High-Entropy Alloy Films
Abstract
:1. Introduction
2. Methods
2.1. Magnetron Sputtering
2.2. Laser Cladding
2.3. Pulsed Laser Deposition
2.4. Detonation Spraying
2.5. Electrochemical Deposition
3. Results
3.1. Phase and Microstructure
3.2. Properties
3.2.1. Hardness
3.2.2. Corrosion Resistance
3.2.3. Wear Resistance
3.2.4. Thermal Stability
3.2.5. Magnetic Properties
3.2.6. Other Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Guo, N.N.; Gao, X.J.; Zhu, G.M.; Fang, X.Y. Research Progress of Refractory High-entropy Alloys. Hot Work. Technol. 2021, 50, 1–4. [Google Scholar]
- Zhou, P.Y.; Liu, H.X.; Zhang, X.W.; Hao, X.H.; Wang, Y.Y.; Chen, L. Research Progress of Light-weight High-entropy Alloy. China Surf. Eng. 2021, 34, 265–274. (In Chinese) [Google Scholar]
- Cui, K.X.; Liaw, P.K.; Zhang, Y. Cryogenic-Mechanical Properties and Applications of Multiple-Basis-Element Alloys. Metals 2022, 12, 2075. [Google Scholar] [CrossRef]
- Jiao, W.N.; Lu, Y.P.; Cao, Z.Q.; Wang, T.M.; Li, T.J.; Yin, G.M. Progress and Prospect of Eutectic High Entropy Alloys. Spec. Cast. Nonferrous Alloys 2022, 42, 265–274. [Google Scholar]
- Zhang, Y.; Yan, X.H.; Liao, W.B.; Zhao, K. Effects of Nitrogen Content on the Structure and Mechanical Properties of (Al0.5CrFeNiTi0.25)Nx High-Entropy Films by Reactive Sputtering. Entropy 2018, 20, 624. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.B.; Lan, S.; Gao, L.B.; Zhang, H.T.; Xu, S.; Song, J.; Wang, X.L.; Lu, Y. Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films 2017, 638, 383–388. [Google Scholar] [CrossRef]
- Chen, T.K.; Shun, T.T.; Yeh, J.W.; Wong, M.S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2004, 188–189, 193–200. [Google Scholar] [CrossRef]
- An, Z.N.; Jia, H.L.; Wu, Y.Y.; Rack, P.D.; Patchen, A.D.; Liu, Y.Z.; Ren, Y.; Li, N.; Liaw, P.K. Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized by Sputter Deposition. Mater. Res. Lett. 2015, 3, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Akhavan, B.; Zhou, H.R.; Chang, L.; Wang, Y.; Sun, L.X.; Bilek, M.M.; Liu, Z.W. High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Appl. Surf. Sci. 2019, 495, 143560–143568. [Google Scholar] [CrossRef]
- Braeckman, B.R.; Boydens, F.; Hidalgo, H.; Dutheil, P.; Jullien, M.; Thomann, A.L.; Depla, D. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films 2015, 580, 71–76. [Google Scholar] [CrossRef]
- Feng, X.G.; Tang, G.Z.; Sun, M.R.; Ma, X.X.; Wang, L.Q.; Yukimura, K. Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multi-elements alloy thin films. Surf. Coat. Technol. 2013, 228, S424–S427. [Google Scholar] [CrossRef]
- Huang, K.; Wang, G.M.; Qing, H.W.; Chen, Y.G.; Guo, H.B. Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCuxNiTiZr0.75 high entropy alloy films. Vacuum 2022, 195, 110695–110703. [Google Scholar] [CrossRef]
- Yan, X.H.; Zhang, Y. Preparation and forming process of high-entropy alloy. J. Netshape Form. Eng. 2022, 14, 19–27. (In Chinese) [Google Scholar]
- Zhang, H.; He, Y.Z.; Pan, Y.; He, Y.S.; Shin, K.S. Synthesis and Characterization of NiCoFeCrAl3 High Entropy Alloy Coating by Laser Cladding. Adv. Mater. Res. 2010, 97–101, 1408–1411. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; He, Y.Z.; Jiao, H.S. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl. Surf. Sci. 2011, 257, 2259–2263. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; He, Y.Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2011, 32, 1910–1915. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; He, Y.S. Laser cladding FeCoNiCrAl2Si high-entropy alloy coating. Acta Metall. Sin. 2011, 47, 1075–1079. (In Chinese) [Google Scholar]
