Development of Multicomponent Nanostructured Nitride Coatings to Protect against Corrosion Products from Titanium Alloy
Abstract
:1. Introduction
2. Materials and Methods
- Thermal activation (etching) in gas (argon) and metal plasma;
- Deposition of coatings: During coating deposition, the arc current of the titanium and zirconium cathodes was, respectively, 75 and 80 A. The arc current of Zr-Nb (50:50%) and Zr-Hf (50:50%) cathodes was, respectively, 85 and 90 A. The deposition was carried out under the following parameters, and they were identical for all processes: nitrogen pressure of 0.42 Pa; voltage for the substrate at −150 V; and tool rotation speed of 0.7 rpm.
- Change in sample mass during the test ∆m, mg∆m = m0 − m1,
- Change in the density of the sample (thickness of the coating of the formed corrosion layer) Spr, mg/cm2Spr = ∆mi/A,
3. Results
3.1. Structure and Composition of Coatings
3.2. Accelerated Testing in Aggressive Environments
3.3. Forced Electric Potential Tests
3.4. Long-Term Testing under Conditions Simulating Real-Life Operations
4. Conclusions
- The Ti-6Al-4V substrate has a crystalline structure, including grains with high (up to 24 at.%) and low (less than 2 at.%) vanadium content. Thus, during the deposition process, the coating can form adhesive bonds with local areas of the substrate that have quite different compositions. This must be considered when selecting the composition of the adhesive layer. The diffusion of the adhesion-layer elements of the coating into the substrate takes place to a depth of up to 200 nm. The diffusion of titanium alloy elements (primarily titanium and vanadium) into the adhesive sublayer of the coating up until a depth of 100 nm is also observed. These interdiffusion processes can increase the strength of the adhesive bond.
- The use of a Zr-Nb cathode leads to a sharp decrease in the lattice parameter of the (Zr,Nb)N solid solution in the (Zr,Nb)N and (Zr,Ti,Nb)N coatings, as well as the TiN-based solid solution in the (Zr) coating, Ti,Nb)N.
- Forced electric potential tests showed the high corrosion resistance of ZrN nitride coatings and coatings based on ZrN solid solutions in 3% NaCl solutions. All these coatings possess lower-corrosion-rate TiO2 magnetron coatings, which are frequently used for medical implant protection. The actual change in the mass of samples during corrosion tests in acidic (H2SO4), alkaline (NaOH) or neutral (NaCl) media at elevated temperature is insignificant; fluctuations in some cases are on the verge of a systematic error of analytical balances and can be caused by the adsorption of ions, the microcrystals of salt and water vapor on the surface of samples.
- The studied protective coatings based on d-element nitrides have very high anti-corrosion characteristics and practically do not react with body fluids.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velu, R.; Calais, T.; Jayakumar, A.; Raspall, F. A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials 2020, 13, 92. [Google Scholar] [CrossRef]
- Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghani, S.A.C.; Kurniawan, T.; Ismail, M.H.; Ibrahim, M.H.I. Study of corrosion in biocompatible metals for implants: A review. J. Alloys Compd. 2017, 701, 698–715. [Google Scholar] [CrossRef]
