Effect of Minor Mo Addition on Microstructure and Corrosion Resistance of High-Velocity Air Fuel-Sprayed Fe-Based Amorphous Coatings
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Powders and Coatings
2.2. Microstructural and Phase Composition Analysis
2.3. Corrosion Analysis
3. Results and Discussion
3.1. Structure and Thermal Stability of the Coatings
3.2. Corrosion Resistance of the Coatings
3.2.1. Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy
3.2.2. Mott–Schottky
3.2.3. XPS
3.2.4. Corroded Surface Morphology
4. Conclusions
- (1)
- The addition of minor amounts of Mo improves the GFA of Fe-based coatings and decreases the porosity. A 4 at. % Mo addition improved the coating’s thermal stability, and a 20 K increase in the crystallization onset temperature was made.
- (2)
- A lower corrosion current density, a higher corrosion potential, and a greater charge transfer resistance indicate that adding Mo significantly increased the corrosion resistance of Fe-based coatings. In addition, the fully amorphous structure of Mo-containing coatings and the lower porosity also contribute to the corrosion resistance.
- (3)
- The addition of minor amounts of Mo reduces the defects in the passive film and increases the content of Cr, Nb, and Mo oxides, as well as inhibiting oxidative corrosion. Thus, the FeNbBSiCrNiMo coating has excellent corrosion resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.K.; Liu, L.M.; Zhang, R.; Chen, D.; Ma, G.Z.; Ye, C.E. Effect of isothermal annealing temperature on microstructure and mechanical properties of Cu45Zr45Ag7Al3 amorphous alloy. Mater. Res. Express 2023, 10, 55201. [Google Scholar] [CrossRef]
- Gu, J.L.; Lu, S.Y.; Shao, Y.; Yao, K.F. Segregating the homogeneous passive film and understanding the passivation mechanism of Ti-based metallic glasses. Corros. Sci. 2021, 178, 109078. [Google Scholar] [CrossRef]
- Wang, W. Development and Implication of Amorphous Alloys. Bull. Chin. Acad. Sci. 2022, 37, 352–359. [Google Scholar]
- Li, H.X.; Lu, Z.C.; Wang, S.L.; Wu, Y.; Lu, Z.P. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Prog. Mater. Sci. 2019, 103, 235–318. [Google Scholar] [CrossRef]
- Zhang, C.W.; Li, Q.; Xie, L.; Zhang, G.; Mu, B.X.; Chang, C.T.; Li, H.X.; Ma, X. Development of novel Fe-based bulk metallic glasses with excellent wear and corrosion resistance by adjusting the Cr and Mo contents. Intermetallics 2023, 153, 107801. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lin, T.J.; Sheu, H.H.; Lee, H.B. A study on corrosion and corrosion-wear behavior of Fe-based amorphous alloy coating prepared by high velocity oxygen fuel method. J. Mater. Res. Technol. 2021, 15, 4880–4895. [Google Scholar] [CrossRef]
- Wang, J.W.; Yang, R.; Tian, Y.; Zhou, P.; Huang, J.; Li, H.; Chen, X.Y. Effect of Annealing on the Cavitation Erosion Resistance of HVOF-Sprayed Fe-Based Amorphous Composite Coatings. J. Therm. Spray Technol. 2023, 32, 1758–1771. [Google Scholar] [CrossRef]
- Liu, X.Q.; Zeng, D.C.; Wu, Y.S.; Zheng, Z.G.; Qiu, Z.G. Microstructure and corrosion behavior of HVAF-sprayed Fe-based composite coatings doped TiB2 and CNTs. Corros. Sci. 2022, 208, 110629. [Google Scholar] [CrossRef]
