Investigating the Effects of Geometrical Parameters of Re-Entrant Cells of Aluminum 7075-T651 Auxetic Structures on Fatigue Life
Abstract
:1. Introduction
2. Numerical Simulations
2.1. Subsection
2.2. Material Properties, Loading, and Boundary Conditions
- In the first stage, stress analysis has been performed in Abaqus software. In the stress analysis stage, considering that the loading has exceeded the elastic limit, it is necessary to repeat the loading cycles until the shape of the stress cycles becomes stable. Therefore, to stabilize each of the models, 50 cycles have been simulated so that the stress becomes stable and can be used in the next step;
- In the second stage, the results of the stabilized stress analysis have been imported into the fatigue life estimation software, and the fatigue life estimation for each model has been performed by the fatigue model mentioned in the text of the article and the parameters presented in Table 2.
2.3. Fatigue Life Prediction
3. Verification Procedure
4. Results and Discussions
4.1. Results of Case Studies for Validation
4.2. Effects of H/L Parameter on Poisson’s Ratio
4.3. Effects of Cell’s Angle (θ) on Poisson’s Ratio
4.4. Effects of H/L Ratio on Fatigue Life
4.5. Effects of Cell’s Angle (θ) on Poisson’s Ratio
5. Conclusions
- Increasing the H/L ratios of the re-entrant cell relatively increased the average value of the Poisson ratio of the structure. As an average, the increasing H/L ratio from 1 to 1.4 elevated the Poisson ratio by 7.7%;
- It was found that the parameter angle had a direct relationship with the Poisson ratio of the structure. Increasing from 50° to 70° elevated the value of the Poisson ratio by about 80%;
- In general, with increasing the H/L ratio, the number of cells along the loading direction decreased, resulting in an enlargement of the longitudinal arms of the cells along the loading direction and a reduction in the ability of the lateral displacement of the structure. Moreover, with increasing angle, the re-entrant cell’s shape changed to square honeycomb cell, leading to a drop in the structure’s auxeticity;
- In all angles, with increasing H/L value, the fatigue life of the structure decreased significantly. The effect of the variation in H/L value in the LCF regime was greater than that in the HCF regime, resulting in greater reduction in fatigue life;
- In all H/L values, it was evidenced that increasing angle of the re-entrant cell would decrease the fatigue strength of the auxetic structure. The impact of the variation in angle in the LCF regime was more influential than that in the HCF regime.
- Overall, the effects of H/L parameter on fatigue life were greater than that of angle. Regardless of the values of H/L ratio or angle, the maximum stresses occurred in the conjunction of the cell’s arms. According to the fatigue analysis, the crack initiation areas were the stress concentration regions of the internal cells of the auxetic structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Q.; Ge, C.; Zhuang, W.; Wang, L.; Ma, Z. Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading. Mater. Des. 2019, 161, 22–34. [Google Scholar] [CrossRef]
- Imbalzano, G.; Linforth, S.; Ngo, T.; Lee, P.; Tran, P. Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Compos. Struct. 2018, 183, 242–261. [Google Scholar] [CrossRef]
- Ren, X.; Shen, J.; Tran, P.; Ngo, T.; Xie, Y. Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial. Mater. Des. 2018, 139, 336–342. [Google Scholar]
- Lim, T.-C. Auxetic Materials and Structures; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Wang, Z.; Zulifqar, A.; Hu, H. Auxetic Composites in Aerospace Engineering, Advanced Composite Materials for Aerospace Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 213–240. [Google Scholar]