- Metel, A.S.; Grigoriev, S.N.; Melnik, Y.A.; Prudnikov, V.V. Glow discharge with electrostatic confinement of electrons in a chamber bombarded by fast electrons. Plasma Phys. Rep. 2011, 37, 628–637. [Google Scholar] [CrossRef]
- Grigoriev, S.; Volosova, M.; Fyodorov, S.; Lyakhovetskiy, M.; Seleznev, A. DLC-coating application to improve the durability of ceramic tools. J. Mater. Eng. Perform. 2019, 28, 4415–4426. [Google Scholar] [CrossRef]
- Jianxin, D.; Jianhua, L.; Jinlong, Z.; Wenlong, S.; Ming, N. Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes. Wear 2008, 264, 298–307. [Google Scholar] [CrossRef]
- Azibi, M.; Saoula, N.; Madaoui, N.; Aknouche, H. Effects of Nitrogen Content on the Structural, Mechanical, and Corrosion Properties of ZrN Thin Films Grown on AISI 316L by Radiofrequency Magnetron Sputtering. Cryst. Res. Technol. 2021, 56, 2100096. [Google Scholar] [CrossRef]
- Zambrano, D.F.; Hernández-Bravo, R.; Ruden, A.; Espinosa-Arbelaez, D.G.; González-Carmona, J.M.; Mujica, V. Mechanical, tribological and electrochemical behavior of Zr-based ceramic thin films for dental implants. Ceram. Int. 2023, 49, 2102–2114. [Google Scholar] [CrossRef]
- Musil, J.; Zenkin, S.; Kos, Š.; Čerstvý, R.; Haviar, S. Flexible hydrophobic ZrN nitride films. Vacuum 2016, 131, 34–38. [Google Scholar] [CrossRef]
- Huang, J.-H.; Chen, Y.-H.; Wang, A.-N.; Yu, G.-P.; Chen, H. Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method. Surf. Coat. Technol. 2014, 258, 211–218. [Google Scholar] [CrossRef]
- Zhu, F.; Zhu, K.; Hu, Y.; Ling, Y.; Wang, D.; Peng, H.; Xie, Z.; Yang, R.; Zhang, Z. Microstructure and Young’s modulus of ZrN thin film prepared by dual ion beam sputtering deposition. Surf. Coat. Technol. 2019, 374, 997–1005. [Google Scholar] [CrossRef]
- Huang, J.-H.; Kuo, K.-L.; Yu, G.-P. Oxidation behavior and corrosion resistance of vacuum annealed ZrN-coated stainless steel. Surf. Coat. Technol. 2019, 358, 308–319. [Google Scholar] [CrossRef]
- Yu, S.; Zeng, Q.; Oganov, A.R.; Frapper, G.; Huang, B.; Niu, H.; Zhang, L. First-principles study of Zr-N crystalline phases: Phase stability, electronic and mechanical properties. RSC Adv. 2017, 7, 4697–4703. [Google Scholar] [CrossRef]
- Ningshen, S.; Gupta, R.K.; Kamal, S.; Chawla, V.; Chandra, R.; Mudali, U.K. Corrosion study of ZrN deposited on 304L stainless steel. Surf. Eng. 2013, 29, 264–270. [Google Scholar] [CrossRef]
- Ramoul, C.; Beliardouh, N.E.; Bahi, R.; Nouveau, C.; Djahoudi, A.; Walock, M.J. Surface performances of PVD ZrN coatings in biological environments. Tribol. Mater. Surf. Interfaces 2019, 13, 12–19. [Google Scholar] [CrossRef]
- Corona-Gomez, J.; Sandhi, K.K.; Yang, Q. Wear and corrosion behaviour of nanocrystalline TaN, ZrN, and TaZrN coatings deposited on biomedical grade CoCrMo alloy. J. Mech. Behav. Biomed. 2022, 130, 105228. [Google Scholar] [CrossRef]
- Tarek, A.H.J.; Lai, C.W.; Razak, B.A.; Wong, Y.H. Physical Vapour Deposition of Zr-Based Nano Films on Various Substrates: A Review. Curr. Nanosci. 2022, 18, 347–366. [Google Scholar] [CrossRef]
- Ul-Hamid, A. Microstructure, properties and applications of Zr-carbide, Zr-nitride and Zr-carbonitride coatings: A review. Mater. Adv. 2020, 1, 1012–1037. [Google Scholar] [CrossRef]
