An Overview of the Latest Developments in the Electrochemical Aptasensing of Neurodegenerative Diseases
Abstract
:1. Introduction
2. Neurodegenerative Diseases Biomarkers
2.1. α-Synuclein
2.2. Amyloid β Peptide
2.3. Tau Protein
2.4. Human Cellular Prion Protein
Biomarker | Biorecognition Element | Techniques | Linear Range of Detection | LOD | Ref. |
---|---|---|---|---|---|
α-syn oligomer | DNA Apt | DPV | 6 × 10−11–1.5 × 10−7 M | 10−11 M | [102] |
SH-DNA Apt | EIS | – | 10−12 M | [103] | |
DNA Apt-MB | DPV | 10−15–10−9 M | 6.4 × 10−16 M | [104] | |
NH2-DNA Apt | EIS | 10−19–10−14 M | 7 × 10−20 M (buffer) 9 × 10−20 M (plasma) | [105] | |
Total α-syn | DNA Apt-AuNPs conjugate | Vm | 10−11–10−6 M | 10−11 M | [106] |
Aβ | RNA Apt | DPV | 0.002–1.28 ng/mL | 0.4 pg/mL | [114] |
AβOs | Ab-DNA Apt sandwich | DPV | – | 10−10 M | [115] |
DNA Apt-AuNFs | DPV | 10−9–2 × 10−6 M | 4.5 × 10−10 M | [116] | |
DNA Apt | EIS | 10−10–5 × 10−7 M | 3 × 10−11 M | [119] | |
Apt-Poly T-CuNPs | DPV | 10−11–2.2 × 10−9 M | 3.5 × 10−12 M | [117] | |
DNA Apt1 Apt2 | LSV | 10−12–10−8 M | 4.3 × 10−13 M | [118] | |
SH–stem-loop DNA Apt-Fc | ACV | 10−12–2 × 10−7 M | 3 × 10−13 M | [121] | |
NH2-DNA Apt | DPV | 4.43 × 10−14–4.43 × 10−6 M | 10−14 M | [122] | |
DNA Apt–Fc | ACV | 10−13–1.5 × 10−6 M | 2 × 10−15 M | [120] | |
THAS | DPV | 10−15–10−11 M | 5 × 10−16 M | [123] | |
SH-DNA Apt | DPV | 5 × 10−16–5 × 10−13 M | 2.5 × 10−16 M | [124] | |
SiO2Ag- DNA Apt bioconjugate | DPV | 5 pg/mL–10 ng/mL | 1.22 pg/mL | [125] | |
SH-DNA Apt | DPV | 0.5–10 pg/mL – | 160 fg/mL (buffer) 900 fg/mL (serum) | [126] | |
DNA Apt–SnS2 NSs | EIS | 10−4–103 ng/mL – | 238.9 fg/mL (PB) 56.9 fg/mL (HS) | [127] | |
AβOs(40) | DNA Apt | SWV | 0.100–1.00 µM | 9.3 × 10−11 M | [128] |
Tau-381 protein | NH2-DNA Apt | DPV | 1.0–10−10 M | 7 × 10−13 M | [136] |
Anti-tau Ab + tau-381 DNA Apt | DPV | 0.5–10−10 M | 4.2 × 10−13 M | [137] | |
NH2-DNA Apt–MWCNTs | EIS | 10−15–1 × 10−9 M | 10−15 M | [138] | |
SH-DNA Apt–VG@Au | DPV | 0.1 pg/mL–1–1 ng/mL | 0.034 pg/mL | [139] | |
PrPC | Biot DNA Apt with dT15 spacer | DPV | 10−12–10−9 M | 8 × 10−13 M | [147] |
Biot DNA Apt with dT15 spacer | CV | 10−12–10−5 M | 5 × 10−13 M | [150] | |
MB DNA Apt and FcA | SWV | 2 × 10−13–10−5 M | 1.6 × 10−13 M | [142] | |
DNA1 Apt and DNA2 Apt | SWV | 2 × 10−14–2.8 × 10−13 M | 7.6 × 10−15 M | [151] |
3. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, H.-M.; Hong, J.-S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol. 2008, 29, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Amor, S.; Puentes, F.; Baker, D.; van der Valk, P. Inflammation in neurodegenerative diseases. Immunol. 2010, 129, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Villalonga, A.; Pérez-Calabuig, A.M.; Villalonga, R. Electrochemical biosensors based on nucleic acid aptamers. Anal. Bioanal. Chem. 2020, 412, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, L.A.; Wei, Q.; Barui, A.K.; Noor, M. Recent advances in aptamer-based biosensors for global health applications. Annu. Rev. Biomed. Eng. 2021, 23, 433–459. [Google Scholar] [CrossRef]
- Yoo, H.; Jo, H.; Oh, S.S. Detection and beyond: Challenges and advances in aptamer-based biosensors. Mater. Adv. 2020, 1, 2663. [Google Scholar] [CrossRef]
- Khan, N.I.; Song, E. Lab-on-a-chip systems for aptamer-based biosensing. Micromachines 2020, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M. Progress in electrochemical biosensing of SARS-CoV-2 virus for COVID-19 management. Chemosensors 2022, 10, 287. [Google Scholar] [CrossRef]
- Mascini, M.; Palchetti, I.; Tombelli, S. Nucleic acid and peptide aptamers: Fundamentals and bioanalytical aspects. Angew. Chem. Int. Ed. Engl. 2012, 51, 1316–1332. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, B.S.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules 2019, 24, 941. [Google Scholar] [CrossRef] [Green Version]
- Dunn, M.R.; Jimenez, R.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 0076. [Google Scholar] [CrossRef]
- Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; et al. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl. Mater. Interfaces 2021, 13, 9500–9519. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, S.; Cai, Y.Q.; Tang, F.Q. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-selex technology. NPJ Precis. Oncol. 2017, 1, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discovery 2016, 16, 181–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.L.; Chen, C.T.; Wang, W.; Que, L. An aptamer nanopore-enabled microsensor for detection of theophylline. Biosens. Bioelectron. 2018, 105, 36–41. [Google Scholar] [CrossRef]
