Nanostructure Engineering of Alloy-Based Anode Materials with Different Dimensions for Sodium/Potassium Storage
Abstract
:1. Introduction
2. Characteristics and Challenges
3. Nanostructural Design
3.1. 0D Materials: Nanodots, Nanoparticles, Nanospheres
3.2. 1D Materials: Nanowires, Nanorods, Nanofibers
3.3. 2D Materials: Nanosheets, Nanoslices
3.4. 3D Materials: Nanoframeworks, Porous Structure
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Zhang, J.; Pollard, T.P.; Li, Q.; Tan, S.; Hou, S.; Wan, H.; Chen, F.; He, H.; Hu, E.; et al. Electrolyte Design for Li-Ion Batteries under Extreme Operating Conditions. Nature 2023, 614, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Li, K.; Zhao, G.; Chen, Z. Perspectives and Challenges for Future Lithium-Ion Battery Control and Management. eTransportation 2023, 18, 100260. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Huang, Y.; Bhushan Gopaluni, R.; Cao, Y.; Heere, M.; Mühlbauer, M.J.; Mereacre, L.; Dai, H.; Liu, X.; et al. Data-Driven Capacity Estimation of Commercial Lithium-Ion Batteries from Voltage Relaxation. Nat. Commun. 2022, 13, 2261. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Deng, Z.; Zhong, Y.; Xu, M.; Li, S.; Liu, X.; Zhou, Y.; Huang, K.; Shen, Y.; Huang, Y. Progress and Challenges of Prelithiation Technology for Lithium-Ion Battery. Carbon Energy 2022, 4, 1107–1132. [Google Scholar] [CrossRef]
- Du, H.; Kang, Y.; Li, C.; Zhao, Y.; Wozny, J.; Li, T.; Tian, Y.; Lu, J.; Wang, L.; Kang, F.; et al. Easily Recyclable Lithium-Ion Batteries: Recycling-Oriented Cathode Design Using Highly Soluble LiFeMnPO4 with a Water-Soluble Binder. Battery Energy 2023, 2, 20230011. [Google Scholar] [CrossRef]
- Hou, J.; Ma, X.; Fu, J.; Vanaphuti, P.; Yao, Z.; Liu, Y.; Yang, Z.; Wang, Y. A Green Closed-Loop Process for Selective Recycling of Lithium from Spent Lithium-Ion Batteries. Green Chem. 2022, 24, 7049–7060. [Google Scholar] [CrossRef]
- Fornillo, B.; Lampis, A. From the Lithium Triangle to the Latin American Quarry: The Shifting Geographies of de-Fossilisation. Extr. Ind. Soc. 2023, 15, 101326. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, X.; Lu, B.; Zhou, J. Concave Engineering of Hollow Carbon Spheres toward Advanced Anode Material for Sodium/Potassium-Ion Batteries. Adv. Energy Mater. 2022, 12, 2202851. [Google Scholar] [CrossRef]
- Huang, Z.-X.; Gu, Z.-Y.; Heng, Y.-L.; Huixiang Ang, E.; Geng, H.-B.; Wu, X.-L. Advanced Layered Oxide Cathodes for Sodium/Potassium-Ion Batteries: Development, Challenges and Prospects. Chem. Eng. J. 2023, 452, 139438. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Wang, Y.; Xu, T.; Chang, P. Research Progress on Carbon Materials as Negative Electrodes in Sodium- and Potassium-Ion Batteries. Carbon Energy 2022, 4, 1182–1213. [Google Scholar] [CrossRef]
- Hu, J.; Hong, Y.; Guo, M.; Hu, Y.; Tang, W.; Xu, S.; Jia, S.; Wei, B.; Liu, S.; Fan, C.; et al. Emerging Organic Electrodes for Na-Ion and K-Ion Batteries. Energy Storage Mater. 2023, 56, 267–299. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Z.; Eloi, J.-C.; Titirici, M.-M.; Eichhorn, S.J. Ice-Templated, Sustainable Carbon Aerogels with Hierarchically Tailored Channels for Sodium- and Potassium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2110862. [Google Scholar] [CrossRef]
- Mohan, I.; Raj, A.; Shubham, K.; Lata, D.B.; Mandal, S.; Kumar, S. Potential of Potassium and Sodium-Ion Batteries as the Future of Energy Storage: Recent Progress in Anodic Materials. J. Energy Storage 2022, 55, 105625. [Google Scholar] [CrossRef]
- Bodart, J.; Eshraghi, N.; Sougrati, M.T.; Boschini, F.; Lippens, P.-E.; Vertruyen, B.; Mahmoud, A. From Na2FePO4F/CNT to NaKFePO4F/CNT as Advanced Cathode Material for K-Ion Batteries. J. Power Sources 2023, 555, 232410. [Google Scholar] [CrossRef]
- Yao, K.; Wu, M.; Chen, D.; Liu, C.; Xu, C.; Yang, D.; Yao, H.; Liu, L.; Zheng, Y.; Rui, X. Vanadium Tetrasulfide for Next-Generation Rechargeable Batteries: Advances and Challenges. Chem. Rec. 2022, 22, 202200117. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, Q.; Zhao, Y.; Mu, D.; Tan, G.; Gao, H.; Li, L.; Chen, R.; Wu, F. Progress on Fe-Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium-Ion Batteries. Small Methods 2022, 6, 2200555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Li, Z.; Wang, Y.; Wang, S.; Dong, X.; Wang, Y. All-Climate Aqueous Na-Ion Batteries Using “Water-in-Salt” Electrolyte. Sci. Bull. 2022, 67, 161–170. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Huang, Z.-X.; Liu, Y.-N.; Su, M.-Y.; Li, K.; Wu, X.-L. Tuning Oxygen Release of Sodium-Ion Layered Oxide Cathode through Synergistic Surface Coating and Doping. J. Colloid Interface Sci. 2023, 650, 742–751. [Google Scholar] [CrossRef]
