinal Stefan, W.; Tatol, M. Colour Difference ∆E-A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Zając, I.; Szulc, J.; Gutarowska, B. The Effect of Ethylene Oxide and Silver Nanoparticles on Photographic Models in the Context of Disinfection of Photo Albums. J. Cult. Herit. 2021, 51, 59–70. [Google Scholar] [CrossRef]
- Szulc, J.; Urbaniak-Domagała, W.; Machnowski, W.; Wrzosek, H.; Łącka, K.; Gutarowska, B. Low Temperature Plasma for Textiles Disinfection. Int. Biodeterior. Biodegrad. 2018, 131, 97–106. [Google Scholar] [CrossRef]
- Johansson, P.; Ekstrand-Tobin, A.; Svensson, T.; Bok, G. Laboratory Study to Determine the Critical Moisture Level for Mould Growth on Building Materials. Int. Biodeterior. Biodegrad. 2012, 73, 23–32. [Google Scholar] [CrossRef]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co: Pacific Grove, CA, USA, 1996. [Google Scholar]
- Shelton, B.G.; Kirkland, K.H.; Flanders, W.D.; Morris, G.K. Profiles of Airborne Fungi in Buildings and Outdoor Environments in the United States. Appl. Environ. Microbiol. 2002, 68, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Ouyang, Z.; Zheng, H.; Wang, X. Concentration and Size Distribution of Culturable Airborne Microorganisms in Outdoor Environments in Beijing, China. Aerosol Sci. Technol. 2008, 42, 325–334. [Google Scholar] [CrossRef]
- Kalyoncu, F. Viable Airborne Fungi of Outdoor Environments of Yunusemre District, Manisa, Turkey. Celal Bayar Üniversitesi Fen Bilim. Derg. 2019, 15, 261–264. [Google Scholar] [CrossRef]
- Nageen, Y.; Asemoloye, M.D.; Põlme, S.; Wang, X.; Xu, S.; Ramteke, P.W.; Pecoraro, L. Analysis of Culturable Airborne Fungi in Outdoor Environments in Tianjin, China. BMC Microbiol. 2021, 21, 134. [Google Scholar] [CrossRef]
- Lodz University of Technology. Laboratory Method for Assessing the Durability of Antifungal and Antialgal Protection of Building. Plasters. Patent Application No. 444942, 22 May 2023.
- Institute of Meteorology and Water Management—National Research Institute. Meteorological Yearbook 2021; National Research Institute: Warsaw, Poland, 2022. [Google Scholar]
- Narowski, P. Parametry obliczeniowe powietrza zewnętrznego i strefy klimatyczne Polski do obliczania mocy w systemach chłodzenia, wentylacji i klimatyzacji budynków. Instal 2020, 12, 21–30. [Google Scholar] [CrossRef]
- WMO. WMO Guidelines on the Calculation of Climate Normals; WMO-No. 1203; WMO: Geneva, Switzerland, 2017; p. 29. [Google Scholar]
- Institute of Meteorology and Water Management—National Research Institute. 1991–2020 Climatic Norms. Available online: https://klimat.imgw.pl/pl/climate-normals/ (accessed on 9 November 2023).
- Institute of Meteorology and Water Management—National Research Institute. 2020 State Hydrological and Meteorological Service Bulletin; National Research Institute: Warsaw, Poland, 2021. [Google Scholar]
- Institute of Meteorology and Water Management—National Research Institute. Meteorological Yearbook 2020; National Research Institute: Warsaw, Poland, 2021. [Google Scholar]
- Chief Inspectorate of Environmental Protection. Zones Air Quality Assessment in Poland for 2020; Chief Inspectorate of Environmental Protection: Warsaw, Poland, 2021. [Google Scholar]
- Chief Inspectorate of Environmental Protection. Zones Air Quality Assessment in Poland for 2021; Chief Inspectorate of Environmental Protection: Warsaw, Poland, 2022. [Google Scholar]