- Munteanu, L.; Dumitriu, D.; Donescu, Ş.; Chiroiu, V. On the complexity of the auxetic systems. In Proceedings of the European Computing Conference; Springer: Berlin/Heidelberg, Germany, 2009; pp. 631–636. [Google Scholar]
- Lakes, R. Negative-Poisson’s-ratio materials: Auxetic solids. Annu. Rev. Mater. Res. 2017, 47, 63–81. [Google Scholar] [CrossRef]
- Albag, O. Auxetic Materials, Material Balance; Springer: Berlin/Heidelberg, Germany, 2021; pp. 65–74. [Google Scholar]
- Khare, E.; Temple, S.; Tomov, I.; Zhang, F.; Smoukov, S. Low fatigue dynamic auxetic lattices with 3D printable, multistable, and tuneable unit cells. Front. Mater. 2018, 5, 45. [Google Scholar] [CrossRef]
- Nasim, M.S.; Etemadi, E. Three dimensional modeling of warp and woof periodic auxetic cellular structure. Int. J. Mech. Sci. 2018, 136, 475–481. [Google Scholar] [CrossRef]
- Essassi, K.; Rebiere, J.-L.; El Mahi, A.; Ben Souf, M.A.; Bouguecha, A.; Haddar, M. Experimental and analytical investigation of the bending behaviour of 3D-printed bio-based sandwich structures composites with auxetic core under cyclic fatigue tests. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105775. [Google Scholar] [CrossRef]
- Choi, J.; Lakes, R. Non-linear properties of metallic cellular materials with a negative Poisson’s ratio. J. Mater. Sci. 1992, 27, 5375–5381. [Google Scholar] [CrossRef]
- Nečemer, B.; Glodež, S.; Novak, N.; Kramberger, J. Numerical modelling of a chiral auxetic cellular structure under multiaxial loading conditions. Theor. Appl. Fract. Mech. 2020, 107, 102514. [Google Scholar] [CrossRef]
- Kramberger, J.; Nečemer, B.; Glodež, S. Assessing the cracking behavior of auxetic cellular structures by using both a numerical and an experimental approach. Theor. Appl. Fract. Mech. 2019, 101, 17–24. [Google Scholar] [CrossRef]
- Nečemer, B.; Kramberger, J.; Vuherer, T.; Glodež, S. Fatigue crack initiation and propagation in re-entrant auxetic cellular structures. Int. J. Fatigue 2019, 126, 241–247. [Google Scholar] [CrossRef]
- Bezazi, A.; Scarpa, F. Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. Int. J. Fatigue 2007, 29, 922–930. [Google Scholar] [CrossRef]
- Francesconi, L.; Baldi, A.; Dominguez, G.; Taylor, M. An investigation of the enhanced fatigue performance of low-porosity auxetic metamaterials. Exp. Mech. 2020, 60, 93–107. [Google Scholar] [CrossRef]
- Nečemer, B.; Klemenc, J.; Glodež, S. The computational LCF-analyses of chiral and Re-entrant auxetic structure using the direct cyclic algorithm. Mater. Sci. Eng. A 2020, 789, 139618. [Google Scholar] [CrossRef]
- Nečemer, B.; Kramberger, J.; Glodež, S. Fatigue crack growth in the re-entrant auxetic structure. Procedia Struct. Integr. 2022, 39, 34–40. [Google Scholar] [CrossRef]
- Nečemer, B.; Klemenc, J.; Zupanič, F.; Glodež, S. Modelling and predicting of the LCF-behaviour of aluminium auxetic structures. Int. J. Fatigue 2022, 156, 106673. [Google Scholar] [CrossRef]
- Lvov, V.; Senatov, F.; Stepashkin, A.; Veveris, A.; Pavlov, M.; Komissarov, A. Low-cycle fatigue behavior of 3D-printed metallic auxetic structure. Mater. Today Proc. 2020, 33, 1979–1983. [Google Scholar] [CrossRef]
- Nečemer, B.; Vuherer, T.; Glodež, S.; Kramberger, J. Fatigue behaviour of re-entrant auxetic structures made of the aluminium alloy AA7075-T651. Thin-Walled Struct. 2022, 180, 109917. [Google Scholar] [CrossRef]
- Ulbin, M.; Borovinšek, M.; Vesenjak, M.; Glodež, S. Computational Fatigue Analysis of Auxetic Cellular Structures Made of SLM AlSi10Mg Alloy. Metals 2020, 10, 945. [Google Scholar] [CrossRef]
