The Initial Development and Evaluation of Cross-Linked Casein Films for Sustainable Footwear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Films
2.2. Characterisations
2.2.1. Color and Resistance to Light-Induced Fading
2.2.2. Mechanical Properties
2.2.3. Equilibrium Moisture Content
2.2.4. Water Vapour Permeability
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.6. Statistical Analysis
2.3. Preparation of Shoes
3. Results and Discussion
3.1. Appearance of the Films and Their Resistance to Light-Induced Fading
3.2. Mechanical Properties
3.3. Equilibrium Moisture Content
3.4. Water Vapour Permeability
3.5. Fourier Transform Infrared Spectroscopy (FTIR)
3.6. Shoes
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Footwear. Future Applications of Polyurethanes; January/February; Shoe Trades: Cambridge, MA, USA, 2007; pp. 32–35. [Google Scholar]
- Dulsang, N.; Kasemsiri, P.; Posi, P.; Hiziroglu, S.; Chindaprasirt, P. Characterization of an environment friendly lightweight concrete containing ethyl vinyl acetate waste. Mater. Des. 2016, 96, 350–356. [Google Scholar] [CrossRef]
- Tosun, C.C.; Mater Duru, H.; Afşar, A.; Adiguzel Zengin, A.C. Comparison of water permeability and water absorption performance of shoe upper leathers. Ann. Univ. Oradea Fascicle Text. Leatherwork 2021, 22, 121–124. [Google Scholar]
- Turner, A.; Filella, M. Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products. Sci. Total Environ. 2017, 584/585, 982–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biver, M.; Turner, A.; Filella, M. Antimony release from polyester textiles by artificial sweat solutions: A call for a standardized procedure. Regul. Toxicol. Pharmacol. 2021, 119, 104824. [Google Scholar] [CrossRef]
- Worthing, M.; Bosworth, L.; Papandrea, M.; Poehler, E.; Ellis, S.; Laurence, R. HHpXRF study of recent zinc and lead pollution on lava stepping stones from Pompeii: Tourist footfall, tyre dust and leaded petrol. Archaeometry 2020, 62, 1042–1066. [Google Scholar] [CrossRef]
- Kapp, K.J.; Miller, R.Z. Electric clothes dryers: An underestimated source of microfiber pollution. PLoS ONE 2020, 15, e0239165. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- McNeil, S. Light induced strength loss in jute and polypropylene carpet backing fabrics. Ann. Univ. Oradea Fascicle Text. Leatherwork 2018, 19, 65–70. Available online: http://textile.webhost.uoradea.ro/Annals/Vol%20XIX-No%201-2018/Textile/Art.%20no.%20294-pag.%2065-70.pdf (accessed on 11 January 2023).
- Nayak, K.; Gupta, P. Protein Based Biodegradable Polymer for Food and Non-Food Packaging: A Review. In Proceedings of the Third International Conference on Natural Polymers, Bio-Polymers, Bio-Materials, Their Composites, Blends, IPNs, Polyelectrolytes and Gels (ICNP-2012), Mahatma Gandhi University, Kottayam, India, 26–28 October 2012. [Google Scholar]
- Tripa, S.; Indrie, L. Households’ textile waste management in the context of a circular economy in Romania. Environ. Eng. Manag. J. 2021, 20, 81–87. [Google Scholar] [CrossRef]
- Ilieș, D.C.; Lite, M.-C.; Indrie, L.; Marcu, F.; Moș, C.; Ropa, M.; Sturzu, B.; Costea, M.; Albu, A.V.; Szabo-Alexi, P.; et al. Research for the conservation of cultural heritage in the context of the circular economy. Ind. Text. 2021, 72, 50–54. [Google Scholar] [CrossRef]