- Umrao, S.; Jain, V.; Anusha; Chakraborty, B.; Roy, R. Protein-induced fluorescence enhancement as aptamer sensing mechanism for thrombin detection. Sens. Actuators B 2018, 267, 294–301. [Google Scholar] [CrossRef]
- Saraf, N.; Woods, E.R.; Peppler, M.; Seal, S. Highly selective aptamer based organic electrochemical biosensor with pico-level detection. Biosens. Bioelectron. 2018, 117, 40–46. [Google Scholar] [CrossRef]
- Han, K.; Liang, Z.; Zhou, N. Design strategies for aptamer-based biosensors. Sensors 2010, 10, 4541–4557. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Q.; Wu, Z.; Tang, L.J.; Yu, R.Q.; Jiang, J.H. Fluorescence protection assay: A novel homogeneous assay platform toward development of aptamer sensors for protein detection. Nucleic Acids Res. 2011, 39, e122. [Google Scholar] [CrossRef]
- Elskens, J.P.; Elskens, J.M.; Madder, A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: Current status and future prospects. Int. J. Mol. Sci. 2020, 21, 4522. [Google Scholar] [CrossRef]
- Nerantzaki, M.; Loth, C.; Lutz, J.-F. Chemical conjugation of nucleic acid aptamers and synthetic polymers. Polym. Chem. 2021, 12, 3498–3509. [Google Scholar] [CrossRef]
- Ozturk, M.; Nilsen-Hamilton, M.; Ilgu, M. Aptamer applications in neuroscience. Pharmaceuticals 2021, 14, 1260. [Google Scholar] [CrossRef]
- Kong, H.Y.; Byun, J. Nucleic acid aptamers: New methods for selection, stabilization, and application in biomedical science. Biomol. Ther. 2013, 21, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Arshavsky-Graham, S.; Heuer, C.; Jiang, X.; Segal, E. Aptasensors versus immunosensors—Which will prevail? Eng. Life Sci. 2022, 22, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Pividori, M.I.; Merkoci, A.; Alegret, S. Electrochemical genosensor design: Immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron. 2000, 15, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, Y. Functional Nucleic Acids for Analytical Applications, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Oberhaus, F.V.; Frense, D.; Beckmann, D. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: A review. Biosensors 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Nan, M.-N.; Bi, Y.; Xue, H.-L.; Long, H.-T.; Xue, S.-L.; Pu, L.-M.; Prusky, D. Modification performance and electrochemical characteristics of different groups of modified aptamers applied for label-free electrochemical impedimetric sensors. Food Chem. 2021, 337, 127761. [Google Scholar] [CrossRef] [PubMed]
- Zamay, G.S.; Zamay, T.N.; Kolovskii, V.A.; Shabanov, A.V.; Glazyrin, Y.E.; Veprintsev, D.V.; Krat, A.V.; Zamay, S.S.; Kolovskaya, O.S.; Gargaun, A.; et al. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci. Rep. 2016, 6, 34350. [Google Scholar] [CrossRef] [Green Version]
- Mazaafrianto, D.N.; Ishida, A.; Maeki, M.; Tani, H.; Tokeshi, M. Label-free electrochemical sensor for Ochratoxin A using a microfabricated electrode with immobilized aptamer. ACS Omega 2018, 3, 16823–16830. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Mosher, C.; Lee, X.Y.; Das, S.R.; Cargill, A.A.; Tang, X.; Chen, B.; McLamore, E.S.; Gomes, C.; Hostetter, J.M.; et al. Rapid and label-free detection of interferon gamma via an electrochemical aptasensor comprised of a ternary surface monolayer on a gold interdigitated electrode array. ACS Sens. 2017, 2, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Xu, H.; Xu, X.; Zhang, Y.; Ma, Y.; Li, C.; Xie, Q. Effective covalent immobilization of Quinone and aptamer onto a gold electrode via thiol addition for sensitive and selective protein biosensing. Talanta 2017, 164, 244–248. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Y.; Jiao, M.; Jayachandran, S.; Wu, Y.; Fan, X.; Luoet, X. Mixed self-assembled aptamer and newly designed zwitterionic peptide as antifouling biosensing interface for electrochemical detection of alpha-fetoprotein. ACS Sens. 2017, 2, 490–494. [Google Scholar] [CrossRef]
- Liu, N.; Song, J.; Lu, Y.; Davis, J.J.; Gao, F.; Luo, X. Electrochemical aptasensor for ultralow fouling cancer cell quantification in complex biological media based on designed branched peptides. Anal. Chem. 2019, 91, 8334–8340. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Cheng, K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J. Control. Release 2017, 245, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.K.; Rajput, Y.S.; Sharma, R.; Singh, D. Immobilized aptamer on gold electrode senses trace amount of aflatoxin M1. Appl. Nanosci. 2017, 7, 893–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karapetis, S.; Nikolelis, D.; Hianik, T. Label-free and redox markers-based electrochemical aptasensors for aflatoxin M1 detection. Sensors 2018, 18, 4218. [Google Scholar] [CrossRef] [Green Version]