- Kakanakov, R.; Bahchedjiev, H.; Kolaklieva, L.; Cholakova, T.; Evtimova, S.; Polyhroniadis, E.; Pavlidou, E.; Tsiaoussis, I. Investigation of ZrN hard coatings obtained by cathodic arc evaporation. Solid State Phenom. 2010, 159, 113–116. [Google Scholar]
- Fernandez, D.A.R.; Brito, B.S.S.; Santos, I.A.D.; Soares, V.F.D.; Terto, A.R.; de Oliveira, G.B.; Hubler, R.; Batista, W.W.; Tentardini, E.K. Effect of hafnium contaminant present in zirconium targets on sputter deposited ZrN thin films. Nucl. Instrum. Methods B 2020, 462, 90–94. [Google Scholar] [CrossRef]
- Krysina, O.V.; Shugurov, V.V.; Prokopenko, N.A.; Petrikova, E.A.; Tolkachev, O.S.; Denisova, Y.A. Cathodic Arc Deposition of ZrNbN Coating. Russ. Phys. J. 2019, 62, 956–961. [Google Scholar] [CrossRef]
- Wu, Z.T.; Qi, Z.B.; Jiang, W.F.; Wang, Z.C.; Liu, B. Influence of niobium addition on microstructure, mechanical properties and oxidation resistance of ZrN coatings. Thin. Solid Films 2014, 570, 256–261. [Google Scholar] [CrossRef]
- Kanoun, M.B.; Goumri-Said, S. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys. Surf. Coat. Technol. 2014, 255, 140–145. [Google Scholar] [CrossRef]
- Atar, E.; Çimenoǧlu, H.; Kayali, E.S. Fretting wear of ZrN and Zr(21% Hf)N coatings. Key Eng. Mater. 2004, 264–268, 477–480. [Google Scholar]
- Atar, E.; Kayali, E.S.; Cimenoglu, H. Reciprocating wear behaviour of (Zr, Hf)N coatings. Wear 2004, 257, 633–639. [Google Scholar] [CrossRef]
- Wu, Z.T.; Qi, Z.B.; Zhang, D.F.; Wang, Z.C. Microstructure, mechanical properties and oxidation resistance of (Zr, Hf)Nx coatings by magnetron co-sputtering. Surf. Coat. Technol. 2015, 276, 219–227. [Google Scholar] [CrossRef]
- Atar, E.; Kayali, E.S.; Cimenoglu, H. The effect of oxidation on the structure and hardness of (Zr, Hf)N coatings. Defect. Diffus. Forum 2010, 297–301, 1395–1399. [Google Scholar]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Andreev, N.; Bublikov, J.; Seleznev, A.; Kutina, N. Influence of Mo content on the properties of multilayer nanostructured coatings based on the (Mo,Cr,Al)N system. Tribol. Int. 2022, 174, 107741. [Google Scholar] [CrossRef]
- Krysina, O.V.; Ivanov, Y.F.; Prokopenko, N.A.; Shugurov, V.V.; Petrikova, E.A.; Denisova, Y.A.; Tolkachev, O.S. Influence of Nb addition on the structure, composition and properties of single-layered ZrN-based coatings obtained by vacuum-arc deposition method. Surf. Coat. Technol. 2020, 387, 125555. [Google Scholar] [CrossRef]
- Sobol’, O.V.; Andreev, A.A.; Grigoriev, S.N.; Gorban’, V.F.; Volosova, M.A.; Aleshin, S.V.; Stolbovoi, V.A. Effect of high-voltage pulses on the structure and properties of titanium nitride vacuum-arc coatings. Met. Sci. Heat Treat. 2012, 54, 195–203. [Google Scholar] [CrossRef]
- Sobol’, O.V.; Andreev, A.A.; Grigoriev, S.N.; Gorban’, V.F.; Volosova, M.A.; Aleshin, S.V.; Stolbovoy, V.A. Physical characteristics, structure and stress state of vacuum-arc TiN coating, deposition on the substrate when applying high-voltage pulse during the deposition. Probl. Atom. Sci. Technol. 2011, 4, 174–177. [Google Scholar]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Bublikov, J. Investigation of wear mechanisms for the rake face of a cutting tool with a multilayer composite nanostructured Cr-CrN-(Ti,Cr,Al,Si)N coating in high-speed steel turning. Wear 2019, 438–439, 203069. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, N.; Li, D.J.; Dong, L.; Gu, H.Q.; Wan, R.X.; Sun, X. The synthesis of Zr-Nb-N nanocomposite coating prepared by multi-target magnetron co-sputtering. Nucl. Instrum. Methods B 2013, 307, 119–122. [Google Scholar] [CrossRef]
