Tribological and Corrosion Performance of CrAlN/CrN Coatings in Artificial Seawater under Varied Nitrogen Pressures
Abstract
:1. Introduction
2. Experimental Details
2.1. Coating Deposition
2.2. Characterization
3. Results and Discussion
3.1. Morphology and Structure of the Coatings
3.2. The Wear Performance of the Coatings in Artificial Seawater
3.3. The Corrosion Performance of the Coatings in Artificial Seawater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wood, R.J.K. Marine wear and tribocorrosion. Wear 2017, 376, 893–910. [Google Scholar] [CrossRef]
- Li, Z.; Yu, H.; Sun, D. The tribocorrosion mechanism of aluminum alloy 7075-T6 in the deep ocean. Corros. Sci. 2021, 183, 109306. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.L.; Li, X.; Guo, P.; Ke, P.; Wang, A. Enhanced tribocorrosion performance of Cr/GLC multilayered films for marine protective application. ACS Appl. Mater. Interfaces 2018, 10, 13187–13198. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, S.T.; Baranidharan, K.; Uthayakumar, M.; Padmanabhan, P. Corrosion Studies on Stainless Steel 316 and their Prevention-A Review. INCAS Bull. 2021, 13, 245–251. [Google Scholar] [CrossRef]
- Albrimi, Y.A.; Eddib, A.; Douch, J.; Berghoute, Y.; Hamdani, M.; Souto, R.M. Electrochemical behaviour of AISI 316 austenitic stainless steel in acidic media containing chloride ions. Int. J. Electrochem. Sci. 2011, 6, 4614–4627. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, A.; Singh, A.K.; Das, G. Corrosion resistance of austenitic Cr-Ni stainless steel in 1 M HCl. Int. J. Mech. Eng. Robot. Res. 2014, 3, 21. [Google Scholar]
- Wu, D.; Guan, Z.; Cheng, Q.; Guo, W.; Tang, M.; Liu, Y. Development of a friction test apparatus for simulating the ultra-high pressure environment of the deep ocean. Wear 2020, 452, 203294. [Google Scholar] [CrossRef]
- Aldrich-Smith, G.; Teer, D.G.; Dearnley, P.A. Corrosion-wear response of sputtered CrN and S-phase coated austenitic stainless steel. Surf. Coat. Technol. 1999, 116, 1161–1165. [Google Scholar] [CrossRef]
- Shan, L.; Wang, Y.; Zhang, Y.; Zhang, Q.; Xue, Q. Tribocorrosion behaviors of PVD CrN coated stainless steel in seawater. Wear 2016, 362, 97–104. [Google Scholar] [CrossRef]
- Vite, M.; Moreno-Ríos, M.; Hernández, E.G.; Laguna-Camacho, J. A study of the abrasive resistance of sputtered CrN coatings deposited on AISI 316 and AISI H13 steel substrates using steel particles. Wear 2011, 271, 1273–1279. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Liu, C.; Huang, M. Improvement in corrosion resistance of CrN coatings. Surf. Coat. Technol. 2019, 365, 158–163. [Google Scholar] [CrossRef]
- Wang, D.; Lin, S.; Yang, Z.; Yin, Z.-F.; Ye, F.-X.; Gao, X.-Y.; Qiao, Y.-P.; Xue, Y.-N.; Yang, H.-Z.; Zhou, K.-S. Failure mechanisms of CrN and CrAlN coatings for solid particle erosion resistance. Vacuum 2022, 204, 111313. [Google Scholar] [CrossRef]
- Ding, X.; Tan, A.L.K.; Zeng, X.T.; Wang, C.; Yue, T.; Sun, C.Q. Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc. Thin Solid Film. 2008, 516, 5716–5720. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Wood, R.J.K.; Wang, S.C.; Xue, Q. Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application. Surf. Coat. Technol. 2010, 204, 3517–3524. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Q.; Zhou, D.; Yu, M.; Wang, Y.; Wang, Q.; Li, X. Erosion behavior of CrN, CrAlN and CrAlN/CrN multilayer coatings deposited on Ti6Al4V. Surf. Coat. Technol. 2022, 437, 128284. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, F.; Wang, X.; Chen, K.; Wang, M.; Qian, T.; Li, Y. Comparison of tribological properties of CrN, TiCN and TiAlN coatings sliding against SiC balls in water. Appl. Surf. Sci. 2011, 257, 7813–7820. [Google Scholar] [CrossRef]
- ASTM G102-89e1; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemi cal Meas-urements. ASTM: West Conshohocken, PA, USA, 2015.