- Tahiri-Alaoui, A.; Frigotto, L.; Manville, N.; Ibrahim, J.; Romby, P.; James, W. High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res. 2002, 30, e45. [Google Scholar] [CrossRef] [Green Version]
- Gan, X.; Zhao, H. Understanding signal amplification strategies of nanostructured electrochemical sensors for environmental pollutants. Curr. Opin. Electrochem. 2019, 17, 56–64. [Google Scholar] [CrossRef]
- Liu, J.; Morris, M.D.; Macazo, F.C.; Schoukroun-Barnes, L.R.; White, R.J. The current and future role of aptamers in electroanalysis. J. Electrochem. Soc. 2014, 161, H301–H313. [Google Scholar] [CrossRef]
- Walcarius, A. Silica-based electrochemical sensors and biosensors: Recent trends. Curr. Opin. Electrochem. 2018, 10, 88–97. [Google Scholar] [CrossRef]
- Negahdary, M. Electrochemical aptasensors based on the gold nanostructures. Talanta 2020, 216, 120999. [Google Scholar] [CrossRef]
- Pan, M.; Yang, J.; Liu, K.; Yin, Z.; Ma, T.; Liu, S.; Xu, L.; Wang, S. Noble metal nanostructured materials for chemical and biosensing systems. Nanomaterials 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Yu, J.; Gui, R.; Jin, H.; Xia, Y. Carbon nanomaterials-based electrochemical aptasensors. Biosens. Bioelectron. 2016, 79, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Nekoueian, K.; Saberi, R.S. Graphene-family materials in electrochemical aptasensors. Anal. Bioanal. Chem. 2021, 413, 673–699. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.O.; Mamba, B.; Feleni, U. Poly (propylene imine) dendrimer: A potential nanomaterial for electrochemical application. Mater. Chem. Phys. 2020, 244, 122641. [Google Scholar] [CrossRef]
- Amouzadeh Tabrizi, M.; Acedo, P. An electrochemical impedance spectroscopy-based aptasensor for the determination of SARS-CoV-2-RBD using a carbon nanofiber–gold nanocomposite modified screen-printed electrode. Biosensors 2022, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.I.; Cetinkaya, A.; Ozkan, S.A. Latest advances in determination of bisphenols with nanomaterials, molecularly imprinted polymers and aptamer based electrochemical sensors. Crit. Rev. Anal. Chem. 2022, 52, 1223–1243. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Microchim. Acta 2018, 185, 358. [Google Scholar] [CrossRef]
- Ma, M.; Lu, X.; Guo, Y.; Wang, L.; Liang, X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. TrAC Trends Anal. Chem. 2022, 157, 116741. [Google Scholar] [CrossRef]
- Ye, Q.; Zhang, Z.; Liu, J.; Wang, X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: A review. Anal. Methods 2022, 14, 2961–2975. [Google Scholar] [CrossRef]
- Onaş, A.M.; Dascălu, C.; Raicopol, M.D.; Pilan, L. critical design factors for electrochemical aptasensors based on target-induced conformational changes: The case of small-molecule targets. Biosensors 2022, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Villalonga, A.; Mayol, B.; Villalonga, R.; Vilela, D. Electrochemical aptasensors for clinical diagnosis. A review of the last five years. Sens. Actuators B 2022, 369, 132318. [Google Scholar] [CrossRef]
- Kurup, C.P.; Mohd-Naim, N.F.; Ahmed, M.U. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit. Rev. Biotechnol. 2022, 42, 794–812. [Google Scholar] [CrossRef]
- Yousef, H.; Liu, Y.; Zheng, L. Nanomaterial-based label-free electrochemical aptasensors for the detection of thrombin. Biosensors 2022, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Plaxco, K.W.; Soh, H.T. Switch-based biosensors: A new approach towards real-time, in vivo molecular detection. Trends. Biotechnol. 2011, 29, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics 2018, 8, 4016. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M.; Marty, J.L. Recent advances in electrochemical aptasensors for detection of biomarkers. Pharmaceuticals 2022, 15, 995. [Google Scholar] [CrossRef]
- Ghoorchian, A.; Moradi, M.; Aghajani, S.; Afkhami, A.; Madrakian, T.; Thomas, S.; Nguyen, T.A.; Ahmadi, M. Miniaturized bioelectrochemical devices. In Micro and Nano Technologies, Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems, 1st ed.; Thomas, S., Ahmadi, M., Nguyen, T.A., Afkhami, A., Madrakian, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 5; pp. 89–108. [Google Scholar]