- Institute of Meteorology and Water Management—National Research Institute. 2021 State Hydrological and Meteorological Service Bulletin; National Research Institute: Warsaw, Poland, 2022. [Google Scholar]
- Institute of Meteorology and Water Management—National Research Institute. Meteorological Yearbook 2022; National Research Institute: Warsaw, Poland, 2023. [Google Scholar]
- Piotrowicz, K.; Bokwa, A.; Krzaklewski, P. “Analysis of Climate Change—Diagnosis of the Current State” for the Purpose of Updating the Regional Action Plan for Climate and Energy for the Lesser Poland Voivodeship; Chief Inspectorate of Environmental Protection: Kraków, Poland, 2022. [Google Scholar]
- Chief Inspectorate of Environmental Protection. Annual Assessment of Air Quality in the Lesser Poland Voivodeship; Provincial report for 2019; Chief Inspectorate of Environmental Protection: Kraków, Poland, 2020. [Google Scholar]
Stage | No. | Description |
---|---|---|
1 (aged facade coatings) | 1 * | Mineral facade coating |
2 * | Mineral facade coating + primer + silicone paint | |
3 * | Silicone facade coating | |
4 * | Silicone facade coating + primer + silicone paint | |
2 (not aged facade coatings) | 5 # | Mineral facade coating |
6 # | Mineral facade coating + silicone paint | |
7 * | Mineral facade coating + silicone paint B no. 1 | |
8 * | Mineral facade coating + silicone paint B no. 2 | |
9 * | Mineral facade coating + silicone paint B no. 3 | |
10 # | Mineral facade coating + primer + silicone paint B | |
11 # | Mineral facade coating + primer B + silicone paint B | |
12 # | Silicone facade coating | |
13 # | Silicone facade coating B no. 1 | |
14 # | Silicone facade coating B no. 2 | |
15 * | Silicone facade coating B no. 3 | |
16 * | Special mineral facade coating no. 2+ silicone paint B no. 1 | |
17 * | Special mineral facade coating no. 2+ silicone paint B no. 2 | |
18 * | Special mineral facade coating no. 2+ primer + silicone paint B | |
19 * | Special mineral facade coating no. 2+ primer B + silicone paint B |
Strain | Origin | Spore Concentration in Inoculum (CFUs/mL) |
---|---|---|
Alternaria alternata | DSM 62010 | 9.25 × 107 ± 9.57 × 106 |
Aspergillus niger | DSM 12634 | 2.25 × 108 ± 9.57 × 107 |
Aureobasidium melanogenum | DSM 2404 | 1.75 × 108 ± 9.57 × 107 |
Cladosporium cladosporioides | Environmental strain | 9.25 × 107 ± 9.57 × 106 |
Fusarium sp. | Environmental strain | 8.25 × 107 ± 2.22 × 107 |
Penicillium citrinum | Environmental strain | 1.73 × 108 ± 9.84 × 107 |
Rhodotorula mucilaginosa | DSM 70825 | 2.25 × 108 ± 1.89 × 108 |
Rate | Percentage of the Surface Covered with Fungi (%) | Colour Legend |
---|---|---|
0 | No visible growth | |
1 | <10 | |
2 | 10%–30% | |
3 | 30%–50% | |
4 | >50% |
Facade No. | Description | 0 Days | 14 Days | 28 Days | |||
---|---|---|---|---|---|---|---|
% * | Score | % * | Score | % * | Score | ||
1 | Mineral facade coating | 0 ± 0 | 0 ± 0 | 98 ± 3 | 4 ± 0 | 91 ± 2 | 4 ± 0 |
2 | Mineral facade coating + primer + silicone paint | 0 ± 0 | 0 ± 0 | 95 ± 3 | 4 ± 0 | 88 ± 3 | 4 ± 0 |
3 | Silicone facade coating | 0 ± 0 | 0 ± 0 | 95 ± 5 | 4 ± 0 | 90 ± 5 | 4 ± 0 |
4 | Silicone facade coating + primer + silicone paint | 0 ± 0 | 0 ± 0 | 94 ± 4 | 4 ± 0 | 100 ± 0 | 4 ± 0 |
Incubation Time, t (Days) | Facade Coatings No. | Number of Fungi (CFUs/Sample) | ATP (RLUs) | ||||||
---|---|---|---|---|---|---|---|---|---|