- Kuchumova, I.D.; Cherkasova, N.Y.; Batraev, I.S.; Shikalov, V.S.; Ukhina, A.V.; Koga, G.Y.; Jorge, A.M. Wear-Resistant Fe-Based Metallic Glass-Al2O3 Composite Coatings Produced by Detonation Spraying. J. Therm. Spray Technol. 2022, 31, 1355–1365. [Google Scholar] [CrossRef]
- Li, T.R.; Wang, D.B.; Wang, Q.; Zhang, S.D.; Wang, J.Q. Susceptibility of Passive Film Stability to the Pore Defect for HVAF-Sprayed Fe-Based Amorphous Coatings. J. Therm. Spray Technol. 2023, 32, 1311–1326. [Google Scholar] [CrossRef]
- Li, M.K.; Huang, K.P.; Yi, X.M. Crack Formation Mechanisms and Control Methods of Laser Cladding Coatings: A Review. Coatings 2023, 13, 1117. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.; Sarhan, A.A.D.; Kuo, T.Y.; Yusuf, F.; Hamdi, M.; Chien, C.S. Investigate the effects of the substrate surface roughness on the geometry, phase transformation, and hardness of laser-cladded Fe-based metallic glass coating. Int. J. Adv. Manuf. Technol. 2018, 98, 1977–1987. [Google Scholar] [CrossRef]
- Ren, J.H.; Li, T.R.; Zhang, S.D.; Xu, M.; Wang, J.Q. Effect of inorganic silicate sealing treatment on corrosion behaviour for HVAF sprayed Fe-based amorphous coatings. Surf. Eng. 2023, 39, 174–183. [Google Scholar] [CrossRef]
- Silveira, L.L.; Pukasiewicz, A.G.M.; de Aguiar, D.J.M.; Zara, A.J.; Bjorklund, S. Study of the corrosion and cavitation resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB coatings. Surf. Coat. Technol. 2019, 374, 910–922. [Google Scholar] [CrossRef]
- Mahade, S.; Aranke, O.; Bjorklund, S.; Dizdar, S.; Awe, S.; Musalek, R.; Lukac, F.; Joshi, S. Influence of processing conditions on the microstructure and sliding wear of a promising Fe-based coating deposited by HVAF. Surf. Coat. Technol. 2021, 409, 126953. [Google Scholar] [CrossRef]
- Cheng, J.B.; Liang, X.B.; Wang, Z.H.; Xu, B.S. Microstructure and Mechanical Properties of FeBSiNb Metallic Glass Coatings by Twin Wire Arc Spraying. J. Therm. Spray Technol. 2013, 22, 471–477. [Google Scholar] [CrossRef]
- Zhang, B.S.; Chen, J.B.; Liang, X.B. Effects of Cr and Mo additions on formation and mechanical properties of Arc-sprayed FeBSiNb-based glassy coatings. J. Non-Cryst. Solids 2018, 499, 245–251. [Google Scholar] [CrossRef]
- Chai, W.K.; Lu, T.; Pan, Y. Corrosion behaviors of FeCoNiCrx (x=0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation. Intermetallics 2020, 116, 106654. [Google Scholar] [CrossRef]
- Henderson, J.D.; Almusned, B.; Momeni, M.; Anderson, S.; Dehnavi, V.; Zagidulin, D.; Shoesmith, D.W.; James, J.N. Investigating the Influence of Cr and Mo Additions to Commercial Ni-Based Alloys Exposed to Neutral and Acidic Chloride Solutions. J. Electrochem. Soc. 2020, 167, 131512. [Google Scholar] [CrossRef]
- Nayak, S.K.; Faridi, M.A.; Gopi, M.; Kumar, A.; Laha, T. Fe-based metallic glass composite coatings by HVOF spraying: Influence of Mo on phase evolution, wear and corrosion resistance. Mater. Charact. 2022, 191, 112149. [Google Scholar] [CrossRef]