- Zhang, H.; He, Y.Z.; Pan, Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scr. Mater. 2013, 69, 342–345. [Google Scholar] [CrossRef]
- Qiu, X.W.; Zhang, Y.P.; Liu, C.G. Microstructure and properties of Al2CrFeCoxCuNiTi high-entropy alloy coating prepared by laser cladding. Mater. Sci. Eng. Powder Metall. 2013, 18, 735–740. (In Chinese) [Google Scholar]
- Zhou, F.; Liu, Q.B.; Zheng, B. Effect of Si, Al on the microstructure and properties of MoFeCrTiW high-entropy alloy coating prepared by laser cladding. High Power Laser Part. Beams 2015, 27, 272–277. (In Chinese) [Google Scholar]
- Li, Q.Y.; Li, D.C.; Zhang, H.; Zhang, A.F.; Liang, J.Y.; Wang, X.L.X.; Yan, H.Q. Study on the microstructure and strength of NbMoTaTi refractory high-entropy alloy deposited by laser melting. Aeronaut. Manuf. Technol. 2018, 61, 61–67. (In Chinese) [Google Scholar]
- Wang, H.L.; Guo, Y.X.; Lan, H.W.; Liu, Q.B.; Zhou, F. Effect of Spot Type on Microstructure and Properties of MoFeCrTiWAlNb Refractory High-entropy Alloy Coating Fabricated by Laser Cladding. Surf. Technol. 2019, 48, 130–137. (In Chinese) [Google Scholar]
- Ma, M.X.; Liu, Y.X.; Gu, Y.; Ye, X.Y.; Zhang, W.M.; Zhong, M.L.; Liu, W.J. Synthesis of AlxCoCrNiMo high entropy alloy coatings by laser cladding. Appl. Laser 2010, 30, 433–437. (In Chinese) [Google Scholar]
- Weng, Z.Q.; Dong, G.; Zhang, Q.L.; Guo, S.R.; Yao, J.H. Effects of annealing on microstructure and properties of FeCrNiCoMn high-entropy alloy coating prepared by laser cladding. Chin. J. Laser 2014, 41, 65–70. (In Chinese) [Google Scholar]
- Katakam, S.; Joshi, S.S.; Mridha, S.; Mukherjee, S.; Dahotre, N.B. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution. J. Appl. Phys. 2014, 116, 104906–104912. [Google Scholar] [CrossRef]
- Qiu, X.W.; Zhang, Y.P.; Liu, C.G. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings. J. Alloys Compd. 2014, 585, 282–286. [Google Scholar] [CrossRef]
- Yue, T.M.; Xie, H.; Lin, X.; Yang, H.O.; Meng, G.H. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J. Alloys Compd. 2014, 587, 588–593. [Google Scholar] [CrossRef]
- Shon, Y.; Joshi, S.S.; Katakam, S.; Shanker Rajamure, R.; Dahotre, N.B. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior. Mater. Lett. 2015, 142, 122–125. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.Z.; Vilar, R.; Shen, J.Y. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate. Mater. Des. 2012, 41, 338–343. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, Z.B.; Yao, W.; Liang, X.B. Research status and prospects of high-entropy alloy thin film. Surf. Technol. 2021, 50, 117–129. (In Chinese) [Google Scholar]
- Cropper, M.D. Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition. Appl. Surf. Sci. 2018, 455, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.W.; Feng, C.S.; Wang, Z.; Liao, K.W.; Xie, Y.Z.; Hu, J.G.; Liao, W.B. Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Appl. Surf. Sci. 2019, 494, 72–79. [Google Scholar] [CrossRef]
- Liao, W.B.; Wu, Z.X.; Lu, W.J.; He, M.J.; Wang, T.; Guo, Z.X.; Huang, J.J. Microstructures and mechanical properties of CoCrFeNiMn high-entropy alloy coatings by detonation spraying. Intermetallics 2021, 132, 107138–107146. [Google Scholar] [CrossRef]