- Guo, J.-Z.; Zhang, H.-X.; Gu, Z.-Y.; Du, M.; Lü, H.-Y.; Zhao, X.-X.; Yang, J.-L.; Li, W.-H.; Kang, S.; Zou, W.; et al. Heterogeneous NASICON-Type Composite as Low-Cost, High-Performance Cathode for Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2209482. [Google Scholar] [CrossRef]
- Chang, C.-B.; Tuan, H.-Y. Recent Progress on Sb- and Bi-Based Chalcogenide Anodes for Potassium-Ion Batteries. Chem. Asian J. 2022, 17, e202200170. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Z.; Xie, G.; Guo, Z.; Wang, S.; Zhou, J.; Xie, X.; Sun, B.; Guo, S.; Wang, G. High-Efficiency Cathode Potassium Compensation and Interfacial Stability Improvement Enabled by Dipotassium Squarate for Potassium-Ion Batteries. Energy Environ. Sci. 2022, 15, 3015–3023. [Google Scholar] [CrossRef]
- Gabriel, E.; Hou, D.; Lee, E.; Xiong, H. Multiphase Layered Transition Metal Oxide Positive Electrodes for Sodium Ion Batteries. Energy Sci. Eng. 2022, 10, 1672–1705. [Google Scholar] [CrossRef]
- Liang, X.; Sun, Y.-K. A Novel Pentanary Metal Oxide Cathode with P2/O3 Biphasic Structure for High-Performance Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2206154. [Google Scholar] [CrossRef]
- Nathan, M.G.T.; Yu, H.; Kim, G.-T.; Kim, J.-H.; Cho, J.S.; Kim, J.; Kim, J.-K. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries. Adv. Sci. 2022, 9, 2105882. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Xia, F.; Xu, L.; Wang, X.; Meng, J.; Wang, H.; Zhang, X.; Geng, L.; Wu, J.; Mai, L. Suppressing the Jahn–Teller Effect in Mn-Based Layered Oxide Cathode toward Long-Life Potassium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2108244. [Google Scholar] [CrossRef]
- Zhang, K.-Y.; Gu, Z.-Y.; Ang, E.H.; Guo, J.-Z.; Wang, X.-T.; Wang, Y.; Wu, X.-L. Advanced Polyanionic Electrode Materials for Potassium-Ion Batteries: Progresses, Challenges and Application Prospects. Mater. Today 2022, 54, 189–201. [Google Scholar] [CrossRef]
- Sun, X.; Li, Z.; Liu, Z.; Lv, X.; Shi, K.; Chen, R.; Wu, F.; Li, L. A New Candidate in Polyanionic Compounds for Potassium Ion Battery Anode: MXene Derived Carbon Coated π-Ti2O(PO4)2. Adv. Funct. Mater. 2023, 33, 2300125. [Google Scholar] [CrossRef]
- Xiao, L.; Ji, F.; Zhang, J.; Chen, X.; Fang, Y. Doping Regulation in Polyanionic Compounds for Advanced Sodium-Ion Batteries. Small 2023, 19, 2205732. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, W.; Liu, Q.; Wang, J.; Chou, S.; Liu, H.; Dou, S. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. Adv. Mater. 2022, 34, 2108384. [Google Scholar] [CrossRef]
- Li, Z.; Ozdogru, B.; Bal, B.; Bowden, M.; Choi, A.; Zhang, Y.; Wang, H.; Murugesan, V.; Pol, V.G.; Çapraz, Ö.Ö. The Role of Transition Metals on Chemo-Mechanical Instabilities in Prussian Blue Analogues For K-Ion Batteries: The Case Study on KNHCF Versus KMHCF. Adv. Energy Mater. 2023, 13, 2301329. [Google Scholar] [CrossRef]
- Ge, J.; Fan, L.; Rao, A.M.; Zhou, J.; Lu, B. Surface-Substituted Prussian Blue Analogue Cathode for Sustainable Potassium-Ion Batteries. Nat Sustain 2022, 5, 225–234. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Jia, H.; Apostol, P.; Guo, X.; Lucaccioni, F.; Zhang, X.; Zhu, Q.; Morari, C.; Gohy, J.-F.; et al. A High-Voltage Organic Framework for High-Performance Na- and K-Ion Batteries. ACS Energy Lett. 2022, 7, 668–674. [Google Scholar] [CrossRef]
- Luo, X.-X.; Li, W.-H.; Liang, H.-J.; Zhang, H.-X.; Du, K.-D.; Wang, X.-T.; Liu, X.-F.; Zhang, J.-P.; Wu, X.-L. Covalent Organic Framework with Highly Accessible Carbonyls and π-Cation Effect for Advanced Potassium-Ion Batteries. Angew. Chem. 2022, 134, e202117661. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Liu, X.-H.; Yang, Z.; He, X.-X.; Li, L.; Qiao, Y.; Chen, W.-H.; Zeng, R.-H.; Wang, Y.; et al. Organic Cathode Materials for Sodium-Ion Batteries: From Fundamental Research to Potential Commercial Application. Adv. Funct. Mater. 2022, 32, 2107718. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, R.; Tang, Y.; Ji, X.; Jia, C.; Wang, H. Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Adv. Funct. Mater. 2020, 30, 1909486. [Google Scholar] [CrossRef]
- Min, X.; Xiao, J.; Fang, M.; Wang, W.; Zhao, Y.; Liu, Y.; Abdelkader, A.M.; Xi, K.; Kumar, R.V.; Huang, Z. Potassium-Ion Batteries: Outlook on Present and Future Technologies. Energy Environ. Sci. 2021, 14, 2186–2243. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, H.-B.; Feng, Y.; Wu, Z.-S.; Yu, Y. The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries. Adv. Mater. 2019, 31, 1901414. [Google Scholar] [CrossRef]