- Hodak, S.K.; Seppänen, T.; Tungasmita, S. Growth of (Zr,Ti)N thin films by ion-assisted dual D.C. reactive magnetron sputtering. Solid State Phenom. 2008, 136, 133–138. [Google Scholar]
- Yan, P.; Deng, J.; Wu, Z.; Li, S.; Xing, Y.; Zhao, J. Friction and wear behavior of the PVD (Zr,Ti)N coated cemented carbide against 40Cr hardened steel. Int. J. Refract. Met. H 2012, 35, 213–220. [Google Scholar] [CrossRef]
- Yan, P.; Deng, J.; Rong, Y. Performance of PVD (Zr,Ti)N-coated cemented carbide inserts in cutting processes. Int. J. Adv. Manuf. Technol. 2014, 73, 1363–1371. [Google Scholar] [CrossRef]
- Knotek, O.; Barimani, A. On spinodal decomposition in magnetron-sputtered (Ti, Zr) nitride and carbide thin films. Thin Solid Films 1989, 174, 51–56. [Google Scholar] [CrossRef]
- El-Hossary, F.M.; El-Rahman, A.M.A.; Raaif, M.; Qu, S.; Zhao, J.; Maitz, M.F.; El-Kassem, M.A. Effect of DC-pulsed magnetron sputtering power on structural, tribological and biocompatibility of Ti-Zr-N thin film. Appl. Phy. A—Mater. 2018, 124, 42. [Google Scholar] [CrossRef]
- Lin, M.-T.; Wan, C.-H.; Wu, W. Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti,Zr)N thin films as Metal bipolar plate for unitized regenerative fuel cell. Thin Solid Films 2013, 544, 162–169. [Google Scholar] [CrossRef]
- Jeon, S.; Ha, J.; Choi, Y.; Jo, I.; Lee, H. Interfacial stability and diffusion barrier ability of Ti 1-x Zr x N coatings by pulsed laser thermal shock. Appl. Surf. Sci. 2014, 320, 602–608. [Google Scholar] [CrossRef]
- Uglov, V.V.; Anishchik, V.M.; Khodasevich, V.V.; Prikhodko, Z.L.; Zlotski, S.V.; Abadias, G.; Dub, S.N. Structural characterization and mechanical properties of Ti-Zr-N coatings, deposited by vacuum arc. Surf. Coat. Technol. 2004, 180–181, 519–525. [Google Scholar] [CrossRef]
- Uglov, V.V.; Anishchik, V.M.; Zlotski, S.V.; Abadias, G.; Dub, S.N. Structural and mechanical stability upon annealing of arc-deposited Ti-Zr-N coatings. Surf. Coat. Technol. 2008, 202, 2394–2398. [Google Scholar] [CrossRef]
- Maksakova, O.V.; Grankin, S.S.; Bondar, O.V.; Kravchenko, Y.O.; Yeskermesov, D.K.; Prokopenko, A.V.; Erdybaeva, N.K.; Zhollybekov, B. Nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method: Structure and properties. J. Nano-Electron. Phys. 2015, 7, 04098. [Google Scholar]
- Maksakova, O.V.; Kylyshkanov, M.K.; Simoẽs, S. DSC Investigations of the Effect of Annealing Temperature on the Phase Transformation Behaviour in (Zr-Ti-Nb)N Coatings Deposited by CA-PVD. In Advances in Thin Films, Nanostructured Materials, and Coatings; Lecture Notes in Mechanical Engineering; Pogrebnjak, A.D., Novosad, V., Eds.; Springer: Singapore, 2019; pp. 41–49. [Google Scholar]
- Pogrebnjak, A.; Maksakova, O.; Kozak, C.; Koltunowicz, T.N.; Grankin, S.; Bondar, O.; Eskermesov, D.; Drozdenko, A.; Petrov, S.; Erdybaeva, N. Physical and mechanical properties of nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method. Prz. Elektrotechniczn 2016, 2016, 180–183. [Google Scholar] [CrossRef]