A. alternata | A. niger | A. melanogenum | C.cladosporioides | Fusarium sp. | P. citrinum | R. mucilaginosa | |||
0 | 1 | 7.50 × 104 ± 9.57 × 103 | 3.38 × 106 ± 5.71 × 105 | 6.50 × 105 ± 5.70 × 104 | 2.75 × 105 ± 7.50 × 104 | 8.26 × 107 ± 9.57 × 106 | 1.08 × 106 ± 8.52 × 105 | 4.00 × 105 ± 9.00 × 104 | 1000 ± 0 |
2 | 2.50 × 104 ± 5.00 × 106 | 7.45 × 106 ± 2.25 × 104 | 1.48 × 106 ± 9.00 × 104 | 5.00 × 105 ± 2.60 × 104 | 8.27 × 107 ± 9.57 × 107 | 2.03 × 106 ± 4.77 × 105 | 1.38 × 106 ± 3.80 × 105 | 223 # ± 10 | |
3 | 5.00 × 104 ± 5.77 × 103 | 6.08 × 106 ± 9.05 × 105 | 4.00 × 105 ± 3.50 × 104 | 1.03 × 106 ± 7.50 × 105 | 2.50 × 107 ± 9.57 × 106 | 1.55 × 105 ± 3.67 × 104 | 1.03 × 106 ± 6.20 × 105 | 14 # ± 2 | |
4 | 2.50 × 105 ± 1.73 × 104 | 2.05 × 106 ± 8.50 × 104 | 3.00 × 105 ± 2.00 × 104 | 2.50 × 105 ± 6.40 × 104 | 2.50 × 107 ± 9.57 × 106 | 1.55 × 106 ± 6.20 × 105 | 1.73 × 106 ± 5.40 × 105 | 25,333 ± 577 | |
14 | 1 | 1.00 × 103 ± 9.50 × 101 # | 5.00 × 104 ± 2.82 × 103 # | 1.00 × 103 ± 2.20 × 102 # | 1.00 × 103 ± 2.70 × 102 # | 1.00 × 103 ± 2.70 × 102 # | 3.00 × 105 ± 2.25 × 104 | 6.50 × 105 ± 2.70 × 105 | 78,000 ± 1000 |
2 | 1.00 × 103 ± 1.10 × 101 # | 1.00 × 105 ± 2.00 × 104 | 1.00 × 103 ± 9.70 × 102 # | 7.5 × 104 ± 9.00 × 103 | 1.00 × 103 ± 7.65 × 101 # | 1.75 × 105 ± 9.84 × 104 | 7.25 × 105 ± 1.40 × 105 | 12 # ± 1 | |
3 | 1.00 × 103 ± 1.00 × 101 # | 1.25 × 105 ± 1.55 × 103 | 1.00 × 103 ± 1.40 × 101 # | 2.00 × 105 ± 1.85 × 102 | 1.00 × 103 ± 1.05 × 102 # | 7.50 × 104 ± 1.90 × 104 | 4.55 × 105 ± 6.75 × 104 | 11,000 ± 0 | |
4 | 1.03 × 103 ± 8.90 × 102 # | 5.00 × 104 ± 9.30 × 103 # | 1.00 × 103 ± 1.00 × 101 # | 2.50 × 104 ± 1.90 × 103 | 1.00 × 103 ± 5.25 × 102 # | 3.75 × 105 ± 2.79 × 104 | 1.45 × 106 ± 7.90 × 105 | 813 # ± 32 | |
28 | 1 | 3.35 × 104 ± 4.63 × 103 | 6.50 × 103 ± 7.50 × 102 # | 2.50 × 102 ± 3.50 × 101 # | 2.75 × 103 ± 8.75 × 102 # | 7.50 × 102 ± 9.00 × 101 # | 1.26 × 105 ± 4.22 × 104 | 4.45 × 104 ± 4.50 × 103 | 49 # ± 10 |
2 | 6.00 × 103 ± 9.38 × 103 | 5.00 × 104 ± 2.27 × 103 # | 1.00 × 101 ± 0.00 # | 1.00 × 104 ± 1.89 × 103 | 7.50 × 103 ± 1.19 × 103 # | 2.50 × 105 ± 9.40 × 104 | 6.00 × 104 ± 9.00 × 103 # | 15,333 ± 577 | |
3 | 2.50 × 103 ± 5.00 × 102 | 3.48 × 104 ± 5.50 × 103 # | 1.00 × 101 ± 0.00 # | 1.00 × 104 ± 3.80 × 103 # | 1.75 × 103 ± 8.20 × 102 # | 7.05 × 104 ± 1.08 × 104 | 4.70 × 104 ± 8.09 × 103 # | 76,667 # ± 1155 | |
4 | 1.75 × 104 ± 1.26 × 104 | 1.08 × 105 ± 1.05 × 104 | 1.00 × 101 ± 0.00 # | 5.50 × 104 ± 5.70 × 103 | 5.00 × 103 ± 8.90 × 102 # | 1.68 × 105 ± 7.69 × 104 | 1.10 × 105 ± 8.50 × 104 | 30,333 ± 1528 |
Facade Coatings | Incubation Time (Day) | Specular Component | ΔL* | Δa* | Δb* | ΔE |
---|---|---|---|---|---|---|
1 | 0 | SCI | nt | nt | nt | nt |
SCE | nt | nt | nt | nt | ||
14 | SCI | −8.80 | 0.70 | −1.34 | 8.94 | |
SCE | −12.33 | 1.18 | −0.91 | 12.43 | ||
28 | SCI | −11.79 | 0.50 | −2.22 | 12.01 | |
SCE | −17.22 | 1.05 | −1.89 | 17.36 | ||
2 | 0 | SCI | nt | nt | nt | nt |
SCE | nt | nt | nt | nt | ||
14 | SCI | −13.63 | 0.93 | −3.14 | 14.01 | |
SCE | −18.66 | 1.49 | −1.96 | 18.82 | ||
28 | SCI | −8.42 | 0.83 | −2.48 | 8.82 | |
SCE | −9.25 | 0.92 | −2.63 | 9.67 | ||
3 | 0 | SCI | nt | nt | nt | nt |
SCE | nt | nt | nt | nt | ||
14 | SCI | −9.72 | 0.44 | −2.76 | 10.12 | |
SCE | −13.79 | 0.90 | −1.99 | 13.99 | ||
28 | SCI | −10.61 | 0.61 | −2.81 | 11.00 | |
SCE | −15.50 | 1.18 | −2.12 | 15.69 | ||
4 | 0 | SCI | nt | nt | nt | nt |
SCE | nt | nt | nt | nt | ||