- Lei, K.-X.; Wang, J.; Chen, C.; Li, S.-Y.; Wang, S.-W.; Zheng, S.-J.; Li, F.-J. Recent Progresses on Alloy-Based Anodes for Potassium-Ion Batteries. Rare Met. 2020, 39, 989–1004. [Google Scholar] [CrossRef]
- Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen, W.; Shen, C. Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. Small 2021, 17, 1903194. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Q.; Zhang, A.; Cai, J.; Cao, X.; Li, Z.; Asimow, P.D.; Zhou, C. Room-Temperature Pressure Synthesis of Layered Black Phosphorus-Graphene Composite for Sodium-Ion Battery Anodes. ACS Nano 2018, 12, 8323–8329. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Li, X.; Sun, M.; Yuan, Y.; Liu, T.; Li, L.; Lu, J. Durian-Inspired Design of Bismuth–Antimony Alloy Arrays for Robust Sodium Storage. ACS Nano 2020, 14, 9117–9124. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, Z.; Wang, W.; Yue, L.; Li, W.; Zhang, H.; Zhao, L.; Zheng, H.; Wang, J.; Li, Y. Green, Template-Less Synthesis of Honeycomb-like Porous Micron-Sized Red Phosphorus for High-Performance Lithium Storage. ACS Nano 2021, 15, 1880–1892. [Google Scholar] [CrossRef] [PubMed]
- Xiong, P.; Bai, P.; Li, A.; Li, B.; Cheng, M.; Chen, Y.; Huang, S.; Jiang, Q.; Bu, X.H.; Xu, Y. Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and High-Rate Sodium-Ion Batteries. Adv. Mater. 2019, 31, 1904771. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Shao, R.; Li, D.; Yang, H.; Wu, Y.; Wang, B.; Sun, C.; Jiang, Y.; Zhang, Q.; Yu, Y. A Self-Healing Volume Variation Three-Dimensional Continuous Bulk Porous Bismuth for Ultrafast Sodium Storage. Adv. Funct. Mater. 2021, 31, 2011264. [Google Scholar] [CrossRef]
- Cheng, X.; Sun, Y.; Li, D.; Yang, H.; Chen, F.; Huang, F.; Jiang, Y.; Wu, Y.; An, X.; Yu, Y. From 0D to 3D: Dimensional Control of Bismuth for Potassium Storage with Superb Kinetics and Cycling Stability. Adv. Energy Mater. 2021, 11, 2102263. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, P.; Liao, Y.; Soomro, R.A.; Xu, B. Achieving Stable and Ultrafast Potassium Storage of Antimony Anode via Dual Confinement of MXene@Carbon Framework. Small Methods 2023, 7, 2201525. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, X.; Lin, J.; Lin, Z.; Sun, S.; Yin, J.; Alshareef, H.N.; Zhang, W. Structure and Interface Engineering of Ultrahigh-Rate 3D Bismuth Anodes for Sodium-Ion Batteries. Small 2023, 19, 2302071. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, K.; Fang, Y.; Wu, X.; Song, L.; Zhu, Y.; Qian, Y. Se-Induced Fibrous Nano Red P with Superior Conductivity for Sodium Batteries. Adv. Funct. Mater. 2023, 33, 2302444. [Google Scholar] [CrossRef]
- Xiao, W.; Li, X.; Cao, B.; Huang, G.; Xie, C.; Qin, J.; Yang, H.; Wang, J.; Sun, X. Constructing High-Rate and Long-Life Phosphorus/Carbon Anodes for Potassium-Ion Batteries through Rational Nanoconfinement. Nano Energy 2021, 83, 105772. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Y.; Zheng, C.; Du, X.; Wang, M.; Yao, Q.; Wang, H.; Fan, K.; Wang, W.; Yan, X.; et al. Molten Salt-Assisted Synthesis of Bismuth Nanosheets with Long-Term Cyclability at High Rates for Sodium-Ion Batteries. RSC Adv. 2023, 13, 25552–25560. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yang, H.; Wei, C.; Huang, F.; Yao, Y.; Bai, R.; Jiang, Y.; Li, S. Synergistic Effect of 1D Bismuth Nanowires/2D Graphene Composites for High Performance Flexible Anodes in Sodium-Ion Batteries. J. Mater. Chem. A 2023, 11, 8081–8090. [Google Scholar] [CrossRef]
- Pokropivny, V.V.; Skorokhod, V.V. Classification of Nanostructures by Dimensionality and Concept of Surface Forms Engineering in Nanomaterial Science. Mater. Sci. Eng. C 2007, 27, 990–993. [Google Scholar] [CrossRef]
- Xiong, P.; Bai, P.; Tu, S.; Cheng, M.; Zhang, J.; Sun, J.; Xu, Y. Red Phosphorus Nanoparticle@3D Interconnected Carbon Nanosheet Framework Composite for Potassium-Ion Battery Anodes. Small 2018, 14, 1802140. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, S.; Huo, C.; Zhu, D.; Li, Q.; Wang, L.; Ren, X.; Xie, L.; Guo, S.; Chu, P.K.; et al. Few-Layer Antimonene: Anisotropic Expansion and Reversible Crystalline-Phase Evolution Enable Large-Capacity and Long-Life Na-Ion Batteries. ACS Nano 2018, 12, 1887–1893. [Google Scholar] [CrossRef]
- Shen, C.; Cheng, T.L.; Liu, C.Y.; Huang, L.; Cao, M.Y.; Song, G.Q.; Wang, D.; Lu, B.A.; Wang, J.W.; Qin, C.C.; et al. Bismuthene from Sonoelectrochemistry as a Superior Anode for Potassium-Ion Batteries. J. Mater. Chem. A 2020, 8, 453–460. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhong, L.; Huang, S.; Mao, S.X.; Zhu, T.; Huang, J.Y. Size-Dependent Fracture of Silicon Nanoparticles during Lithiation. ACS Nano 2012, 6, 1522–1531. [Google Scholar] [CrossRef]