- Beresnev, V.M.; Sobol, O.V.; Grankin, S.S.; Nemchenko, U.S.; Novikov, V.Y.; Bondar, O.V.; Belovol, K.O.; Maksakova, O.V.; Eskermesov, D.K. Physical and mechanical properties of (Ti-Zr-Nb)N coatings fabricated by vacuum-arc deposition. Inorg. Mater. Appl. Res. 2016, 7, 388–394. [Google Scholar] [CrossRef]
- Klostermann, H.; Fietzke, F.; Labitzke, R.; Modes, T.; Zywitzki, O. Zr-Nb-N hard coatings deposited by high power pulsed sputtering using different pulse modes. Surf. Coat. Technol. 2009, 204, 1076–1080. [Google Scholar] [CrossRef]
- Krysina, O.V.; Prokopenko, N.A.; Ivanov, Y.F.; Tolkachev, O.S.; Shugurov, V.V.; Petrikova, E.A. Multi-layered gradient (Zr,Nb)N coatings deposited by the vacuum-arc method. Surf. Coat. Technol. 2020, 393, 125759. [Google Scholar] [CrossRef]
- Trujillo, O.A.; Castillo, H.A.; Agudelo, L.C.; Devia, A. Chemical and morphological properties of (Ti-Zr)N thin films grown in an arc pulsed system. Microelectron. J. 2008, 39, 1379–1381. [Google Scholar] [CrossRef]
- Uglov, V.V.; Anishchik, V.M.; Zlotski, S.V.; Abadias, G. The phase composition and stress development in ternary Ti-Zr-N coatings grown by vacuum arc with combining of plasma flows. Surf. Coat. Technol. 2006, 200, 6389–6394. [Google Scholar] [CrossRef]
- Sridar, S.; Kumar, R.; Hari Kumar, K.C. Thermodynamic modelling of Ti-Zr-N system. Calphad 2017, 56, 102–107. [Google Scholar] [CrossRef]
- Huang, J.-H.; Ting, I.-S.; Zheng, T.-W. Evaluation of stress and energy relief efficiency of ZrN/Ti and ZrN/Zr. Surf. Coat. Technol. 2022, 434, 128224. [Google Scholar] [CrossRef]
- Kuznetsova, T.A.; Andreev, M.A.; Markova, L.V. Research of wear resistance of the combined vacuum electroarc coatings on the basis of ZrHf. Trenie i Iznos 2005, 26, 521–529. (In Russian) [Google Scholar]
- Vereschaka, A.; Milovich, F.; Andreev, N.; Seleznev, A.; Alexandrov, I.; Muranov, A.; Mikhailov, M.; Tatarkanov, A. Comparison of properties of ZrHf-(Zr,Hf)N-(Zr,Hf,Cr,Mo,Al)N and Ti-TiN-(Ti,Cr,Al)N nanostructured multilayer coatings and cutting properties of tools with these coatings during turning of nickel alloy. J. Manuf. Process. 2023, 88, 184–201. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Tabakov, V.; Sitnikov, N.; Andreev, N.; Bublikov, J.; Sotova, C. Investigation of the properties of Ti-TiN-(Ti,Al,Nb,Zr)N composite coating and its efficiency in increasing wear resistance of metal cutting tools. Surf. Coat. Technol. 2021, 421, 127432. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Uglov, V.; Milovich, F.; Tabakov, V.; Cherenda, N.; Andreev, N.; Migranov, M. Influence of the tribological properties of the Zr,Hf-(Zr,Hf)N-(Zr,Me,Hf,Al)N coatings (where Me is Mo, Ti, or Cr) with a nanostructured wear-resistant layer on their wear pattern during turning of steel. Wear 2023, 518–519, 204624. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Y.; Zhang, W.; Zhao, Q.; Lu, J.; Huo, W.; Zhang, Y. A novel heterogeneous network structure titanium matrix composite with a combination of strength and ductility. Mat. Sci. Eng. A—Struct. 2022, 840, 142954. [Google Scholar] [CrossRef]