- Fuellen, G.; Jansen, L.; Cohen, A.A.; Luyten, W.; Gogol, M.; Simm, A.; Saul, N.; Cirulli, F.; Berry, A.; Antal, P.; et al. Health and aging: Unifying concepts, scores, biomarkers and pathways. Aging Dis. 2019, 10, 883. [Google Scholar] [CrossRef] [Green Version]
- Mayeux, R. Biomarkers: Potential uses and limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef]
- Fagan, A.M.; Roe, C.M.; Xiong, C.; Mintun, M.A.; Morris, J.C.; Holtzman, D.M. Cerebrospinal fluid tau/β-Amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol. 2007, 64, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachakonda, V.; Pan, T.; Le, W. Biomarkers of neurodegenerative disorders: How good are they? Cell Res. 2004, 14, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-González, M. Biomarkers in neurodegenerative disorders: Translating research into clinical practice. Front. Aging Neurosci. 2014, 6, 281. [Google Scholar] [PubMed] [Green Version]
- Counts, S.E.; Ikonomovic, M.D.; Mercado, N.; Vega, I.E.; Mufson, E.J. Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics 2017, 14, 35–53. [Google Scholar] [PubMed] [Green Version]
- Coupé, P.; Manjón, J.V.; Lanuza, E.; Catheline, G. Lifespan changes of the human brain in Alzheimer’s disease. Sci. Rep. 2019, 9, 3998. [Google Scholar] [CrossRef] [Green Version]
- Veerabhadrappa, B.; Delaby, C.; Hirtz, C.; Vialaret, J.; Alcolea, D.; Lleó, A.; Fortea, J.; Santosh, M.S.; Choubey, S.; Lehmann, S. Detection of amyloid beta peptides in body fluids for the diagnosis of Alzheimer’s disease: Where do we stand? Crit. Rev. Clin. Lab. Sci. 2020, 57, 99–113. [Google Scholar] [CrossRef]
- Shinohara, M.; Hirokawa, J.; Shimodaira, A.; Tashiro, Y.; Suzuki, K.; Gheni, G.; Fukumori, A.; Matsubara, T.; Morishima, M.; Saito, Y.; et al. ELISA evaluation of tau accumulation in the brains of patients with Alzheimer disease. J. Neuropathol. Exp. Neurol. 2021, 80, 652–662. [Google Scholar] [CrossRef]
- Yang, C.-M.; Chang, J.-Y.; Chen, M.-Y.; Lai, C.-S. A systematic study and potential limitations of proton-ELISA platform for α-synuclein antigen detection. Chemosensors 2022, 10, 5. [Google Scholar] [CrossRef]
- Noor, M.B.T.; Zenia, N.Z.; Kaiser, M.S.; Mahmud, M.; Al Mamun, S. Detecting Neurodegenerative Disease from MRI: A Brief Review on a Deep Learning Perspective. In International Conference on Brain Informatics; Liang, P., Goel, V., Shan, C., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; pp. 115–125. [Google Scholar] [CrossRef]
- Jun, Y.; Qinqing, L. Manganese-enhanced magnetic resonance imaging: Application in central nervous system diseases. Front. Neurol. 2020, 11, 143. [Google Scholar]
- Agrawal, I.; Tripathi, P.; Biswas, S. Mass spectrometry based protein biomarkers and drug target discovery and clinical diagnosis in age-related progressing neurodegenerative diseases. Drug Metab. Rev. 2022, 54, 22–36. [Google Scholar] [CrossRef]
- Azevedo, R.; Jacquemin, C.; Villain, N.; Fenaille, F.; Lamari, F.; Becher, F. Mass spectrometry for neurobiomarker discovery: The relevance of post-translational modifications. Cells 2022, 11, 1279. [Google Scholar] [CrossRef]
- Kang, M.K.; Lee, J.; Nguyen, A.H.; Sim, S.J. Label-free detection of ApoE4-mediated β-amyloid aggregation on single nanoparticle uncovering Alzheimer’s disease. Biosens. Bioelectron. 2015, 72, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Edison, P. Tau imaging in neurodegenerative diseases using Positron Emission Tomography. Curr. Neurol. Neurosci. Rep. 2019, 19, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, M.; Cimini, A.; Camedda, R.; Chiaravalloti, A.; Schillaci, O. Tau biomarkers in dementia: Positron Emission Tomography radiopharmaceuticals in tauopathy assessment and future perspective. Int. J. Mol. Sci. 2021, 22, 13002. [Google Scholar] [CrossRef] [PubMed]
- Rezabakhsh, A.; Rahbarghazi, R.; Fathi, F. Surface plasmon resonance biosensors for detection of Alzheimer’s biomarkers; an effective step in early and accurate diagnosis. Biosen. Bioelectron. 2020, 167, 112511. [Google Scholar]
- Sengupta, U.; Portelius, E.; Hansson, O.; Farmer, K.; Castillo-Carranza, D.; Woltjer, R.; Zetterberg, H.; Galasko, D.; Blennow, K.; Kayed, R. Tau oligomers in cerebrospinal fluid in Alzheimer’s disease. Ann. Clin. Transl. Neurol. 2017, 4, 226–235. [Google Scholar] [CrossRef]
- Shi, L.; Baird, A.L.; Westwood, S.; Hye, A.; Dobson, R.; Thambisetty, M.; Lovestone, S. A decade of blood biomarkers for alzheimer’s disease research: An evolving field, improving study designs, and the challenge of replication. J. Alzheimer’s Dis. 2018, 62, 1181–1198. [Google Scholar]