- Liu, W.; Ju, S.; Yu, X. Phosphorus-Amine-Based Synthesis of Nanoscale Red Phosphorus for Application to Sodium-Ion Batteries. ACS Nano 2020, 14, 974–984. [Google Scholar] [CrossRef]
- Zhu, Z.; Pei, Z.; Liu, B.; Sun, D.; Fang, Y.; Lei, X.; Liu, X.; Niu, S.; Pan, H.; Zhou, J.; et al. Hierarchical Ion/Electron Networks Enable Efficient Red Phosphorus Anode with High Mass Loading for Sodium Ion Batteries. Adv. Funct. Mater. 2022, 32, 2110444. [Google Scholar] [CrossRef]
- Ma, X.; Ji, C.; Li, X.; Liu, Y.; Xiong, X. Red@Black Phosphorus Core–Shell Heterostructure with Superior Air Stability for High-Rate and Durable Sodium-Ion Battery. Mater. Today 2022, 59, 36–45. [Google Scholar] [CrossRef]
- Liu, D.; Huang, X.; Qu, D.; Zheng, D.; Wang, G.; Harris, J.; Si, J.; Ding, T.; Chen, J.; Qu, D. Confined Phosphorus in Carbon Nanotube-Backboned Mesoporous Carbon as Superior Anode Material for Sodium/Potassium-Ion Batteries. Nano Energy 2018, 52, 1–10. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, F.; Peng, L.; Qin, T.; Kang, F.; Yang, C. Inlaying Bismuth Nanoparticles on Graphene Nanosheets by Chemical Bond for Ultralong-Lifespan Aqueous Sodium Storage. Angew. Chem., Int. Ed. 2023, 62, e202212439. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ren, X.; Xing, Z.; Zhu, D.; Tian, W.; Guan, C.; Yang, Y.; Qin, W.; Wang, J.; Zhang, L.; et al. In Situ Formation of Hierarchical Bismuth Nanodots/Graphene Nanoarchitectures for Ultrahigh-Rate and Durable Potassium-Ion Storage. Small 2020, 16, 1905789. [Google Scholar] [CrossRef] [PubMed]
- Xiong, P.; Wu, J.; Zhou, M.; Xu, Y. Bismuth-Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries. ACS Nano 2020, 14, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, R. High-Capacity Graphene-Confined Antimony Nanoparticles as a Promising Anode Material for Potassium-Ion Batteries. J. Alloys Compd. 2020, 834, 155191. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W.; Liu, Y.; Li, L.; Zhao, X.; Zhang, W. Antimony/Polypyrrole/CNTs Composites with Three-Dimensional Structure as Highly Stable Anodes for Potassium Ion Battery. Mater. Res. Bull. 2023, 168, 112496. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, D.; Ma, C.; Feng, L.; Zhang, Y.; Zhang, L.; Liu, Y.; Guo, S. Vapor-Phase Derived Ultra-Fine Bismuth Nanoparticles Embedded in Carbon Nanotube Networks as Anodes for Sodium and Potassium Ion Batteries. J. Colloid Interface Sci. 2023, 643, 409–419. [Google Scholar] [CrossRef]
- Yao, T.; Li, L.; Wang, H. Embedding Antimony Nanoparticles into Metal-Organic Framework Derived TiO2@carbon Nanotablets for High-Performance Sodium Storage. Chin. Chem. Lett. 2023, 34, 108186. [Google Scholar] [CrossRef]
- Arnold, S.; Gentile, A.; Li, Y.; Wang, Q.; Marchionna, S.; Ruffo, R.; Presser, V. Design of High-Performance Antimony/MXene Hybrid Electrodes for Sodium-Ion Batteries. J. Mater. Chem. A 2022, 10, 10569–10585. [Google Scholar] [CrossRef]
- Guo, X.; Gao, H.; Wang, S.; Yang, G.; Zhang, X.; Zhang, J.; Liu, H.; Wang, G. MXene-Based Aerogel Anchored with Antimony Single Atoms and Quantum Dots for High-Performance Potassium-Ion Batteries. Nano Lett. 2022, 22, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yang, Y.; Fan, X.; Ji, G.; Ji, X.; Wang, H.; Hou, S.; Zachariah, M.R.; Wang, C. Extremely Stable Antimony–Carbon Composite Anodes for Potassium-Ion Batteries. Energy Environ. Sci. 2019, 12, 615–623. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, H.; Liang, M.; Wang, Y.; Wu, Z.; Zhu, S.; Shi, C.; Zhao, N.; Liu, E.; Sow, C.H.; et al. NaCl-Pinned Antimony Nanoparticles Combined with Ion-Shuttle-Induced Graphitized 3D Carbon to Boost Sodium Storage. Cell Rep. Phys. Sci. 2022, 3, 100891. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Yang, X.; Hu, R.; Liu, J.; Zhang, L.; Zhu, M. Unveiling the Advances of Nanostructure Design for Alloy-Type Potassium-Ion Battery Anodes via In Situ TEM. Angew. Chem. 2020, 132, 14612–14618. [Google Scholar] [CrossRef]
- Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Lett. 2013, 13, 5480–5484. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yu, Z.; Gordin, M.L.; Li, X.; Peng, H.; Wang, D. Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. ACS Nano 2015, 9, 11933–11941. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.-L.; Chen, Z.; Zhong, G.-M.; Liu, Y.; Yang, Y.; Ma, T.; Ren, Y.; Zuo, X.; Wu, X.-H.; Zhang, X.; et al. Nanostructured Black Phosphorus/Ketjenblack–Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Nano Lett. 2016, 16, 3955–3965. [Google Scholar] [CrossRef]