- Batraev, I.S.; Ulianitsky, V.Y.; Sova, A.A.; Samodurova, M.N.; Trofimov, E.A.; Pashkeev, K.Y.; Malikov, A.G.; Dudina, D.V.; Ukhina, A.V. A Feasibility Study of High-Entropy Alloy Coating Deposition by Detonation Spraying Combined with Laser Melting. Materials 2022, 15, 4532. [Google Scholar] [CrossRef]
- Yao, C.Z.; Zhang, P.; Liu, M.; Li, G.R.; Ye, J.Q.; Liu, P.; Tong, Y.X. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy. Electrochim. Acta 2008, 53, 8359–8365. [Google Scholar] [CrossRef]
- Yao, C.Z.; Ma, H.X.; Tong, Y.X. Electrochemical preparation and magnetic properties of amorphous nano Nd-Fe-Co-Ni-Mn high-entropy alloy film. Chin. J. Appl. Chem. 2011, 28, 1189–1194. [Google Scholar]
- Braeckman, B.R.; Depla, D. Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films. J. Alloys Compd. 2015, 646, 810–815. [Google Scholar] [CrossRef]
- Xing, Q.; Ma, J.; Wang, C.; Zhang, Y. High-Throughput Screening Solar-Thermal Conversion Films in a Pseudobinary (Cr, Fe, V)-(Ta, W) System. ACS Comb. Sci. 2018, 20, 602–610. [Google Scholar] [CrossRef]
- Fang, S.; Wang, C.; Li, C.L.; Luan, J.H.; Jiao, Z.B.; Liu, C.T.; Hsueh, C.H. Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy films. J. Alloys Compd. 2020, 820, 153388–153395. [Google Scholar] [CrossRef]
- Chen, T.K.; Wong, M.S.; Shun, T.T.; Yeh, J.W. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2005, 200, 1361–1365. [Google Scholar] [CrossRef]
- Li, J.C.; Chen, Y.J.; Zhao, Y.M.; Shi, X.W.; Wang, S.; Zhang, S. Super-hard (MoSiTiVZr)Nx high-entropy nitride coatings. J. Alloys Compd. 2022, 926, 166807–166817. [Google Scholar] [CrossRef]
- Huang, P.K.; Yeh, J.W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf. Coat. Technol. 2009, 203, 1891–1896. [Google Scholar] [CrossRef]
- Wang, Z.X.; Zhang, Y. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films. Chin. J. Eng. 2021, 43, 684–692. (In Chinese) [Google Scholar]
- Huang, C.K.; Li, W.; Liu, P.; Zhang, K.; Chen, X.H.; Ma, F.C.; Liu, X.K. Synthesis and mechanical properties of (AlCrTiZrNb)N high entropy alloy films grown by RF magnetron sputtering. Chin. J. Vac. Sci. Technol. 2018, 38, 487–493. (In Chinese) [Google Scholar]
- Cui, P.P.; Li, W.; Liu, P.; Zhang, K.; Ma, F.C.; Chen, X.H.; Feng, R.; Liaw, P.K. Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films. J. Alloys Compd. 2020, 834, 155063–155070. [Google Scholar] [CrossRef]
- Huang, Y.S.; Chen, L.; Lui, H.W.; Cai, M.H.; Yeh, J.W. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A 2007, 457, 77–83. [Google Scholar] [CrossRef]
- Dolique, V.; Thomann, A.L.; Brault, P.; Tessier, Y.; Gillon, P. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy. Mater. Chem. Phys. 2009, 117, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Akhavan, B.; Zhou, C.F.; Zhou, H.R.; Chang, L.; Wang, Y.; Liu, Y.P.; Fu, L.; Bilek, M.M.; Liu, Z.W. RF magnetron sputtered AlCoCrCu0.5FeNi high entropy alloy (HEA) thin films with tuned microstructure and chemical composition. J. Alloys Compd. 2020, 836, 155348–155357. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Luo, Y.C.; Zhang, G.Q. Deposition and corrosion properties of FeNiCoCrMn high entropy alloy films under different substrate temperature. Met. Funct. Mater. 2016, 23, 35–39. (In Chinese) [Google Scholar]