- Kang, D.-Y.; Lee, J.-H.; Oh, B.-K.; Choi, J.-W. Ultra-sensitive immunosensor for β-amyloid (1-42) using scanning tunneling microscopy-based electrical detection. Biosens. Bioelectron. 2009, 24, 1431–1436. [Google Scholar] [CrossRef]
- Shankar, G.M.; Leissring, M.A.; Adame, A.; Sun, X.; Spooner, E.; Masliah, E.; Selkoe, D.J.; Lemere, C.A.; Walsh, D.M. Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Aβ assembly forms throughout life. Neurobiol. Dis. 2009, 36, 293–302. [Google Scholar] [CrossRef] [Green Version]
- den Haan, J.; Morrema, T.H.J.; Verbraak, F.D.; de Boer, J.F.; Scheltens, P.; Rozemuller, A.J.; Bergen, A.A.B.; Bouwman, F.H.; Hoozemans, J.J. Amyloid-beta and phosphorylated tau in post-mortem Alzheimer’s disease retinas. Acta Neuropathol. Commun. 2018, 6, 147. [Google Scholar]
- Zhang, H.; Zhu, X.; Pascual, G.; Wadia, J.S.; Keogh, E.; Hoozemans, J.J.; Siregar, B.; Inganäs, H.; Stoop, E.J.M.; Goudsmit, J.; et al. Structural basis for recognition of a unique epitope by a human anti-tau antibody. Structure 2018, 26, 1626–1634. [Google Scholar] [PubMed] [Green Version]
- Zhou, J.; Jangili, P.; Son, S.; Ji, M.S.; Won, M.; Kim, J.S. Fluorescent diagnostic probes in neurodegenerative diseases. Adv. Mater. 2020, 32, 2001945. [Google Scholar] [CrossRef]
- Lv, G.; Shen, Y.; Zheng, W.; Yang, J.; Li, C.; Lin, J. Fluorescence detection and dissociation of amyloid-βspecies for the treatment of Alzheimer’s disease. Adv. Ther. 2019, 2, 1900054. [Google Scholar] [CrossRef]
- Liu, B.; Shen, H.; Hao, Y.; Zhu, X.; Li, S.; Huang, Y.; Qu, P.; Xu, M. Lanthanide functionalized metal-organic coordination polymer: Toward novel turn-on fluorescent sensing of amyloid β-peptide. Anal. Chem. 2018, 90, 12449–12455. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.; Palma-Florez, S.; Lagunas, A.; López-Martínez, M.J.; Samitier, J. Biosensors integration in blood–brain barrier-on-a-chip: Emerging platform for monitoring neurodegenerative diseases. ACS Sensors 2022, 7, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Negahdary, M.; Angnes, L. Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer’s disease: A review. Biomater. Adv. 2022, 135, 112689. [Google Scholar] [CrossRef]
- Aggarwal, N.; Choudhury, S.; Chibh, S.; Panda, J.J. Aptamer-nanoconjugates as emerging theranostic systems in neurodegenerative disorders. Colloid Interface Sci. Commun. 2022, 46, 100554. [Google Scholar]
- Margiana, R.; Hammid, A.T.; Ahmad, I.; Alsaikhan, F.; Jalil, A.T.; Tursunbaev, F.; Umar, F.; Romero Parra, R.M.; Mustafa, Y.F. Current progress in aptasensor for ultra-low level monitoring of Parkinson’s disease biomarkers. Crit. Rev. Anal. Chem. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cookson, M.R. The biochemistry of Parkinson’s disease. Annu. Rev. Biochem. 2005, 74, 29–52. [Google Scholar]
- Martin, F.L.; Williamson, S.J.; Paleologou, K.E.; Allsop, D.; El-Agnaf, O.M.A. Alphasynuclein and the pathogenesis of Parkinson’s disease. Protein Pept. Lett. 2004, 11, 229–237. [Google Scholar] [CrossRef]
- El-Agnaf, O.M.A.; Salem, S.A.; Paleologou, K.E.; Curran, M.D.; Gibson, M.J.; Court, J.A.; Schlossmacher, M.G.; Allsop, D. Cancer Research—Nanoparticles, nanobiosensors and their use in cancer research. Online J. Nanotechnol. 2006, 3, 1–14. [Google Scholar]
- Ingelsson, M. Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front. Neurosci. 2016, 10, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.S.; Heng, Y.; Yuan, Y.H.; Chen, N.H. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicol. Lett. 2017, 265, 30–37. [Google Scholar] [CrossRef]
- Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: A review. Biochimie 2018, 147, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Brettschneider, J.; Tredici, K.D.; Lee, V.M.Y.; Trojanowski, J.Q. Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat. Rev. Neurosci. 2015, 16, 109–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanth, V.; Maczurek, A.; Phan, T.; Steele, M.; Westcott, B.; Juskiw, D.; Münch, G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging 2011, 32, 763–777. [Google Scholar] [PubMed]
- Guo, J.L.; Lee, V.M.Y. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 2014, 20, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Tyson, T.; Steiner, J.A.; Brundin, P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J. Neurochem. 2016, 139, 275–289. [Google Scholar]
- Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Alibolandi, M.; Hassanzadeh-Khayat, M.; Emrani, A.S.; Abnous, K. A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer. Biosens. Bioelectron. 2019, 123, 14–18. [Google Scholar] [CrossRef]
- Sun, K.; Xia, N.; Zhao, L.; Liu, K.; Hou, W.; Li, L. Aptasensors for the selective detection of alpha-synuclein oligomer by colorimetry, surface plasmon resonance and electrochemical impedance spectroscopy. Sens. Actuators B 2017, 245, 87–94. [Google Scholar] [CrossRef]
- Jang, S.J.; Lee, C.-S.; Kim, T.H. α-Synuclein oligomer detection with aptamer switch on reduced graphene oxide electrode. Nanomaterials 2020, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Tao, D.; Wang, J.; Song, S.; Cai, K.; Jiang, M.; Cheng, J.; Hu, L.; Jafrezic-Renault, N.; Guo, Z.; Pan, H. Polythionine and gold nanostar-based impedimetric aptasensor for label-free detection of α-synuclein oligomers. J. Appl. Electrochem. 2021, 51, 1523–1533. [Google Scholar] [CrossRef]
- You, X.; Gopinath, S.C.B.; Lakshmipriya, T.; Li, D. High-affinity detection of Alpha-Synuclein by aptamer-gold conjugates on an amine-modified dielectric surface. J. Anal. Methods Chem. 2019, 2019, 6526850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Mayeux, R.; Honig, L.S.; Tang, M.X.; Manly, J.; Stern, Y.; Schupf, N.; Mehta, P.D. Plasma Aβ40 and Aβ42 and Alzheimer’s disease: Relation to age, mortality, and risk. Neurology 2003, 61, 1185–1190. [Google Scholar] [CrossRef]
- Shuvaev, V.V.; Laffont, I.; Serot, J.M.; Fujii, J.; Taniguchi, N.; Siest, G. Increased protein glycation in cerebrospinal fluid of Alzheimer’s disease. Neurobiol. Aging 2001, 22, 397–402. [Google Scholar] [CrossRef]
- Stanyon, H.F.; Viles, J.H. Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: Implications for Alzheimer disease. J. Biol. Chem. 2012, 287, 28163–28168. [Google Scholar] [CrossRef]
- Graff-Radford, N.R.; Crook, J.E.; Lucas, J.; Boeve, B.F.; Knopman, D.S.; Ivnik, R.J.; Smith, G.E.; Younkin, L.H.; Petersen, R.C.; Younkin, S.G. Association of low plasma Aβ42/Aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol. 2007, 64, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Luca, A.; Calandra, C.; Luca, M. Molecular bases of Alzheimer’s disease and neurodegeneration: The role of neuroglia. Aging Dis. 2018, 9, 1134–1152. [Google Scholar]
- Terry, R.D. Neuropathological changes in Alzheimer disease. Prog. Brain Res. 1994, 101, 383–390. [Google Scholar]
- Negahdary, M.; Heli, H. An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer’s disease, using a fern leaves-like gold nanostructure. Talanta 2019, 198, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, H.; Liu, L.; Li, C.; Chang, Z.; Zhu, X.; Ye, B.; Xu, M. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci. Rep. 2016, 6, 35186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, C.; Li, X.; Zhu, X.; Ye, B.; Xu, M. A sensitive aptasensor for detection of β-amyloid oligomers based on metal-organic frameworks as electrochemical signal probes. Anal. Methods 2018, 10, 4430–4437. [Google Scholar] [CrossRef]
- Zhou, Y.; Lv, Y.; Dong, H.; Liu, L.; Mao, G.; Zhang, Y.; Xu, M. Ultrasensitive assay of amyloid-beta oligomers using Au-vertical graphene/carbon cloth electrode based on poly(thymine)-templated copper nanoparticles as probes. Sens. Actuators B 2021, 331, 129429. [Google Scholar] [CrossRef]
- Liao, X.; Ge, K.; Cai, Z.; Qiu, S.; Wu, S.; Li, Q.; Liu, Z.; Gao, F.; Tang, Q. Hybridization chain reaction triggered poly adenine to absorb silver nanoparticles for label-free electrochemical detection of Alzheimer’s disease biomarkers amyloid β-peptide oligomers. Anal. Chim. Acta 2022, 1192, 339391. [Google Scholar] [CrossRef]
- Zhang, Y.; Figueroa-Miranda, G.; Lyu, Z.; Zafiu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Monitoring amyloid-β proteins aggregation based on label-free aptasensor. Sens. Actuators B 2019, 288, 535–542. [Google Scholar] [CrossRef]
- Zhang, Y.; Figueroa-Miranda, G.; Zafiu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Amperometric aptasensor for Amyloid β oligomer detection by optimized stem-loop structures with an adjustable detection range. ACS Sens. 2019, 4, 3042–3050. [Google Scholar] [CrossRef]
- Zhang, Y.; Figueroa-Miranda, G.; Wu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Electrochemical dual-aptamer biosensors based on nanostructured multielectrode arrays for the detection of neuronal biomarkers. Nanoscale 2020, 12, 16501–16513. [Google Scholar] [CrossRef]