- Hou, E.; Huang, C.; Lee, Y.; Chu, H. Upcycled aquaculture waste as textile ingredient for promoting circular economy. Sust. Mater. Technol. 2022, 31, e00336. [Google Scholar] [CrossRef]
- Han, J.H.; Gennadios, A. Edible films and coatings: A review. In Innovations in Food Packaging; Han, J.H., Ed.; Elsevier: San Diego, CA, USA, 2005; pp. 239–262. [Google Scholar]
- Gennadios, A. Edible films and coatings from proteins. In Proteins in Food Processing; Yada, R.Y., Ed.; Woodhead Publishing: Cambridge, UK, 2004; pp. 442–467. [Google Scholar]
- Kaner, G. Greenwashing: How difficult it is to be transparent to the consumer H&M case study. In Green Marketing in Emerging Markets; Mukonza, C., Hinson, R.E., Adeola, O., Adisa, I., Mogaji, E., Kirgiz, A.C., Eds.; Palgrave MacMillan: Cham, Switzerland, 2021; pp. 203–206. [Google Scholar] [CrossRef]
- Kumar, P.K.; Anand, B. Understanding consumer purchase intention towards biodegradable footwear: A study. Indian J. Mark. 2013, 43, 16–24. [Google Scholar] [CrossRef]
- Collie, S.R.; Ranford, S.L.; Fowler, I.J.; Brorens, P.H. Microfibre Pollution–What’s The Story for Wool? In Proceedings of the 19th World Textile Conference-Autex, Gent, Belgium, 11–15 June 2019; Available online: http://autex2019.semicomedia.be/ (accessed on 13 May 2022).
- McNeil, S.J.; Sunderland, M.R.; Zaitseva, L.I. Closed-loop wool carpet recycling. Resour. Conserv. Recycl. 2007, 51, 220–224. [Google Scholar] [CrossRef]
- Donaldson, R.H. Flocking to It. Available online: https://www.engineeringnz.org/news-insights/flocking-it/ (accessed on 20 September 2022).
- Johnson, N.A.G.; Wood, E.J.; Ingham, P.E.; McNeil, S.J.; McFarlane, I.D. Wool as a technical fibre. J. Text. Inst. 2003, 94, 26–41. [Google Scholar] [CrossRef]
- Shivaprasad, P.; Jones, M.D.; Frith, P.; Emanuelsson, E.A.C. Investigating the effect of increasing cloth size and cloth number in a spinning mesh disc reactor (SMDR): A study on the reactor performance. Chem. Eng. Process 2020, 147, 107780. [Google Scholar] [CrossRef]
- McNeil, S.J.; Sunderland, M.R.; Leighs, S.J. The utilisation of wool as a catalyst and as a support for catalysts. Appl. Catal. A 2017, 541, 120–140. [Google Scholar] [CrossRef]
- DasGupta, S. Novel eco-friendly approaches for the production of upholstery leather. J. Am. Leather Chem. Assoc. 2009, 104, 92–102. [Google Scholar]
- Sunderland, M.; McNeil, S. The properties of wool fibre, yarn, knitted fabric, and leather obtained from enzyme depilation of ovine skins. Key Eng. Mater. 2015, 671, 317–323. [Google Scholar] [CrossRef]
- Omoloso, O.; Mortimer, K.; Wise, W.R.; Jraisat, L. Sustainability research in the leather industry: A critical review of progress and opportunities for future research. J. Clean. Prod. 2020, 285, 125441. [Google Scholar] [CrossRef]
- Gaidau, C.; Stanca, M.; Niculesc, M.; Berechet, D.; Simion, D.; Alexe, C. Circular technology for sheepskin tanning. Ann. Univ. Oradea Fascicle Text. Leatherwork 2021, 22, 95–100. [Google Scholar]
- Yorgancıoğlu, A.; Önem, E.; Yılmaz, O.; Karavana, H.A. Interactions between collagen and alternative leather tannages to chromium salts by comparative thermal analysis methods. Johns. Matthey Technol. Rev. 2022, 66, 215–226. [Google Scholar] [CrossRef]
- Michael, A. The Rise and Rise of the Merino Wool Shoe. The Spinoff. Available online: https://thespinoff.co.nz/business/20-01-2021/the-rise-of-the-merino-wool-shoe/?utm_source=linkedin&utm_campaign=LogiSYM%20Lighter (accessed on 13 May 2022).