14 | SCI | −10.93 | 0.94 | −1.90 | 11.14 | |
SCE | −15.38 | 1.46 | −0.71 | 15.48 | ||
28 | SCI | −7.87 | 0.99 | −1.21 | 8.03 | |
SCE | −10.73 | 1.39 | −0.58 | 10.84 |
Facade No. | Description | Visual Assessment | ΔE | ATP | |
---|---|---|---|---|---|
SCI | SCE | ||||
1 | Mineral facade coating | 0.99 | 0.94 | 0.93 | 1 |
2 | Mineral facade coating + primer + silicone paint | 0.99 | 0.86 | 0.76 | 0.04 |
3 | Silicone facade coating | 0.98 | 0.99 | 0.99 | 1 |
4 | Silicone facade coating + primer + silicone paint | 0.90 | 0.64 | 0.62 | 0.15 |
Strain | Equation | R2 |
---|---|---|
Alternaria alternata | y = 2.20 × 10−5x | 0.992 |
Aspergillus niger | y = 6.74 × 10−7x | 0.977 |
Aureobasidium melanogenum | y = 1.51 × 10−7x | 0.995 |
Cladosporium cladosporioides | y = 9.00 × 10−8x | 0.987 |
Fusarium sp. | y = 7.87 × 10−5x | 0.996 |
Penicillium citrinum | y = 7.00 × 10−7x | 0.996 |
Rhodotorula mucilaginosa | y = 5.74 × 10−7x | 0.999 |
No. | Facade Coatings | Tested Cycle (Years) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
5 # | Mineral facade coating | 0 | 62.5 | 63.75 | 75 | 75 | 75 | 75 |
6 # | Mineral facade coating + silicone paint | 0 | 51.25 | 52.5 | 57.5 | 57.5 | 57.5 | 57.5 |
7 * | Mineral facade coating + silicone paint B no. 1 | 0 | 0 | 0 | 0 | 0 | 1.5 | 1.5 |
8 * | Mineral facade coating + silicone paint B no. 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 * | Mineral facade coating + silicone paint B no. 3 | 0 | 10.25 | 21.5 | 10.25 | 21.25 | 40.5 | 40.5 |
10 # | Mineral facade coating + primer + silicone paint B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 # | Mineral facade coating + primer B + silicone paint B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 # | Silicone facade coating | 77.5 | 95 | 100 | 100 | 100 | 100 | 100 |
13 # | Silicone facade coating B no. 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 # | Silicone facade coating B no. 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 * | Silicone facade coating B no. 3 | 0 | 0 | 0 | 0 | 0 | 31.25 | 32.5 |
16 * | Special mineral facade coating no. 2+ silicone paint B no. 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 * | Special mineral facade coating no. 2+ silicone paint B no. 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 * | Special mineral facade coating no. 2+ primer + silicone paint B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
19 * | Special mineral facade coating no. 2+ primer B + silicone paint B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, J.; Komar, M.; Kata, I.; Szafran, K.; Gutarowska, B. Novel Method for Assessing the Protection Lifetime of Building Coatings against Fungi. Coatings 2023, 13, 2026. https://doi.org/10.3390/coatings13122026
Szulc J, Komar M, Kata I, Szafran K, Gutarowska B. Novel Method for Assessing the Protection Lifetime of Building Coatings against Fungi. Coatings. 2023; 13(12):2026. https://doi.org/10.3390/coatings13122026
Chicago/Turabian StyleSzulc, Justyna, Michał Komar, Iwona Kata, Krzysztof Szafran, and Beata Gutarowska. 2023. "Novel Method for Assessing the Protection Lifetime of Building Coatings against Fungi" Coatings 13, no. 12: 2026. https://doi.org/10.3390/coatings13122026
APA StyleSzulc, J., Komar, M., Kata, I., Szafran, K., & Gutarowska, B. (2023). Novel Method for Assessing the Protection Lifetime of Building Coatings against Fungi. Coatings, 13(12), 2026. https://doi.org/10.3390/coatings13122026