- Enayati, M.H.; Schumacher, P.; Cantor, B. The structure and thermal stability of mechanically alloyed Ni-Nb-Zr amorphous alloys. J. Mater. Sci. 2002, 37, 5255–5259. [Google Scholar] [CrossRef]
- Johnson, W.L. Bulk glass-forming metallic alloys: Science and technology. Mrs Bull. 1999, 24, 42–56. [Google Scholar] [CrossRef]
- Shen, B.L.; Chang, C.T.; Zhang, Z.F.; Inoue, A. Enhancement of glass-forming ability of FeCoNiBSiNb bulk glassy alloys with superhigh strength and good soft-magnetic properties. J. Appl. Phys. 2007, 102, 23515. [Google Scholar] [CrossRef]
- Wang, G.; Huang, Z.J.; Xiao, P.; Zhu, X.B. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF. J. Manuf. Process. 2016, 22, 34–38. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Zhai, H.M.; Yuan, H.Y.; Li, W.S.; Zhang, X.J.; Li, X.S.; Cai, A.H. Corrosion resistance mechanisms of detonation sprayed Fe-based amorphous coating on AZ31B magnesium alloy. J. Non-Cryst. Solids 2022, 576, 121276. [Google Scholar] [CrossRef]
- Mansfeld, F.; Lin, S.; Kim, S.; Shih, H. Corrosion Protection of Al Alloys and Al-Based Metal Matrix Composites by Chemical Passivation. Corrision 1989, 45, 615. [Google Scholar] [CrossRef]
- Tian, W.P.; Yang, H.W.; Zhang, S.D. Synergistic Effect of Mo, W, Mn and Cr on the Passivation Behavior of a Fe-Based Amorphous Alloy Coating. Acta Metall. Sin. Engl. Lett. 2018, 31, 308–320. [Google Scholar] [CrossRef]
- Isakhani-Zakaria, M.; Allahkaram, S.R.; Ramezani-Varzaneh, H.A. Evaluation of corrosion behaviour of Pb-Co3O4 electrodeposited coating using EIS method. Corros. Sci. 2019, 157, 472–480. [Google Scholar] [CrossRef]
- Liu, X.Q.; Qiu, Z.G.; Zeng, D.C. Corrosion and Reciprocating Sliding Behavior of AC-HVAF Sprayed FeCrMoCBSi Amorphous Coating on Stainless Steel. J. Therm. Spray Technol. 2022, 31, 2207–2218. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Lamaka, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Egorkin, V.S.; Imshinetskiy, I.M.; Zavidnaya, A.G.; Zheludkevich, M.L.; Gnedenkov, S.V. Electrochemical behaviour of the MA8 Mg alloy in minimum essential medium. Corros. Sci. 2020, 168, 108552. [Google Scholar] [CrossRef]
- Cheng, J.B.; Feng, Y.; Yan, C.; Hu, X.L.; Li, R.F.; Liang, X.B. Development and Characterization of Al-Based Amorphous Coating. Jom 2020, 72, 745–753. [Google Scholar] [CrossRef]
- Gong, P.; Wang, D.L.; Zhang, C.; Wang, Y.; Jamili-Shirvan, Z.; Yao, K.F.; Wang, X.Y. Corrosion behavior of TiZrHfBeCu(Ni) high-entropy bulk metallic glasses in 3.5 wt. % NaCl. Npj Mater. Degrad. 2022, 6, 77. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, C.; Liu, L. Wear behavior and corrosion properties of Fe-based thin film metallic glasses. J. Alloys Compd. 2015, 650, 127–135. [Google Scholar] [CrossRef]
- Zhang, M.D.; Shi, X.L.; Li, Z.Y.; Xu, H.Q.; Li, G. Corrosion behaviors and mechanism of CrFeNi(2)based high-entropy alloys. Corros. Sci. 2022, 207, 110562. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Soltani, F.; Shirsalimi, F.; Ezadi, B.; Attarzadeh, N. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM). Corros. Sci. 2011, 53, 3186–3192. [Google Scholar] [CrossRef]