- Song, B.R.; Li, Y.H.; Cong, Z.H.; Li, Y.X.; Song, Z.X.; Chen, J. Effects of deposition temperature on the nanomechanical properties of refractory high entropy TaNbHfZr films. J. Alloys Compd. 2019, 797, 1025–1030. [Google Scholar] [CrossRef]
- Shen, W.J.; Tsai, M.H.; Chang, Y.S.; Yeh, J.W. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings. Thin Solid Films 2012, 520, 6183–6188. [Google Scholar] [CrossRef]
- Wang, J.J.; Chang, S.Y.; Ouyang, F.Y. Effect of substrate bias on the microstructure and properties of (AlCrSiNbZr) Nx high entropy nitride thin film. Surf. Coat. Technol. 2020, 393, 125796–125806. [Google Scholar] [CrossRef]
- Li, Y.S.; Ma, J.; Liaw, P.K.; Zhang, Y. Exploring the amorphous phase formation and properties of W-Ta-(Cr, Fe, Ni) high-entropy alloy gradient films via a high-throughput technique. J. Alloys Compd. 2022, 913, 165294–165303. [Google Scholar] [CrossRef]
- Cai, Y.P.; Wang, G.J.; Ma, Y.J.; Cao, Z.H.; Meng, X.K. High hardness dual-phase high entropy alloy thin films produced by interface alloying. Scr. Mater. 2019, 162, 281–285. [Google Scholar] [CrossRef]
- Cheng, K.H.; Lai, C.H.; Lin, S.J.; Ye, J.W. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films 2011, 519, 3185–3190. [Google Scholar] [CrossRef]
- Braic, V.; Vladescu, A.; Balaceanu, M.; Luculescu, C.R.; Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol. 2012, 211, 117–121. [Google Scholar] [CrossRef]
- Gao, L.B.; Liao, W.B.; Zhang, H.T.; Surjadi, J.; Sun, D.; Lu, Y. Microstructure, Mechanical and Corrosion Behaviors of CoCrFeNiAl0.3 High Entropy Alloy (HEA) Films. Coatings 2017, 7, 156. [Google Scholar] [CrossRef]
- Qiu, X.W.; Wu, M.J.; Liu, C.G.; Zhang, Y.P.; Huang, C.X. Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids. J. Alloys Compd. 2017, 708, 353–357. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.Y.; Huang, Y.B.; Xie, L.; Xu, Q.; Li, L.H. Effect of Molybdenum Content on Microstructure and Corrosion Resistance of CoCrFeNiMo High Entropy Alloy. Chin. J. Mater. Res. 2020, 34, 868–874. (In Chinese) [Google Scholar]
- Liu, H.; Gao, Q.; Man, J.X.; Li, X.J.; Yang, H.F.; Hao, J.B. Microstructure and Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding. Chin. J. Lasers 2022, 49, 18–29. (In Chinese) [Google Scholar]
- Feng, X.; Feng, C.; Lu, Y. A Lightweight AlTiVNb High-Entropy Alloy Film with High Strength-Ductility Synergy and Corrosion Resistance. Materials 2022, 15, 8568. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.J.; Cai, Z.B.; Pu, J.B.; Zeng, C.; Wang, L.P. Passivation behavior of VAlTiCrSi amorphous high-entropy alloy film with a high corrosion-resistance in artificial sea water. Appl. Surf. Sci. 2021, 542, 148520–148529. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Q.; Hao, J.B.; Zhang, G.Z.; Hu, Y.; Yang, H.F. Microstructure and Corrosion Resistance of AlCoCrFeNiSix High-Entropy Alloy Coating by Laser Cladding. Rare Met. Mater. Eng. 2022, 51, 2199–2208. (In Chinese) [Google Scholar]
- Li, L.; Ye, H.; Liu, Y.; Zhang, K.; She, H.Y.; Qu, W.; Zhang, J.Y.; Yan, Z.L. Process Optimization and Corrosion Resistance of Laser Cladding AlCoCrFeNiCu High-entropy Alloy. Surf. Technol. 2022, 51, 388–396. (In Chinese) [Google Scholar]
- Qiu, X.W.; Liu, C.G.; Zhang, Y.P. Microstructure and Property of Al2CoCrCuFeNixTi High Entropy Alloy Coatings Prepared by Laser Cladding. LaserOptoelectron. Prog. 2017, 54, 267–273. (In Chinese) [Google Scholar]