- Cerimi, K.; Akkaya, K.C.; Pohl, C.; Schmidt, B.; Neubauer, P. Fungi as source for new bio-based materials: A patent review. Fungal Biol. Biotechnol. 2019, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, T.; Haigh, D. Wool/protein-fibre blends in felt manufacture. J. Text. Inst. Proc. 1952, 43, 593–603. [Google Scholar] [CrossRef]
- Carroll-Porczynski, C.Z. Natural Polymer Man-Made Fibres; National Trade Press Ltd.: London, UK, 1961; pp. 211–215. [Google Scholar]
- Bier, M.C.; Kohn, S.; Stierand, A.; Grimmelsmann, N.; Homburg, S.V.; Rattenholl, A.; Ehrmann, A. Investigation of eco-friendly casein fibre production methods. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 192004. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Novel protein fibers from wheat gluten. Biomacromolecules 2007, 8, 638–643. [Google Scholar] [CrossRef]
- Gupta, H.; McNeil, S.J.; Ranford, S.; Staiger, M. Development of Mesoporous Protein-Based Bio-Aerogels. In Proceedings of the 37th Australasian Polymer Symposium, Sunshine Coast, Australia, 10–13 November 2019; Available online: https://scienceandtechnologyaustralia.org.au/event/37th-australasian-polymer-symposium/ (accessed on 13 May 2022).
- Russell, G.T.; Stenzel, M.H. When Harry met Sally: Polymer chemistry meets biomaterials. Aust. J. Chem. 2006, 59, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.M.F.; Hunter, P.J.; Smaill, B.H. Biaxial testing of membrane biomaterials: Testing equipment and procedures. J. Biomech. Eng. 1991, 113, 295–300. [Google Scholar] [CrossRef] [PubMed]
- McNeil, S.J.; Gupta, H. Emerging applications of aerogels in textiles. Polym. Test. 2022, 106, 107426. [Google Scholar] [CrossRef]
- Mogas-Soldevila, L.; Matzeu, G.; Presti, M.L.; Omenetto, F.G. Additively manufactured leather-like silk protein materials. Mater. Des. 2021, 203, 109631. [Google Scholar] [CrossRef]
- Yordanova, D.; Gibbons, S. Milking it. Twist 2017, 18, 36–37. [Google Scholar]
- Smiddy, M.A.; Martin, J.-E.G.H.; Kelly, A.L.; De Kruif, C.G.; Huppertz, T. Stability of casein micelles cross-linked by transglutaminase. J. Dairy Sci. 2006, 89, 1906–1914. [Google Scholar] [CrossRef] [Green Version]
- Augustin, M.A.; Oliver, C.M.; Hemar, Y. Casein, Caseinates and Milk Protein Concentrates; Wiley-Blackwell: Oxford, UK, 2011. [Google Scholar]
- McMahon, D.J.; Oommen, B.S. Supramolecular structure of the casein micelle. J. Dairy Sci. 2008, 91, 1709–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matheis, G.; Whitaker, J.R. A review: Enzymatic cross-linking of proteins applicable to foods. J. Food Biochem. 1987, 11, 309–327. [Google Scholar] [CrossRef]
- Strube, O.I.; Bremser, W.; Rüdiger, A.A. Method for Coating Surfaces by Enzymatic. Reaction. Patent WO2015150368 A1, 31 March 2015. [Google Scholar]
- Gerrard, J.A. Protein-protein crosslinking in food: Methods, consequences, applications. Trends Food Sci. Technol. 2002, 13, 391–399. [Google Scholar] [CrossRef]