- Sun, M.H.; Pang, Y.J.; Du, C.W.; Li, X.G.; Wu, Y.M. Optimization of Mo on the corrosion resistance of Cr-advanced weathering steel designed for tropical marine atmosphere. Constr. Build. Mater. 2021, 302, 124346. [Google Scholar] [CrossRef]
- Nayak, S.K.; Kumar, A.; Laha, T. Fe-based metallic glass coatings by thermal spraying: A focused review on corrosion properties and related degradation mechanisms. Int. Mater. Rev. 2023, 68, 404–485. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, S.L.; Zheng, Y.G.; Ke, W.; Sun, W.H.; Wang, J.Q. Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions. Corros. Sci. 2012, 63, 159–173. [Google Scholar] [CrossRef]
- Wang, Z.M.; Ma, Y.T.; Zhang, J.; Hou, W.L.; Chang, X.C.; Wang, J.Q. Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses. Electrochim. Acta 2008, 54, 261–269. [Google Scholar] [CrossRef]
Parameter | FeNbBSiCrNi | FeNbBSiCrNiMo |
Spray distance (mm) | 240 | 240 |
Air pressure (psi) | 91 | 94 |
Fuel pressure (psi) | 87 | 89 |
Hydrogen flow rate (SLPM) | 35 | 35 |
Nitrogen flow rate (SLPM) | 25 | 25 |
Powder delivery rate (rpm) | 3 | 3 |
Traverse velocity (mm/s) | 1000 | 1000 |
Element | Fe | Nb | B | Si | Ni | Cr | Mo |
---|---|---|---|---|---|---|---|
Fe | 0 | −16 | −26 | −35 | −2 | −1 | −2 |
Nb | - | 0 | −54 | −56 | −30 | −7 | −36 |
B | - | - | 0 | −14 | −24 | −31 | −34 |
Si | - | - | - | 0 | −40 | −37 | −35 |
Ni | - | - | - | - | 0 | −7 | −7 |
Cr | - | - | - | - | - | 0 | 0 |
Mo | - | - | - | - | - | - | 0 |
Sample | Rs (Ω·cm2) | Qc × 10−5 (S·cm−2·sn) | nc | Rc (Ω·cm2) | Qdl × 10−4 (S·cm−2·sn) | ndl | Rct (Ω·cm2) | χ2 × 10−4 |
---|---|---|---|---|---|---|---|---|
FeNbBSiCrNi | 11.73 | 9.190 | 0.8080 | 545 | 2.711 | 0.4361 | 15,360 | 3.07 |
FeNbBSiCrNiMo | 11.67 | 7.092 | 0.7556 | 8714 | 2.164 | 0.6026 | 77,360 | 3.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Jing, Z.; Zhang, Z.; Zhang, B.; Ge, Y.; Xue, L.; Liang, X.; Cheng, J. Effect of Minor Mo Addition on Microstructure and Corrosion Resistance of High-Velocity Air Fuel-Sprayed Fe-Based Amorphous Coatings. Coatings 2023, 13, 2089. https://doi.org/10.3390/coatings13122089
Song P, Jing Z, Zhang Z, Zhang B, Ge Y, Xue L, Liang X, Cheng J. Effect of Minor Mo Addition on Microstructure and Corrosion Resistance of High-Velocity Air Fuel-Sprayed Fe-Based Amorphous Coatings. Coatings. 2023; 13(12):2089. https://doi.org/10.3390/coatings13122089
Chicago/Turabian StyleSong, Peisong, Zhiyuan Jing, Zhibin Zhang, Binbin Zhang, Yunyun Ge, Lin Xue, Xiubing Liang, and Jiangbo Cheng. 2023. "Effect of Minor Mo Addition on Microstructure and Corrosion Resistance of High-Velocity Air Fuel-Sprayed Fe-Based Amorphous Coatings" Coatings 13, no. 12: 2089. https://doi.org/10.3390/coatings13122089
APA StyleSong, P., Jing, Z., Zhang, Z., Zhang, B., Ge, Y., Xue, L., Liang, X., & Cheng, J. (2023). Effect of Minor Mo Addition on Microstructure and Corrosion Resistance of High-Velocity Air Fuel-Sprayed Fe-Based Amorphous Coatings. Coatings, 13(12), 2089. https://doi.org/10.3390/coatings13122089