- Archard, J.F.; Hirst, W. The Wear of Metals under Unlubricated Conditions. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1956, 236, 397–410. [Google Scholar]
- Guo, Y.X.; Liu, Q.B.; Zhou, F. Miscrostructure and wear rsistance of high-melting-point AlCrFeMoNbxTiW high-entropy alloy coating coating by laser cladding. Chin. J. Rare Met. 2017, 41, 1327–1332. (In Chinese) [Google Scholar]
- Liu, D.Z.; Zhao, J.; Li, Y.; Zhu, W.L.; Lin, L.X. Effects of Boron Content on Microstructure and Wear Properties of FeCoCrNiBx High-Entropy Alloy Coating by Laser Cladding. Appl. Sci. 2019, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Huang, Y.B.; Liu, Q.; Xie, L.; Xu, Q.; Huang, J.X. Effect of molybdenum content on microstructure and wear resistance of laser-clad high-entropy alloy on carbon steel. Electroplat. Finish. 2020, 39, 1201–1208. (In Chinese) [Google Scholar]
- Sha, C.H.; Zhou, Z.F.; Xie, Z.H.; Munroe, P. FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance. Appl. Surf. Sci. 2020, 507, 145101–145112. [Google Scholar] [CrossRef]
- Xing, Q.; Feltrin, A.C.; Akhtar, F. High-temperature wear properties of CrFeHfMnTiTaV septenary complex concentrated alloy film produced by magnetron sputtering. Wear 2022, 510–511, 204497–204506. [Google Scholar] [CrossRef]
- Tsai, M.H.; Wang, C.W.; Tsai, C.W.; Shen, W.J.; Yeh, J.W.; Gan, J.Y.; Wu, W.W. Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization. J. Electrochem. Soc. 2011, 158, H1161–H1165. [Google Scholar] [CrossRef]
- Jiang, C.; Li, R.; Wang, X.; Shang, H.; Zhang, Y.; Liaw, P.K. Diffusion Barrier Performance of AlCrTaTiZr/AlCrTaTiZr-N High-Entropy Alloy Films for Cu/Si Connect System. Entropy 2020, 22, 234. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Huang, B.; Dai, P.Q. Effects of Chromium Content on Oxidation Behavior of FeCoCrxNiB High-entropy Alloy Coating. China Surf. Eng. 2016, 29, 32–38. (In Chinese) [Google Scholar]
- Ma, M.Y.; Han, A.H.; Zhang, Z.J.; Lian, Y.; Zhao, C.; Zhang, J. The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating. Corros. Sci. 2021, 185, 109417–109426. [Google Scholar] [CrossRef]
- Cui, W.Y.; Li, W.; Chen, W.T.; Liou, F. Laser Metal Deposition of an AlCoCrFeNiTi0.5 High-Entropy Alloy Coating on a Ti6Al4V Substrate: Microstructure and Oxidation Behavior. Crystals 2020, 10, 638. [Google Scholar] [CrossRef]
- Zhang, S.T.; Du, X.; Li, W.G.; Liu, Y.B.; Jiang, T.; Wu, X.F.; Zhong, N.; Zhao, Y.T. Preparation of FeCoCrNiMo High-entropy Alloy Coating and Its Oxidation Behavior. Surf. Technol. 2022, 51, 90–98, 110. (In Chinese) [Google Scholar]
- Cai, Y.C.; Zhu, L.S.; Cui, Y.; Geng, K.P.; Marwana Manladan, S.; Luo, Z. High-temperature oxidation behavior of FeCoCrNiAlx high-entropy alloy coatings. Mater. Res. Express 2019, 6, 126552–126563. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Wang, L.Q.; Yan, S.; Yu, G.X.; Chen, J.W.; Yin, F.X. High temperature oxidation behavior of atmosphere plasma sprayed AlCoCrFeNi high-entropy alloy coatings. Mater. Chem. Phys. 2022, 282, 125939–125950. [Google Scholar] [CrossRef]
- Luo, W.K.; Li, B.Y.; Zhao, Z.H.; Harumoto, T.; Nakamura, Y.; Shi, J. Study on magnetic properties and microstructure of Fe0.18Co0.36Ni0.21Al0.10Cr0.15 high entropy alloy thin films. J. Alloys Compd. 2023, 938, 168533–168540. [Google Scholar] [CrossRef]