- Tao, D.; Xie, C.; Fu, S.; Rong, S.; Song, S.; Ye, H.; Jaffrezic-Renault, N.; Guo, Z. Thionine-functionalized three-dimensional carbon nanomaterial based aptasensor for analysis of Aβ oligomers in serum. Anal. Chim. Acta 2021, 1183, 338990. [Google Scholar] [CrossRef]
- Wang, X.; Gu, X.; Li, L.; Yu, B.; Lv, L.; Chen, Q.; Xu, M. An excellent electrochemical aptasensor for amyloid-β oligomers based on a triple-helix aptamer switch via target-triggered signal transduction DNA displacement events. Anal. Bioanal. Chem. 2021, 413, 3707–3716. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Gu, X.; Yu, B.; Jiang, M. Switchable electrochemical aptasensor for amyloid-β oligomers detection based on triple helix switch coupling with AuNPs@CuMOF labeled signaling displaced-probe. Microchim. Acta 2021, 188, 49. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Yang, S.; An, Y.; Zhang, F.; He, P. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J. Electroanal. Chem. 2020, 862, 114017. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Q.; Zhang, Y.; Ren, B.; Huang, L.; Cai, H.; Xu, T.; Liu, Q.; Zhang, X. An electrochemical aptasensor based on AuPt alloy nanoparticles for ultrasensitive detection of amyloid-β oligomers. Talanta 2021, 231, 122360. [Google Scholar] [CrossRef] [PubMed]
- Tri Murti, B.; Huang, Y.-J.; Darumas Putri, A.; Lee, C.-P.; Hsieh, C.-M.; Wei, S.-M.; Tsai, M.-L.; Peng, C.-W.; Yang, P.-K. Free-standing vertically aligned tin disulfide nanosheets for ultrasensitive aptasensor design toward Alzheimer’s diagnosis applications. Chem. Eng. J. 2023, 452, 139394. [Google Scholar] [CrossRef]
- Deng, C.; Liu, H.; Si, S.; Zhu, X.; Tu, Q.; Jin, Y.; Xiang, J. An electrochemical aptasensor for amyloid-β oligomer based on double-stranded DNA as “conductive spring”. Microchim. Acta 2020, 187, 239. [Google Scholar] [CrossRef]
- Voityuk, A.A. Can charge transfer in DNA significantly be modulated by varying the pi stack conformation? J. Phys. Chem. B 2009, 113, 14365–14368. [Google Scholar] [CrossRef]
- Bruot, C.; Xiang, L.; Palma, J.; Tao, N. Effect of mechanical stretching on DNA conductance. ACS Nano 2015, 9, 88–94. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.; Yang, R.; Liu, J. Selection and screening of DNA aptamers for inorganic nanomaterials. Chemistry 2017, 24, 2525–2532. [Google Scholar] [CrossRef]
- Zetterberg, H.; Blennow, K.; Hanse, E. Amyloid β and APP as biomarkers for Alzheimer’s disease. Exp. Gerontol. 2010, 45, 23–29. [Google Scholar] [CrossRef]
- Craig-Schapiro, R.; Fagan, A.M.; Holtzman, D.M. Biomarkers in Alzheimer’s disease. Neurobiol. Dis. 2009, 35, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Reitz, C.; Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014, 88, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Kern, S.; Zetterberg, H.; Kern, J.; Zettergren, A.; Waern, M.; Höglund, K.; Andreasson, U.; Wetterberg, H.; Börjesson-Hanson, A.; Blennow, K.; et al. Prevalence of preclinical Alzheimer disease: Comparison of current classification systems. Neurology 2018, 90, e1682–e1691. [Google Scholar] [CrossRef] [Green Version]
- Tao, D.; Shui, B.; Gu, Y.; Cheng, J.; Zhang, W.; Jaffrezic-Renault, N.; Song, S.; Guo, Z. Development of a label-free electrochemical aptasensor for the detection of Tau381 and its preliminary application in AD and non-AD patients’ sera. Biosensors 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shui, B.; Tao, D.; Cheng, J.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. Novel electrochemical aptamer-antibody sandwich assay for the detection of tau-381 in human serum. Analyst 2018, 143, 3549–3554. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Xu, D.; Yu, J.; Huang, S.; Gopinath, S.C.B.; Kang, P. Impedance spectroscopy for identifying tau protein to monitor anesthesia-based issues. Biotechnol. Appl. Biochem. 2022, 69, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Li, M.; Liu, Q.; Xu, T. Portable vertical graphene@Au-based electrochemical aptasensing platform for point-of-care testing of Tau protein in the blood. Biosensors 2022, 12, 564. [Google Scholar] [CrossRef]
- Aguzzi, A.; Zhu, C. Microglia in prion diseases. J. Clin. Investig. 2017, 127, 3230–3239. [Google Scholar] [CrossRef] [Green Version]
- Robey, T.T.; Panegyres, P.K. Cerebrospinal fluid biomarkers in neurodegenerative disorders. Future Neurol. 2019, 14, FNL6. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Zhang, X.; Zhou, J.; Xiong, E.; Li, X.; Chen, J. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion. Sci. Rep. 2015, 5, 16015. [Google Scholar] [CrossRef]