- Huang, J.; Li, K. A new soy flour-based adhesive for making interior type II plywood. J. Am. Oil Chem. Soc. 2008, 85, 63–70. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Xu, Q.; Zhang, J. Fabrication of antibacterial casein-based ZnO nanocomposite for flexible coatings. Mater. Des. 2017, 113, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Picchio, M.L.; Linck, Y.G.; Monti, G.A.; Gugliotta, L.M.; Minari, R.J.; Igarzabal, C.I.A. Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocoll. 2018, 84, 424–434. [Google Scholar] [CrossRef]
- Strauss, G.; Gibson, S.M. Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocoll. 2004, 18, 81–89. [Google Scholar] [CrossRef]
- Önem, E.; Yorgancıoğlu, A.; Karavana, H.A.; Yılmaz, O. Comparison of different tanning agents on the stabilization of collagen via differential scanning calorimetry. J. Therm. Anal. Calorim. 2017, 129, 615–622. [Google Scholar] [CrossRef]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- ISO 105-B02, Method 3; Colour Fastness to Artificial Light: Xenon Arc Fading Lamp Test. Textiles, Tests for Colour Fastness. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 3376; Determination of Tensile Strength and Percentage Elongation. Leather, Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 3377-1; Determination of Tear Load, Part 1: Single Edge Tear. Leather, Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 23910; Measurement of Stitch Tear Resistance. Leather, Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 3379; Determination of Distension and Strength of Surface (Ball Burst Method). International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 48-4; Determination of Hardness, Part 4: Indentation Hardness by Durometer Method (Shore Hardness). Rubber, Vulcanized or Thermoplastic. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 14268 [IULTCS/IUP 15]; Determination of Water Vapour Permeability, Leather Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2012.
- United Nations Industrial Development Organisation. Acceptable Quality Standards in the Leather and Footwear Industry; United Nations Industrial Development Organisation: Vienna, Austria, 1996. [Google Scholar]
- BASF. Pocket Book for the Leather Technologist, 4th ed.; BASF: Ludwigshafen, Germany, 2007. [Google Scholar]
- Jankauskaitė, V.; Jiyembetova, I.; Gulbinienė, A.; Širvaitytė, J.; Keleška, K.; Urbelis, V. Comparable evaluation of leather waterproofing behaviour upon hide quality. I. Influence of retanning and fatliqouring agents on leather structure and properties. Medžiagotyra 2012, 18, 1320–1392. [Google Scholar] [CrossRef] [Green Version]
- Aguzin, A.; Luque, G.C.; Ronco, L.I.; Del Agua, I.; Guzmán-González, G.; Marchiori, B.; Gugliotta, A.; Tomé, L.C.; Gugliotta, L.M.; Mecerreyes, D.; et al. Gelatin and tannic acid based iongels for muscle activity recording and stimulation electrodes. ACS Biomater. Sci. Eng. 2022, 8, 2598–2609. [Google Scholar] [CrossRef] [PubMed]