- Liu, W.; Yuan, X.; Yu, X. A Core–Shell Structure of Polydopamine-Coated Phosphorus–Carbon Nanotube Composite for High-Performance Sodium-Ion Batteries. Nanoscale 2018, 10, 16675–16682. [Google Scholar] [CrossRef]
- Li, J.; Jin, H.; Yuan, Y.; Lu, H.; Su, C.; Fan, D.; Li, Y.; Wang, J.; Lu, J.; Wang, S. Encapsulating Phosphorus inside Carbon Nanotubes via a Solution Approach for Advanced Lithium Ion Host. Nano Energy 2019, 58, 23–29. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Jian, C.; Cui, D.; Chen, M.; Li, Z.; Li, T.; Nilges, T.; He, K.; Jia, Z.; et al. Red-Phosphorus-Impregnated Carbon Nanofibers for Sodium-Ion Batteries and Liquefaction of Red Phosphorus. Nat. Commun. 2020, 11, 2520. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, D.; Zhu, X.; Fang, K.; Zhou, K.; Tang, H.; Xie, Z.; Li, J.; Zheng, H.; Qu, D. Evaporation-Induced Formation of Hollow bismuth@N-Doped Carbon Nanorods for Enhanced Electrochemical Potassium Storage. Appl. Surf. Sci. 2020, 514, 145947. [Google Scholar] [CrossRef]
- Imtiaz, S.; Kapuria, N.; Amiinu, I.S.; Sankaran, A.; Singh, S.; Geaney, H.; Kennedy, T.; Ryan, K.M. Directly Deposited Antimony on Copper Silicide Nanowire Array as High-Performance Potassium-Ion Battery Anode with Long Cycle Life. Adv. Funct. Mater. 2023, 33, 2209566. [Google Scholar] [CrossRef]
- Pu, B.; Liu, Y.; Bai, J.; Chu, X.; Zhou, X.; Qing, Y.; Wang, Y.; Zhang, M.; Ma, Q.; Xu, Z.; et al. Iodine-Ion-Assisted Galvanic Replacement Synthesis of Bismuth Nanotubes for Ultrafast and Ultrastable Sodium Storage. ACS Nano 2022, 16, 18746–18756. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, S.; Niu, X.; Chen, J.S.; Yu, Y. Efficient Stress Dissipation in Well-Aligned Pyramidal SbSn Alloy Nanoarrays for Robust Sodium Storage. Adv. Funct. Mater. 2021, 31, 2104798. [Google Scholar] [CrossRef]
- Song, T.; Chen, H.; Li, Z.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. Creating an Air-Stable Sulfur-Doped Black Phosphorus-TiO2 Composite as High-Performance Anode Material for Sodium-Ion Storage. Adv. Funct. Mater. 2019, 29, 1900535. [Google Scholar] [CrossRef]
- Wu, S.; Hui, K.S.; Hui, K.N. 2D Black Phosphorus: From Preparation to Applications for Electrochemical Energy Storage. Adv. Sci. 2018, 5, 1700491. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar] [CrossRef]
- Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. A Phosphorene–Graphene Hybrid Material as a High-Capacity Anode for Sodium-Ion Batteries. Nat. Nanotech. 2015, 10, 980–985. [Google Scholar] [CrossRef]
- Shuai, H.; Ge, P.; Hong, W.; Li, S.; Hu, J.; Hou, H.; Zou, G.; Ji, X. Electrochemically Exfoliated Phosphorene–Graphene Hybrid for Sodium-Ion Batteries. Small Methods 2019, 3, 1800328. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhang, J.; Zhou, D.; Tang, X.; Xu, X.; Li, B.; Liu, H.; Wang, G. Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti3C2Tx MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano 2020, 14, 3651–3659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Zhao, S.; Han, C.; Wang, Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C.D.; Yuan, K.D.; et al. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus. Nano Lett. 2016, 16, 4903–4908. [Google Scholar] [CrossRef]
- Fan, K.; Tang, T.; Wu, S.; Zhang, Z. Graphene/Blue-Phosphorus Heterostructure as Potential Anode Materials for Sodium-Ion Batteries. Int. J. Mod. Phys. B 2018, 32, 1850010. [Google Scholar] [CrossRef]
- Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellán, G.; et al. Few-Layer Antimonene by Liquid-Phase Exfoliation. Angew. Chem. 2016, 128, 14557–14561. [Google Scholar] [CrossRef]
- Ares, P.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D.A.; Díaz-Tendero, S.; Alcamí, M.; Martín, F.; Gómez-Herrero, J.; Zamora, F. Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Adv. Mater. 2016, 28, 6332–6336. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shao, Y.; Liu, H.; Feng, Z.; Wang, Y.-L.; Sun, J.-T.; Liu, C.; Wang, J.-O.; Liu, Z.-L.; Zhu, S.-Y.; et al. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Song, X.; Liu, J.; Yan, Z.; Huo, C.; Zhang, S.; Su, M.; Liao, L.; Wang, W.; Ni, Z.; et al. Two-Dimensional Antimonene Single Crystals Grown by van Der Waals Epitaxy. Nat. Commun. 2016, 7, 13352. [Google Scholar] [CrossRef]