- Wang, Q.; Zhou, F.; Zhou, Z.; Li, L.K.-Y.; Yan, J. An investigation on the crack resistance of CrN, CrBN and CrTiBN coatings via nanoindentation. Vacuum 2017, 145, 186–193. [Google Scholar] [CrossRef]
- Goto, H.; Akao, N.; Hara, N.; Sugimoto, K. Pinhole Defect Density of CrNx Thin Films Formed by Ion-Beam-Enhanced Depo-sition on Stainless Steel Substrates. J. Electrochem. Soc. 2007, 154, C189. [Google Scholar] [CrossRef]
- Bujak, J.; Walkowicz, J.; Kusiński, J. Influence of the nitrogen pressure on the structure and properties of (Ti, Al) N coatings deposited by cathodic vacuum arc PVD process. Surf. Coat. Technol. 2004, 180, 150–157. [Google Scholar] [CrossRef]
- Paksunchai, C.; Chantharangsi, C. CrAlN Film Hardness Uniformity Affected by Nitrogen Content; AIP Publishing: Melville, NY, USA, 2020; Volume 2279. [Google Scholar]
- Bin Abdullah, M.Z.; Bin Abdullah, A.N.; Bin Othman, M.H.; Ahmad, M.A.B.; Hussain, P. Mechanical properties of Cr/CrN/CrCN/ZrN multilayer coatings by physical vapour deposition (PVD). Adv. Mater. Res. 2016, 1133, 99–102. [Google Scholar] [CrossRef]
- Wuhrer, R.; Yeung, W.Y. A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings. Scr. Mater. 2004, 50, 1461–1466. [Google Scholar] [CrossRef]
- Schlögl, M.; Kirchlechner, C.; Paulitsch, J.; Keckes, J.; Mayrhofer, P.H. Effects of structure and interfaces on fracture toughness of CrN/AlN multilayer coatings. Scr. Mater. 2013, 68, 917–920. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y.; Wang, C.; Li, J.; Yao, Y. An analysis on tribological performance of CrCN coatings with different carbon con-tents in seawater. Tribol. Int. 2015, 91, 131–139. [Google Scholar] [CrossRef]
- Sui, X.; Liu, J.; Zhang, S.; Yang, J.; Hao, J. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance. Appl. Surf. Sci. 2018, 439, 24–32. [Google Scholar] [CrossRef]
- Beake, B.D. The influence of the H/E ratio on wear resistance of coating systems–Insights from small-scale testing. Surf. Coat. Technol. 2022, 442, 128272. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Lu, C.Y.; Diyatmika, W.; Lou, B.S.; Lee, J.W. Superimposition of high power impulse and middle frequency magnetron sputtering for fabrication of CrTiBN multicomponent hard coatings. Surf. Coat. Technol. 2018, 350, 962–970. [Google Scholar] [CrossRef]
- Ze, S.; Dejun, K.; Wei, L. Surface-interface microstructures and binding strength of cathodic arc ion plated TiCN coatings on YT14 cutting tools. Surf. Interface Anal. 2017, 49, 488–494. [Google Scholar] [CrossRef]
- Ren, Y.; Babaie, E.; Bhaduri, S.B. Nanostructured amorphous magnesium phosphate/poly (lactic acid) composite coating for enhanced corrosion resistance and bioactivity of biodegradable AZ31 magnesium alloy. Prog. Org. Coat. 2018, 118, 1–8. [Google Scholar] [CrossRef]
- Aissani, L.; Fellah, M.; Nouveau, C.; Abdul Samad, M.; Montagne, A.; Iost, A. Structural and mechanical properties of Cr–Zr–N coatings with different Zr content. Surf. Eng. 2020, 36, 69–77. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, F.; Wang, Q.; Zhang, M.; Zhou, Z. Electrochemical and tribocorrosion performances of CrMoSiCN coating on Ti-6Al-4V titanium alloy in artificial seawater. Corros. Sci. 2020, 165, 108385. [Google Scholar] [CrossRef]