Film | L* | a* | b* | Lightfastness |
---|---|---|---|---|
A. G40/T5 | 15.0 | 4.0 | −0.9 | 4.17 ± 0.29 a |
B. G40/T10 | 25.5 | 0.3 | 5.3 | 4.17 ± 0.29 a |
C. G60/T5 | 6.9 | 3.2 | −2.1 | 4.17 ± 0.29 a |
D. G60/T10 | 27.1 | 3.2 | 7.5 | 4.00 ± 0.00 a |
Film | n | Thickness (mm) | Tensile Strength (N/mm2) | Elongationat Break (%) | Stitch Tear Strength (N/mm) | Single Edge Tear Strength (N/mm) |
---|---|---|---|---|---|---|
A. G40/T5 | 3 | 0.67 ± 0.01 b | 4.38 ± 0.60 a | 45.0 ± 10.6 b | 4.80 ± 0.16 c | 0.34 ± 0.05 c |
B. G40/T10 | 3 | 0.65 ± 0.02 b | 5.05 ± 0.31 a | 51.6 ± 19.3 a,b | 8.12 ± 1.40 b | 0.67 ± 0.02 b |
C. G60/T5 | 3 | 0.70 ± 0.07 b | 4.39 ± 0.40 a | 51.3 ± 7.4 a,b | 7.81 ± 1.33 b | 0.67 ± 0.02 b |
D. G60/T10 | 3 | 0.87 ± 0.02 a | 4.49 ± 0.35 a | 73.2 ± 6.9 a | 13.02 ± 1.04 a | 1.79 ± 0.03 a |
Film | Shore Hardness 1 | Grain Crack 2 | Grain Burst 2 | |||
---|---|---|---|---|---|---|
A | D | Strength (kgf) | Distension (mm) | Strength (kgf) | Distension (mm) | |
A. G40/T5 | 84.7 ± 6.6 a,b | 67.6 ± 4.5 a | 1.00 ± 0.00 a | 10.89 ± 0.13 a | 2.00 ± 0.00 a | 11.61 ± 0.30 a |
B. G40/T10 | 81.1 ± 2.3 b | 60.4 ± 8.5 b | 0.50 ± 0.00 b | 10.91 ± 0.05 a | 1.47 ± 0.50 a | 11.57 ± 0.31 a |
C. G60/T5 | 88.5 ± 3.4 a | 62.9 ± 3.7 a,b | 1.00 ± 0.00 a | 11.07 ± 0.11 a | 1.97 ± 1.00 a | 11.84 ± 0.54 a |
D. G60/T10 | 80.0 ± 7.2 b | 61.0 ± 5.2 b | 0.70 ± 0.26 b | 9.32 ± 0.08 b | 2.00 ± 0.00 a | 11.40 ± 0.06 a |
Absorption Band | Casein Only | A. G40/T5 | B. G40/T10 | C. G60/T5 | D. G60/T10 |
---|---|---|---|---|---|
Bending vibrations of O–H and N–H | 3276 | 3270 | 3270 | 3270 | 3278 |
Stretching vibrations of –CH2 | 2959 | 2918 | 2917 | 2918 | 2916 |
Amide I, C=O stretching | 1632 | 1626 | 1625 | 1633 | 1624 |
Amide II, N–H bending | 1516 | 1539 | 1556 | 1542 | 1568 |
Amide III, C–N, N–H stretching | 1237 | 1239 | 1242 | 1239 | 1245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indrie, L.; McNeil, S.; Mutlu, M.M.; Bota, S.; Ilieș, D.C.; Karavana, H.A. The Initial Development and Evaluation of Cross-Linked Casein Films for Sustainable Footwear. Coatings 2023, 13, 217. https://doi.org/10.3390/coatings13020217
Indrie L, McNeil S, Mutlu MM, Bota S, Ilieș DC, Karavana HA. The Initial Development and Evaluation of Cross-Linked Casein Films for Sustainable Footwear. Coatings. 2023; 13(2):217. https://doi.org/10.3390/coatings13020217
Chicago/Turabian StyleIndrie, Liliana, Steven McNeil, Mehmet Mete Mutlu, Sanda Bota, Dorina Camelia Ilieș, and Hüseyin Ata Karavana. 2023. "The Initial Development and Evaluation of Cross-Linked Casein Films for Sustainable Footwear" Coatings 13, no. 2: 217. https://doi.org/10.3390/coatings13020217
APA StyleIndrie, L., McNeil, S., Mutlu, M. M., Bota, S., Ilieș, D. C., & Karavana, H. A. (2023). The Initial Development and Evaluation of Cross-Linked Casein Films for Sustainable Footwear. Coatings, 13(2), 217. https://doi.org/10.3390/coatings13020217