- Liu, H.; Lian, P.; Zhang, Q.; Yang, Y.; Mei, Y. The Preparation of Holey Phosphorene by Electrochemical Assistance. Electrochem. Commun. 2019, 98, 124–128. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Guo, S.; Cai, B.; Yang, S.A.; Shan, F.; Pumera, M.; Zeng, H. Advances of 2D Bismuth in Energy Sciences. Chem. Soc. Rev. 2020, 49, 263–285. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, Y.; Guo, L.; Luo, Y. A Fast and High-Efficiency Electrochemical Exfoliation Strategy towards Antimonene/Carbon Composites for Selective Lubrication and Sodium–Ion Storage Applications. Phys. Chem. Chem. Phys. 2022, 24, 4957–4965. [Google Scholar] [CrossRef]
- Girirajan, M.; Arumugam, V.; Subramaniyan, S.; Manimuthu, R.P.; Sakkarapani, S. Two-Dimensional Layered Bismuthene/Antimonene Nanocomposite as a Potential Electrode Material for the Fabrication of High-Energy Density Hybrid Supercapacitors. Energy Fuels 2022, 36, 12299–12309. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Qu, Y.; Wang, X.; Huo, H.; Fan, Q.; Wang, J.; Yang, L.-M.; Wu, Y. Bi-Based Metal-Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction. Adv. Energy Mater. 2020, 10, 2001709. [Google Scholar] [CrossRef]
- Wei, S.; Li, W.; Ma, Z.; Deng, X.; Li, Y.; Wang, X. Novel Bismuth Nanoflowers Encapsulated in N-Doped Carbon Frameworks as Superb Composite Anodes for High-Performance Sodium-Ion Batteries. Small 2023, 19, 2304265. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, B.; Daali, A.; Zhou, X.; Yu, Z.; Li, X.; Liu, Y.; Yin, L.; Yang, Z.; Zhao, C.; et al. Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries. ACS Energy Lett. 2021, 6, 547–556. [Google Scholar] [CrossRef]
- Liu, W.; Du, L.; Ju, S.; Cheng, X.; Wu, Q.; Hu, Z.; Yu, X. Encapsulation of Red Phosphorus in Carbon Nanocages with Ultrahigh Content for High-Capacity and Long Cycle Life Sodium-Ion Batteries. ACS Nano 2021, 15, 5679–5688. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, L.; Li, F.; Cheng, F.; Chen, J. Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes. Adv. Mater. 2017, 29, 1702212. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wei, C.; Wang, L.; Mei, S.; Xiang, B.; Zheng, Y.; Zhang, X.; Javanbakht, M.; Gao, B.; Chu, P.K.; et al. Micro-Sized Porous Bulk Bismuth Caged by Carbon for Fast Charging and Ultralong Cycling in Sodium-Ion Batteries. Cell Rep. Phys. Sci. 2023, 4, 101463. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Ci, L.; Xiong, S.; Feng, J.; Qian, Y. Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. ACS Nano 2018, 12, 12932–12940. [Google Scholar] [CrossRef]
- Gao, H.; Niu, J.; Zhang, C.; Peng, Z.; Zhang, Z. A Dealloying Synthetic Strategy for Nanoporous Bismuth-Antimony Anodes for Sodium Ion Batteries. ACS Nano 2018, 12, 3568–3577. [Google Scholar] [CrossRef]
- Wang, L.; Ni, Y.; Lei, K.; Dong, H.; Tian, S.; Li, F. 3D Porous Tin Created by Tuning the Redox Potential Acts as an Advanced Electrode for Sodium-Ion Batteries. ChemSusChem 2018, 11, 3376–3381. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Li, L.; Jin, Z.; Wang, C.; Zhang, L.; Su, Z.-M. Encapsulating Red Phosphorus in Ultralarge Pore Volume Hierarchical Porous Carbon Nanospheres for Lithium/Sodium-Ion Half/Full Batteries. ACS Nano 2019, 13, 13513–13523. [Google Scholar] [CrossRef]
- Wu, Y.; Xing, F.; Xu, R.; Cheng, X.; Li, D.; Zhou, X.; Zhang, Q.; Yu, Y. Spatially Confining and Chemically Bonding Amorphous Red Phosphorus in the Nitrogen Doped Porous Carbon Tubes Leading to Superior Sodium Storage Performance. J. Mater. Chem. A 2019, 7, 8581–8588. [Google Scholar] [CrossRef]
- Li, W.; Han, C.; Gu, Q.; Chou, S.; Liu, H.K.; Dou, S.X. Three-Dimensional Electronic Network Assisted by TiN Conductive Pillars and Chemical Adsorption to Boost the Electrochemical Performance of Red Phosphorus. ACS Nano 2020, 14, 4609–4617. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, H.; Bian, X.; Feng, J.; Liu, J.; Yang, Y.; Yuan, C.; An, Y.; Fan, R.; Ci, L. Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries. ACS Nano 2018, 12, 7380–7387. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, J.; Wang, X.; Yue, L.; Wang, W.; Wang, B.; Shen, D.; Li, Y. Boosting Potassium Storage Kinetics, Stability, and Volumetric Performance of Honeycomb-Like Porous Red Phosphorus via In Situ Embedding Self-Growing Conductive Nano-Metal Networks. Adv. Funct. Mater. 2023, 33, 2209388. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Jiao, L.; Tao, Z.; Chen, J. Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 214–220. [Google Scholar] [CrossRef]
- Chen, S.; Ao, Z.; Sun, B.; Xie, X.; Wang, G. Porous Carbon Nanocages Encapsulated with Tin Nanoparticles for High Performance Sodium-Ion Batteries. Energy Storage Mater. 2016, 5, 180–190. [Google Scholar] [CrossRef]