- Michalski, J.; Strek, T. Fatigue Life of Auxetic Re-entrant Honeycomb Structure, International Scientific-Technical Conference Manufacturing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 50–60. [Google Scholar]
- Tomažinčič, D.; Nečemer, B.; Vesenjak, M.; Klemenc, J. Low-cycle fatigue life of thin-plate auxetic cellular structures made from aluminium alloy 7075-T651. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1022–1036. [Google Scholar] [CrossRef]
- Schijve, J. Fatigue of Structures and Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Niesłony, A.; el Dsoki, C.; Kaufmann, H.; Krug, P. New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility. Int. J. Fatigue 2008, 30, 1967–1977. [Google Scholar] [CrossRef]
- Suresh, S. Fatigue of Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Li, J.; Sun, Q.; Zhang, Z.; Qiao, Y.-J.; Liu, J. A modification of Smith-Watson-Topper damage parameter for fatigue life prediction under non-proportional loading. Fatigue Fract. Eng. Mater. Struct. 2012, 35, 301–316. [Google Scholar] [CrossRef]
- Tamadon, A.; Pons, D.J.; Sued, K.; Clucas, D. Internal Flow Behaviour and Microstructural Evolution of the Bobbin-FSW Welds: Thermomechanical Comparison between 1xxx and 3xxx Aluminium Grades. Adv. Mater. Sci. 2021, 21, 40–64. [Google Scholar] [CrossRef]
- Mohan, D.G.; Tomków, J.; Gopi, S. Induction Assisted Hybrid Friction Stir Welding of Dissimilar Materials AA5052 Aluminium Alloy and X12Cr13 Stainless Steel. Adv. Mater. Sci. 2021, 21, 17–30. [Google Scholar] [CrossRef]
- Tu, X.; Shahba, A.; Shen, J.; Ghosh, S. Microstructure and property based statistically equivalent RVEs for polycrystalline-polyphase aluminum alloys. Int. J. Plast. 2019, 115, 268–292. [Google Scholar] [CrossRef]
Level | θ (Degrees) | H/L |
---|---|---|
1 | 50 | 1 |
2 | 55 | 1.1 |
3 | 60 | 1.2 |
4 | 65 | 1.3 |
5 | 70 | 1.4 |
Properties | Static | Fatigue |
---|---|---|
Young Modulus (GPa) | 68.9 | - |
Poisson Ratio | 0.33 | - |
Yield Stress (MPa) | 539 | - |
Ultimate Tensile Stress (MPa) | 596 | - |
Elongation at The Break (%) | 0.12 | - |
Fatigue Strength Coefficient (MPa) | - | 1145 |
Fatigue Ductility Coefficient | - | 0.0686 |
Fatigue Strength Exponent | - | −0.0048 |
Fatigue Ductility Exponent | - | −0.3605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghiasvand, A.; Khanigi, A.F.; Guerrero, J.W.G.; Derazkola, H.A.; Tomków, J.; Janeczek, A.; Wolski, A. Investigating the Effects of Geometrical Parameters of Re-Entrant Cells of Aluminum 7075-T651 Auxetic Structures on Fatigue Life. Coatings 2023, 13, 405. https://doi.org/10.3390/coatings13020405
Ghiasvand A, Khanigi AF, Guerrero JWG, Derazkola HA, Tomków J, Janeczek A, Wolski A. Investigating the Effects of Geometrical Parameters of Re-Entrant Cells of Aluminum 7075-T651 Auxetic Structures on Fatigue Life. Coatings. 2023; 13(2):405. https://doi.org/10.3390/coatings13020405
Chicago/Turabian StyleGhiasvand, Amir, Alireza Fayazi Khanigi, John William Grimaldo Guerrero, Hamed Aghajani Derazkola, Jacek Tomków, Anna Janeczek, and Adrian Wolski. 2023. "Investigating the Effects of Geometrical Parameters of Re-Entrant Cells of Aluminum 7075-T651 Auxetic Structures on Fatigue Life" Coatings 13, no. 2: 405. https://doi.org/10.3390/coatings13020405
APA StyleGhiasvand, A., Khanigi, A. F., Guerrero, J. W. G., Derazkola, H. A., Tomków, J., Janeczek, A., & Wolski, A. (2023). Investigating the Effects of Geometrical Parameters of Re-Entrant Cells of Aluminum 7075-T651 Auxetic Structures on Fatigue Life. Coatings, 13(2), 405. https://doi.org/10.3390/coatings13020405