- Estrin, Y.; Beygelzimer, Y.; Kulagin, R.; Gumbsch, P.; Fratzl, P.; Zhu, Y.; Hahn, H. Architecturing materials at mesoscale: Some current trends. Mater. Res. Lett. 2021, 9, 399–421. [Google Scholar] [CrossRef]
- Semenova, I.V.; Florianovich, G.M.; Khoroshilov, A.V. Corrosion and Corrosion Protection; Fizmatlit: Moscow, Russia, 2002; p. 334. (In Russian) [Google Scholar]
- Montemor, M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Gece, G. The use of quantum chemical methods in corrosion inhibitor studies. Corros. Sci. 2008, 50, 2981–2992. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Fedorov, S.V.; Okunkova, A.A.; Pivkin, P.M.; Peretyagin, P.Y.; Ershov, A. Development of DLC-Coated Solid SiAlON/TiN Ceramic End Mills for Nickel Alloy Machining: Problems and Prospects. Coatings 2021, 11, 532. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Andreev, N.; Bublikov, J.; Kutina, N. Investigation of the properties of the Cr,Mo-(Cr,Mo,Zr,Nb)N-(Cr,Mo,Zr,Nb,Al)N multilayer composite multicomponent coating with nanostructured wear-resistant layer. Wear 2021, 468–469, 203597. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Uglov, V.; Milovich, F.; Cherenda, N.; Andreev, N.; Migranov, M.; Seleznev, A. Influence of tribological properties of Zr-ZrN-(Zr,Cr,Al)N and Zr-ZrN-(Zr,Mo,Al)N multilayer nanostructured coatings on the cutting properties of coated tools during dry turning of Inconel 718 alloy. Wear 2023, 512–513, 204521. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Mustafaev, E. Specific features of the structure and properties of arc-PVD coatings depending on the spatial arrangement of the sample in the chamber. Vacuum 2022, 200, 111047. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Sotova, C. Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings. Vacuum 2022, 202, 111144. [Google Scholar] [CrossRef]
- GOST 9.909-86; Unified System of Corrosion and Ageing Protection. Metals, Alloys, Metal and Non-Metal Inorganic Coatings. Test Methods at Climatic Test Stations. IPK Izdatelstvo Standartov: Moscow, Russia, 1999; 11p.
- Prokhorov, V.M.; Gladkikh, E.V.; Ivanov, L.A.; Aksenenkov, V.V.; Kirichenko, A.N. Composition, structure, and mechanical properties of (Ti-Hf)N-coatings on titanium alloy. Tech. Phys. 2019, 64, 654–659. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Lapitskaya, V.; Warcholinski, B.; Gilewicz, A.; Chizhik, S. Friction and Wear of ZrN Coatings under Conditions of Microcontact Using Atomic-Force Microscopy. J. Frict. Wear 2020, 41, 287–294. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Lapitskaya, V.; Khabarava, A.; Chizhik, S.; Warcholinski, B.; Gilewicz, A. The influence of nitrogen on the morphology of ZrN coatings deposited by magnetron sputtering. Appl. Surf. Sci. 2020, 522, 146508. [Google Scholar] [CrossRef]
- Mei, A.B.; Howe, B.M.; Zhang, C.; Sardela, M.; Eckstein, J.N.; Hultman, L.; Rockett, A.; Petrov, I.; Greene, J.E. Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering. J. Vac. Sci. Technol. A 2013, 31, 061516. [Google Scholar] [CrossRef]
- Singh, A.; Kuppusami, P.; Khan, S.; Sudha, C.; Thirumurugesan, R.; Ramaseshan, R.; Divakar, R.; Mohandas, E.; Dash, S. Influence of nitrogen flow rate on microstructural and nanomechanical properties of Zr-N thin films prepared by pulsed DC magnetron sputtering. Appl. Surf. Sci. 2013, 280, 117–123. [Google Scholar] [CrossRef]