- He, W.; Chen, K.; Pathak, R.; Hummel, M.; Reza, K.M.; Ghimire, N.; Pokharel, J.; Lu, S.; Gu, Z.; Qiao, Q.; et al. High-Mass-Loading Sn-Based Anode Boosted by Pseudocapacitance for Long-Life Sodium-Ion Batteries. Chem. Eng. J. 2021, 414, 128638. [Google Scholar] [CrossRef]
- Yang, J.; Guo, X.; Gao, H.; Wang, T.; Liu, Z.; Yang, Q.; Yao, H.; Li, J.; Wang, C.; Wang, G. A High-Performance Alloy-Based Anode Enabled by Surface and Interface Engineering for Wide-Temperature Sodium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2300351. [Google Scholar] [CrossRef]
- Nam, D.-H.; Kim, T.-H.; Hong, K.-S.; Kwon, H.-S. Template-Free Electrochemical Synthesis of Sn Nanofibers as High-Performance Anode Materials for Na-Ion Batteries. ACS Nano 2014, 8, 11824–11835. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, Q.; Shao, R.; Wang, C.; Yan, W.; Ma, J.; Liu, D.; Yang, J.; Qian, Y. Microsized Gray Tin as a High-Rate and Long-Life Anode Material for Advanced Sodium-Ion Batteries. Nano Lett. 2022, 22, 7976–7983. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Cao, Z.; Zhang, J.; Cheng, H.; Liu, G.; Park, G.-T.; Cavallo, L.; Wang, L.; Alshareef, H.N.; Sun, Y.-K.; et al. Electrolyte-Mediated Stabilization of High-Capacity Micro-Sized Antimony Anodes for Potassium-Ion Batteries. Adv. Mater. 2021, 33, 2005993. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, R.; Yao, Y.; Ye, S.; Zhou, X.; Yu, Y. Multicore–Shell Bi@N-Doped Carbon Nanospheres for High Power Density and Long Cycle Life Sodium- and Potassium-Ion Anodes. Adv. Funct. Mater. 2019, 29, 1809195. [Google Scholar] [CrossRef]
- Huang, J.; Lin, X.; Tan, H.; Zhang, B. Bismuth Microparticles as Advanced Anodes for Potassium-Ion Battery. Adv. Energy Mater. 2018, 8, 1703496. [Google Scholar] [CrossRef]
Elements | Application | Sodiation/Potassiation Products | Specific Capacity (mAh g−1) | Volume Expansion Ratio (%) |
---|---|---|---|---|
P | SIBs | Na3P | 2596 | 490 |
PIBs | KP | 865 | 232 | |
K4P3 | 1154 | 293 | ||
K3P | 2596 | 593 | ||
Sn | SIBs | Na15Sn4 | 847 | 423 |
PIBs | KSn | 225 | 194 | |
Sb | SIBs | Na3Sb | 660 | 393 |
PIBs | K3Sb | 660 | 407 | |
Bi | SIBs | Na3Bi | 385 | 352 |
PIBs | K3Bi | 385 | 509 |
Dimensional Structure | Materials | Synthesis Methods | Electrolytes | ICE (%) | Cycling Performance (a) | Rate Capability (b) | Refs. |
---|---|---|---|---|---|---|---|
0D | P@TBMC | vaporization–condensation-conversion | 1 M NaClO4 in EC/DEC with 5% FEC | 69.8 | 580/800th/2.5 | 430/8 | [62] |
HHPCNSs/P | vaporization–condensation process | 1 M NaClO4 in EC/DEC | 75.1 | 861.8/1000th/5 | 831.1/10 | [111] | |
red P@N-PCT | vaporization–condensation method | 1 M NaClO4 in EC/DMC with 5% FEC | - | 1157/100th/2 | 572/10 | [112] | |
P/TiN/Gnps | mechanical milling method | 1 M NaClO4 in EC/DEC with 5% FEC | 86.8 | 91.3%/300th/0.2 | 339/20 | [113] | |
NRP−rGO | phosphorus-amine-based method | 1 M NaClO4 in EC/DEC with 10% FEC | 61.2 | 390/5000th/5 | 718/5 | [59] | |
RP@BP/3DNG | solvothermal treatment | 1 M NaClO4 in EC/DMC with 5% FEC | 65.3 | 465.5/1200th/10 | 521.3/10 | [61] | |
P/C | evaporation–condensation method | 1 M KFSI in EC/DEC | 58.8 | 212/10,000th/3.2 | 287/11.2 | [51] | |
P@TBMC | vaporization–condensation-conversion | 0.6 M KPF6 in EC/PC | 63.5 | 244/200th/0.5 | 136/2 | [62] | |
red P@CN | vaporization–condensation strategy | 0.8 M KPF6 in EC/DEC | 59 | 427.4/40th/0.1 | 323.7/2 | [55] | |
1D | Pred@CNF | vaporization–condensation method | 1 M NaPF6 in EC/DEC | - | 1850/500th/0.1 | - | [80] |
vf2-P | selenium-induced method | 1 M NaClO4 in EC/PC with 5% FEC | 89.7 | 1785/2800th/1 C | 1190/25 C | [50] | |
2D | phosphorene-graphene | self-assembly | 1 M NaPF6 in EC/DEC with 10% FEC | ~80 | 2440/100th/0.05 | - | [89] |
BP/rGO | pressure synthesis | 1 M NaClO4 in DMC with 10% FEC | 89.5 | 1250/500th/1 | 720.8/40 | [42] | |
phosphorene–graphene | electrochemically exfoliated and solution method | 1 M NaClO4 in PC with 5% FEC | 80.6 | 1582.6/200th/1 | 1499/5 | [90] | |
phosphorene/MXene | self-assembly | 1 M NaClO4 in EC/PC | 63.1 | 340/1000th/1 | 193/5 | [91] | |
3D | NPRP@RGO | boiling | 1 M NaClO4 in PC with 5% FEC | 78.5 | 1250/150th/0.17 | 657/3.47 | [114] |
RP@CNCs | evacuation-filling process | 1 M NaClO4 in EC/DEC with 10% FEC | - | 1363/150th/0.1 | 750/5 | [105] | |
Sb7-RP63/C30 | high-energy ball milling process | 1 M NaPF6 in PC with 2% FEC | 88 | 2356/70th/C/3 | 1779/2C | [104] | |
HPRP@Bi | hydrothermal and self-limited growth | 4 M KFSI in DME | 43.9 | 283/200th/0.05 | 106.4/3 | [115] |
Dimensional Structure | Materials | Synthesis Methods | Electrolytes | ICE (%) | Cycling Performance (a) | Rate Capability (b) | Refs. |
---|---|---|---|---|---|---|---|