- Weiss, S.; Proske, D.; Neumann, M.; Groschup, M.H.; Kretzschmar, H.A.; Famulok, M.; Winnacker, E.L. RNA aptamers specifically interact with the prion protein PrP. J. Virol. 1997, 71, 8790–8797. [Google Scholar] [CrossRef] [Green Version]
- Llorens, F.; Villar-Piqué, A.; Schmitz, M. Plasma total prion protein as a potential biomarker for neurodegenerative dementia: Diagnostic accuracy in the spectrum of prion diseases. Neuropathol. Appl. Neurobiol. 2020, 46, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Völkel, D.; Zimmermann, K.; Zerr, I.; Bodemer, M.; Lindner, T.; Turecek, P.L.; Poser, S.; Schwarz, H.P. Immunochemical determination of cellular prion protein in plasma from healthy subjects and patients with sporadic CJD or other neurologic diseases. Transfusion 2001, 41, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Miodek, A.; Castillo, G.; Hianik, T.; Korri-Youssoufi, H. Electrochemical aptasensor of cellular prion protein based on modified polypyrrole with redox dendrimers. Biosens. Bioelectron. 2014, 56, 104–111. [Google Scholar] [CrossRef]
- Bibby, D.F.; Gill, A.C.; Kirby, L.; Farquhar, C.F.; Bruce, M.E.; Garson, J.A. Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J. Virol. Methods 2008, 151, 107–115. [Google Scholar] [CrossRef]
- Takemura, K.; Wang, P.; Worberg, I.; Surewicz, W.; Priola, S.A.; Kanthasamy, A.; Pottathil, R.; Chen, S.G.; Sreevatsan, S. DNA aptamers that bind to PrP(C) and not PrP(Sc) show sequence and structure specificity. Exp. Biol. Med. 2006, 231, 204–214. [Google Scholar] [CrossRef]
- Miodek, A.; Castillo, G.; Hianik, T.; Korri-Youssoufi, H. Electrochemical aptasensor of human cellular prion based on multiwalled carbon nanotubes modified with dendrimers: A platform for connecting redox markers and aptamers. Anal Chem. 2013, 85, 7704–7712. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, X.; Xiong, E.; Zhou, J.; Li, X.; Chen, J. A label-free and cascaded dual-signaling amplified electrochemical aptasensing platform for sensitive prion assay. Biosens. Bioelectron. 2016, 85, 471–478. [Google Scholar] [CrossRef]
- Marko, N.F.; Weil, R.J.; Toms, S.A. Nanotechnology in proteomics. Expert Rev. Proteom. 2007, 4, 617–626. [Google Scholar] [CrossRef]
- Ehdaie, B. Application of nanotechnology in cancer research: Review of progress in the National Cancer Institute’s Alliance for nanotechnology. Int. J. Biol. Sci. 2007, 3, 108–110. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, R.; Patel, V.; Chikkaveeraiah, B.V.; Munge, B.S.; Cheong, S.C.; Zain, R.B.; Abraham, M.T.; Dey, D.K.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal. Chem. 2012, 84, 6249–6255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyas, A.; Asghar, W.; Allen, P.B.; Duhon, H.; Ellington, A.D.; Iqbal, S.M. Electrical detection of cancer biomarker using aptamers with nanogap break-junctions. Nanotechnology 2012, 23, 275502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, J. Recent progress and opportunities for nucleic acid aptamers. Life 2021, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, T.; Sharma, T.K. Aptasensors for full body health checkup. Biosens. Bioelectron. X 2022, 11, 100199. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in miniaturized biosensors for point-of-care testing. TrAC, Trends Anal. Chem. 2020, 122, 115701. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. New challenges in point of care electrochemical detection of clinical biomarkers. Sens. Actuators B 2021, 345, 130349. [Google Scholar] [CrossRef]
- Burcu Bahadır, E.; Sezgintürk, M.K. A review on impedimetric biosensors. Artif. Cells Nanomed. Biotechnol. 2016, 44, 248–262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikuła, E.; Malecka-Baturo, K. An Overview of the Latest Developments in the Electrochemical Aptasensing of Neurodegenerative Diseases. Coatings 2023, 13, 235. https://doi.org/10.3390/coatings13020235
Mikuła E, Malecka-Baturo K. An Overview of the Latest Developments in the Electrochemical Aptasensing of Neurodegenerative Diseases. Coatings. 2023; 13(2):235. https://doi.org/10.3390/coatings13020235
Chicago/Turabian StyleMikuła, Edyta, and Kamila Malecka-Baturo. 2023. "An Overview of the Latest Developments in the Electrochemical Aptasensing of Neurodegenerative Diseases" Coatings 13, no. 2: 235. https://doi.org/10.3390/coatings13020235
APA StyleMikuła, E., & Malecka-Baturo, K. (2023). An Overview of the Latest Developments in the Electrochemical Aptasensing of Neurodegenerative Diseases. Coatings, 13(2), 235. https://doi.org/10.3390/coatings13020235