- Saleh, A.S. Study of deposition temperature effect on defect density in ZrN thin films by positron annihilation. Procedia Eng. 2014, 75, 34–38. [Google Scholar] [CrossRef]
Coating | Concentration of Elements in the Coating, at. % | ||||
---|---|---|---|---|---|
Ti | Zr | Nb | Hf | N | |
ZrN | 0.17 | 48.61 | - | - | 51.22 |
ZrTiN | 22.15 | 30.53 | - | - | 47.32 |
ZrNbN | - | 23.50 | 23.41 | - | 53.10 |
ZrHfN | - | 43.52 | - | 5.72 | 50.77 |
ZrNbTiN | 36.99 | 7.47 | 7.51 | - | 48.03 |
ZrHfTiN | 22.53 | 26.60 | - | 3.38 | 47.48 |
Uncoated Ti Alloy | |||
---|---|---|---|
Time, min | NaCl | NaOH | H2SO4 |
30 | −2.2 | −0.4 | −1.9 |
60 | −2.6 | −1.7 | 0.2 |
90 | −2.8 | −1.9 | −0.6 |
(Zr,Nb)N | |||
Time, min | NaCl | NaOH | H2SO4 |
30 | 10.4 | 2.4 | 17.7 |
60 | 12.1 | 32.8 | −1.5 |
90 | 12.3 | 3.4 | 3.0 |
(Zr,Hf)N | |||
Time, min | NaCl | NaOH | H2SO4 |
30 | 30.0 | 0.0 | 1.7 |
60 | 10.0 | 6.7 | 10.1 |
90 | 20.0 | 3.9 | 3.7 |
(Zr,Ti)N | |||
Time, min | NaCl | NaOH | H2SO4 |
30 | 3.4 | 4.5 | 0.0 |
60 | 0.6 | 1.3 | 0.0 |
90 | 1.3 | 2.6 | 1.1 |
ZrN | |||
Time, min | NaCl | NaOH | H2SO4 |
30 | 2.8 | 5.2 | 0.4 |
60 | −0.4 | 1.7 | −0.2 |
90 | −1.1 | 1.9 | −0.6 |
(Zr,Hf,Ti)N | |||
Time, min | NaCl | NaOH | H2SO4 |
30 | 0.4 | 2.0 | 1.1 |
60 | 0.6 | 0.2 | 1.1 |
90 | 0.2 | 2.2 | −0.2 |
(Zr,Nb,Ti)N | |||
Time, min | NaCl | NaOH | H2SO4 |
30 | 0.0 | 1.5 | 0.2 |
60 | −0.6 | 1.1 | −1.1 |
90 | −0.2 | 0.7 | 0.4 |
Material | icor |
---|---|
Uncoated Ti alloy | 3.9 × 10−8 |
TiN | 3.0 × 10−8 |
ZrN | 3.5 × 10−9 |
CrN | 1.3 × 10−8 |
YN | 2.2 × 10−5 |
(Zr,Nb)N | 1.0 × 10−8 |
Material | icorr |
---|---|
Uncoated Ti alloy | 3.9 × 10−8 |
(Zr,Nb)N | 1.0 × 10−8 |
(Zr,Hf)N | 1.4 × 10−8 |
(Zr,Ti)N | 7.9 × 10−9 |
ZrN | 3.5 × 10−9 |
(Zr,Hf,Ti)N | 9.2 × 10−9 |
(Zr,Nb,Ti)N | 2.6 × 10−8 |
TiO2 | 1.4 × 10−7 |
Material | ∆m, g/cm2 × 10−4 |
---|---|
Uncoated Ti alloy | 1.36 |
(Zr,Ti)N | 0.01 |
(Zr,Hf)N | 4.20 |
(Zr,Nb,Ti)N | 3.05 |
ZrN | 0.42 |
(Zr,Hf,Ti)N | 0.13 |
(Zn,Nb)N | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vereschaka, A.; Cherenda, N.; Sotova, C.; Uglov, V.; Reva, O.; Basalai, A.; Isobello, A.; Baranova, N. Development of Multicomponent Nanostructured Nitride Coatings to Protect against Corrosion Products from Titanium Alloy. Coatings 2023, 13, 2028. https://doi.org/10.3390/coatings13122028
Vereschaka A, Cherenda N, Sotova C, Uglov V, Reva O, Basalai A, Isobello A, Baranova N. Development of Multicomponent Nanostructured Nitride Coatings to Protect against Corrosion Products from Titanium Alloy. Coatings. 2023; 13(12):2028. https://doi.org/10.3390/coatings13122028
Chicago/Turabian StyleVereschaka, Alexey, Nikolai Cherenda, Catherine Sotova, Vladimir Uglov, Olga Reva, Anna Basalai, Alexander Isobello, and Natalia Baranova. 2023. "Development of Multicomponent Nanostructured Nitride Coatings to Protect against Corrosion Products from Titanium Alloy" Coatings 13, no. 12: 2028. https://doi.org/10.3390/coatings13122028
APA StyleVereschaka, A., Cherenda, N., Sotova, C., Uglov, V., Reva, O., Basalai, A., Isobello, A., & Baranova, N. (2023). Development of Multicomponent Nanostructured Nitride Coatings to Protect against Corrosion Products from Titanium Alloy. Coatings, 13(12), 2028. https://doi.org/10.3390/coatings13122028