- Huang, H.; Liaw, P.K.; Zhang, Y. Structure design and property of multiple-basis-element (MBE) alloys flexible films. Nano Res. 2021, 15, 4837–4844. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Y. High-entropy alloy and metallic glass flexible materials. Chin. J. Eng. 2021, 43, 119–128. (In Chinese) [Google Scholar]
Alloy | Substrate | Phase Composition | Hardness | Reference |
---|---|---|---|---|
NiCoFeCrAl3 + little C/Si/Mn/Mo | Q235 | BCC + FCC | 800 HV | [16] |
FeCoNiCrAl2Si | Q235 | BCC | 900 HV0.5 | [17] |
6FeNiCoSiCrAlTi | Q235 | BCC | 780 HV0.5 | [18] |
FeCoNiCrCu + Si, Mn, Mo | Q235 | FCC | 450 HV with addition of Si, Mn, Mo | [19] |
FeCoNiCrCuTiMoAlSiB0.5 | Medium-carbon-steel | BCC + B2 | 11.3 Gpa | [20] |
Al2CrFeCoxCuNiTi | Q235 | FCC + BCC1 + BCC2 + Laves | Up to 1013 HV | [21] |
MoFeCrTiW + Si/Al | Q235 | The main phase: BCC | [22] | |
NbMoTaTi | Pure Mo | BCC | 397.6 HV | [23] |
MoFeCrTiWAlNb | W6Mo5Cr4V2 | Round spot, BCC + MC carbide | 680 HV | [24] |
Rectangular spot, BCC + hcp-Fe2Nb + MC carbide | 850 HV | |||
AlxCoCrNiMo | 45# steel | x = 1, Cr + AlNi + Co2C + Fe63Mo37 | 950–1250 HV0.2 | [25] |
x = 1.5, Cr + AlNi + Al2FeCo + Fe63Mo37 | ||||
x = 2, AlFe + CrMo | ||||
x = 2.5, AlFe + CrMo | ||||
FeCrNiCoMn | 45# steel | FCC + BCC | 540 HV0.2 | [26] |
AlFeCoCrNi | Al | BCC1 + BCC2 | [27] | |
Al2CrFeNiCoCuTix | Q235 | FCC + BCC1 + BCC2 + Laves | [28] | |
AlCoCrCuFeNi | Mg | FCC + BCC | [29] | |
AlCoCrFeNi | Al | BCC1 + BCC2 + Al3Ni + FeAl3 | [30] | |
TiVCrAlSi | Ti-6Al-4V | (Ti, V)5Si3 + BCC | [31] |
Coating | Phase Composition | Corrosion Rates (mm/A) | Corrosion Potentials (V) | Corrosion Current Density (μA·cm−2) | Reference |
---|---|---|---|---|---|
Al0.3CoCrFeNi | FCC | 1.2 × 10−3 | −0.451 | 0.103 | [59] |
Al2CrFeCo0.5CuNiTi | 4.56 × 10−3 | −0.25 | 0.39 | [60] | |
CoCrFeNiMo0.3 | FCC+ σ | 4.95 × 10−2 | −0.66 | 4.23 | [61] |
CoCrFeMnNiTi0.25 | FCC + TiC | 5.38 × 10−2 | −0.490 | 4.6 | [62] |
AlCuNiTiZr0.75 | Amorphous | 9.0 × 10−4 | −0.31 | 7.69 × 10−2 | [14] |
CoCrFeMnNi | FCC | 0.164 | −0.257 | 14 | [51] |
AlTiVNb | Amorphous | 5.73 × 10−4 | −0.234 | 4.9 × 10−2 | [63] |
VAlTiCrSi | Amorphous | 5.48 × 10−5 | −0.285 | 4.68 × 10−3 | [64] |
AlCoCrFeNiSix | BCC | 3.42 × 10−3 | −0.31 | 0.292 | [65] |
AlCoCrFeNiCu | FCC + BCC | 0.03 | −0.601 | 2.56 | [66] |
Al2CoCrCuFeNiTi | FCC + BCC + Laves | 2.69 × 10−4 | −0.52 | 2.3 × 10−2 | [67] |
Alloy | Kp (g2·cm−4·s−1) | Temperature (°C) | Reference |
---|---|---|---|
AlCoCrFeNiTi0.5 | 3.06 × 10−13 2.14 × 10−12 | 700 800 | [78] |
FeCoCrNiMo | 4.92 × 10−10 | 1000 | [79] |
FeCoCrNiAl0.3 | 1.627 × 10−13 | 950 | [80] |
FeCoCrNiAl0.5 | 1.056 × 10−13 | 950 | [80] |
FeCoCrNiAl0.7 | 5.681 × 10−14 | 950 | [80] |
FeCoCrNiAl | 3.064 × 10−14 | 950 | [80] |
AlCoCrFeNi | 1.976 × 10−15 1.285 × 10−14 1.701 × 10−14 | 800 900 1000 | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, K.; Zhang, Y. High-Entropy Alloy Films. Coatings 2023, 13, 635. https://doi.org/10.3390/coatings13030635
Cui K, Zhang Y. High-Entropy Alloy Films. Coatings. 2023; 13(3):635. https://doi.org/10.3390/coatings13030635
Chicago/Turabian StyleCui, Kaixuan, and Yong Zhang. 2023. "High-Entropy Alloy Films" Coatings 13, no. 3: 635. https://doi.org/10.3390/coatings13030635
APA StyleCui, K., & Zhang, Y. (2023). High-Entropy Alloy Films. Coatings, 13(3), 635. https://doi.org/10.3390/coatings13030635