0D | 8-Sn@C | aerosol spray pyrolysis method | 1 M NaClO4 in EC/DEC | 67 | 415/500th/1 | 349/4 | [116] |
PCNCs-Sn | template-assisted CVD and in situ reduction | 1 M NaClO4 in EC/PC with 5% FEC | 73 | 202/550th/1.28 | 188/2.56 | [117] | |
Sn@CFC | electrospinning method | 1 M NaClO4 in EC/DMC with 5% FEC | 42.3 | 255/200th/0.05 | 100/1 | [118] | |
1D | Sn@NC | annealing | 1 M NaPF6 in DME | 78.4 | 347/10,000th/5 | 437/5 | [119] |
Sn nanofibers | electrodeposition | 1 M NaClO4 in PC with 2% FEC | 68 | 776/100th/0.1C | ~260/5C | [120] | |
3D | porous Sn | replacement reaction | 1 M NaPF6 in DME | - | 660/400th/2.5 | 667.6/6.5 | [110] |
α-Sn | Commercial | 1 M NaPF6 in DGM | 80 | 451/3500th/2 | 464/4 | [121] |
Dimensional Structure | Materials | Synthesis Methods | Electrolytes | ICE (%) | Cycling Performance (a) | Rate Capability (b) | Refs. |
---|---|---|---|---|---|---|---|
0D | Sb@NS-3DPC | pyrolysis | 1 M NaClO4 in PC with 10% FEC | 61.1 | 259/20000th/10 | 283.8/10 | [73] |
carbon-coated Sb/MXene | calcination | 5 M KFSI in DME | 76.7 | 216/1200th/0.5 | 212/2 | [48] | |
Sb@CSN | electrospray-assisted strategy | 4 M KTFSI in EC/DEC | 61 | 504/220th/0.2 | 530/0.2 | [72] | |
Sb@CNFs | carbon-thermal reduction | 2 M KFSI in DME | 47 | 338/200th/0.2 | 121/2 | [74] | |
1D | Bi0.75Sb0.25 pyramid arrays | electrodeposition and annealing | 1 M NaPF6 in DME | 86 | 284/2000th/0.5 | 335/2.5 | [43] |
SbSn nanoarrays | electrodeposition and annealing | 1 M NaPF6 in DME | 83 | 511/800th/2C | 521/5C | [84] | |
Sb@Cu15Si4 NW array | thermal deposition | 4 M KFSI in DME | - | 250/1250th/0.2 | 228.4/2 | [82] | |
2D | few-layer antimonene | liquid-phase exfoliation | 1 M NaClO4 in EC/DEC with 5% FEC | 64.7 | 620/150th/0.5C | 429/5C | [56] |
antimonene/C | liquid-phase exfoliation | 1 M NaPF6 in EC/DMC with 5% FEC | 71.2 | 451.3/150th/0.2 | 334.5/5 | [100] | |
3D | np-Bi2Sb6 | dealloying | 1 M NaPF6 in PC with 5% FEC | 69.8 | 258/2000th/0.2 | 304.2/15 | [109] |
NP-Sb | dealloying | 0.8 M KPF6 in EC/DEC | - | 318/50th/0.1 | 265/0.5 | [108] | |
Microsized Sb | commercial | 4 M KFSI in DME | 74.2 | 553/200th/0.2 | 305/3 | [122] |
Dimensional Structure | Materials | Synthesis Methods | Electrolytes | ICE (%) | Cycling Performance (a) | Rate Capability (b) | Refs. |
---|---|---|---|---|---|---|---|
0D | Bi@C composite | annealing | 1 M NaPF6 in DME | 50.3 | 265/30,000th/8 | 232/60 | [45] |
Bi@N-C | annealing | 1 M NaPF6 in DME | 36.5 | 235/2000th/10 | 152/100 | [123] | |
BiSb@C composite | annealing | 5 M KFSI in DME | 70.2 | ~330/600th/0.5 | 152/2 | [65] | |
BiND/G | in situ reduction | 1 M KPF6 in DME | 78 | 213/500th/5 | 215/10 | [64] | |
1D | Bi NTs | iodine-ion-assisted galvanic replacement | 1 M NaPF6 in DME | 69.2 | 355/15,000th/20 | 319/150 | [83] |
BNW@G film | vacuum filtration assembly | 1 M NaPF6 in DME | 82.7 | 276/1000th/1 | 295/5 | [53] | |
2D | Bi@NC | solvothermal and carbonization | 1 M NaPF6 in DME | 85.1 | ~325/5000th/10 | 341.5/10 | [103] |
2D-Bi | solution synthesis method | 1 M KPF6 in DME | 89.2 | 344/750th/10 | 345/30 | [47] | |
FBNs | electrochemical exfoliation | 1 M KPF6 in DME | - | 200/1500th/20 | 182/20 | [57] | |
3D | Bulk Bi | commercial | 1 M NaPF6 in G2 | 94.8 | 389/2000th/0.4 | 356/2 | [106] |
3DPBi | solution reduction | 1 M NaPF6 in DME | 65.9 | 374/3000th/10 | 354/60 | [46] | |
LC-Bi composite | calcination | 1 M NaPF6 in DME | 53.4 | 225.6/2600th/1 | 236.1/100 | [49] | |
P-Bi/C | annealing | 1 M NaPF6 in DME | 95.2 | 178/20,000th/50 | 101/72 | [107] | |
Bulk Bi | commercial | 1 M KPF6 in DME | 87.2 | 322.7/300th/0.8 | - | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Li, D.; Jiang, Y.; Huang, F.; Li, S. Nanostructure Engineering of Alloy-Based Anode Materials with Different Dimensions for Sodium/Potassium Storage. Coatings 2023, 13, 2088. https://doi.org/10.3390/coatings13122088
Cheng X, Li D, Jiang Y, Huang F, Li S. Nanostructure Engineering of Alloy-Based Anode Materials with Different Dimensions for Sodium/Potassium Storage. Coatings. 2023; 13(12):2088. https://doi.org/10.3390/coatings13122088
Chicago/Turabian StyleCheng, Xiaolong, Dongjun Li, Yu Jiang, Fangzhi Huang, and Shikuo Li. 2023. "Nanostructure Engineering of Alloy-Based Anode Materials with Different Dimensions for Sodium/Potassium Storage" Coatings 13, no. 12: 2088. https://doi.org/10.3390/coatings13122088
APA StyleCheng, X., Li, D., Jiang, Y., Huang, F., & Li, S. (2023). Nanostructure Engineering of Alloy-Based Anode Materials with Different Dimensions for Sodium/Potassium Storage. Coatings, 13(12), 2088. https://doi.org/10.3390/coatings13122088