- Zhu, G.; Cui, X.; Zhang, Y.; Chen, S.; Dong, M.; Liu, H.; Shao, Q.; Ding, T.; Wu, S.; Guo, Z. Poly (vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer 2019, 172, 415–422. [Google Scholar] [CrossRef]
- Liu, S.; Gu, L.; Zhao, H.; Chen, J.; Yu, H. Corrosion resistance of graphene-reinforced waterborne epoxy coatings. J. Mater. Sci. Technol. 2016, 32, 425–431. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley& Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
Pressure/Pa | CrAlN/CrN | |||
---|---|---|---|---|
Current/A | Pressure/Pa | Biasvoltage/V | Time/min | |
1.0, 2.0, 3.0, 4.0 | 80 | 3.0 | −100 V | 120 |
Component | NaCl | KCl | Na2SO4 | NaHCO3 | MgCl2 | KBr | CaCl2 | H3BO3 | SrCl2 | NaF |
---|---|---|---|---|---|---|---|---|---|---|
Concentration (g/L) | 24.530 | 0.695 | 4.090 | 0.201 | 5.200 | 0.101 | 1.160 | 0.027 | 0.025 | 0.003 |
Sample | Rs (Ω·cm2) | Cs (F·cm−2) | Rct (Ω·cm2) | CPE (Q) | Rc (Ω·cm2) | Cs (F·cm−2) | Rdl (Ω·cm2) | |
---|---|---|---|---|---|---|---|---|
Y0 (Ω−1·sncm−2) | n | |||||||
CrAlN/CrN1 | 76.3 | 1.05 × 10−5 | 2.94 × 106 | 1.10 × 10−4 | 0.756 | 1.02 | 1.27 × 10−3 | 5.57 × 102 |
CrAlN/CrN2 | 14.1 | 1.22 × 10−5 | 2.28 × 106 | 5.65 × 10−5 | 0.792 | 3.35 | 4.59 × 10−4 | 2.69 × 103 |
CrAlN/CrN3 | 16.6 | 1.01 × 10−5 | 1.85 × 107 | 3.37 × 10−5 | 0.819 | 3.10 | 8.06 × 10−4 | 2.44 × 103 |
CrAlN/CrN4 | 74 | 2.27 × 10−5 | 2.17 × 105 | 8.46 × 10−6 | 0.662 | 1.29 × 103 | 4.37 × 10−5 | 1.22 × 106 |
Coatings | Ecorr (V) | βa (V) | βc (V) | icorr (A/cm2) | Rp (Ω·cm2) |
---|---|---|---|---|---|
CrAlN/CrN-1.0 | −0.11 | 5.32 | 5.73 | 2.92 × 10−7 | 1.35 × 105 |
CrAlN/CrN-2.0 | −0.09 | 4.76 | 6.26 | 2.40 × 10−7 | 1.64 × 105 |
CrAlN/CrN-3.0 | −0.04 | 2.52 | 7.22 | 4.81 × 10−8 | 9.28 × 105 |
CrAlN/CrN-4.0 | −0.06 | 4.00 | 5.30 | 6.64 × 10−8 | 7.04 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yu, Y.; Zou, C.; Tian, C.; Xiang, Y. Tribological and Corrosion Performance of CrAlN/CrN Coatings in Artificial Seawater under Varied Nitrogen Pressures. Coatings 2023, 13, 2090. https://doi.org/10.3390/coatings13122090
Li M, Yu Y, Zou C, Tian C, Xiang Y. Tribological and Corrosion Performance of CrAlN/CrN Coatings in Artificial Seawater under Varied Nitrogen Pressures. Coatings. 2023; 13(12):2090. https://doi.org/10.3390/coatings13122090
Chicago/Turabian StyleLi, Man, Yunjiang Yu, Changwei Zou, Canxin Tian, and Yanxiong Xiang. 2023. "Tribological and Corrosion Performance of CrAlN/CrN Coatings in Artificial Seawater under Varied Nitrogen Pressures" Coatings 13, no. 12: 2090. https://doi.org/10.3390/coatings13122090
APA StyleLi, M., Yu, Y., Zou, C., Tian, C., & Xiang, Y. (2023). Tribological and Corrosion Performance of CrAlN/CrN Coatings in Artificial Seawater under Varied Nitrogen Pressures. Coatings, 13(12), 2090. https://doi.org/10.3390/coatings13122090