Recent Progress in Perovskite Solar Cells: Status and Future
Abstract
:1. Introduction
2. Electron Transport Layer (ETL)
ETL | Device Configuration | Jsc (mA cm−2) | VOC (V) | FF | PCE (%) | Ref. | |
---|---|---|---|---|---|---|---|
TiO2 | Li | FTO/c-TiO2/Li-m-TiO2/MAPbI3/Spiro-OMeTAD/Au | 22.86 | 1.101 | 0.699 | 17.59 | [44] |
Mg | FTO/Mg-TiO2/Perovskite/Spiro-OMeTAD/Au | 22.27 | 1.08 | 0.609 | 14.65 | [45] | |
Zn | FTO/Zn-TiO2/MAPbI3/Spiro-OMeTAD/Au | 21.83 | 1.10 | 0.734 | 17.60 | [46] | |
Zn | FTO/Zn-TiO2 NAs/(FAPbI3)0.87(MAPbBr3)0.13/CuSCN/Carbon | 22.25 | 0.956 | 0.679 | 14.45 | [47] | |
EuAc3 | FTO/EuAc3-c-TiO2/CsPbI3/P3HT/Au | 21.20 | 1.1 | 0.77 | 17.92 | [48] | |
Nb | FTO/Nb-TiO2/FA0.79MA0.16Cs0.05Pb(BrXI1−X)3/Spiro-OMeTAD/Au | 24.70 | 1.12 | 0.78 | 21.30 | [49] | |
Ce | FTO/Ce-TiO2/MAPbI3/Spiro-OMeTAD/Ag | 21.95 | 1.07 | 0.69 | 16.18 | [51] | |
Zr | FTO/Zr-TiO2/MAPbI3/Spiro-OMeTAD/Ag | 23.66 | 0.92 | 0.567 | 12.35 | [52] | |
Zr | FTO/Zr-TiO2/MAPbI3/Spiro-OMeTAD/Au | 23.57 | 1.076 | 0.716 | 18.16 | [53] | |
Ta | FTO/Ta-TiO2/Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3/Spiro-OMeTAD/Ag | 22.45 | 1.13 | 0.77 | 19.62 | [54] | |
GQDs | FTO/c-TiO2/GQDs-mTiO2/Cs0.05(FA0.83MA0.17)0.95 Pb(I0.83Br0.17)3/Spiro-OMeTAD/Au | 21.92 | 0.97 | 0.63 | 14.36 | [56] | |
SnO2 | Ga | ITO/Ga-SnO2/(FAPbI3)x(MAPbBr3)1-x/Spiro-OMeTAD/Ag | 23.90 | 1.068 | 0.714 | 18.18 | [99] |
Ga | FTO/Ga-SnOx/CsPbBr3/Carbon | 7.58 | 1.311 | 0.602 | 5.98 | [100] | |
Ta | ITO/Ta-SnO2/Perovskite/Spiro-OMeTAD/Au | 22.79 | 1.161 | 0.786 | 20.8 | [101] | |
Nb | FTO/Nb-SnO2/CsPbBr3/Carbon | 8.92 | 1.31 | 0.731 | 8.54 | [103] | |
Zn | FTO/Zn-SnO2/CsPbBr3/CuPc/Carbon | 23.40 | 1.098 | 0.692 | 17.78 | [104] | |
Li | Li-FTO/SnO2/Al2O3/MAPbI3/Carbon | 22.18 | 0.76 | 0.59 | 10.01 | [105] | |
Zr/F | FTO/Zr/F-SnO2/Perovskite/Spiro-OMeTAD/Au | 24.39 | 1.105 | 0.712 | 19.19 | [106] | |
KF | ITO/KF-SnO2/CsPbI2Br/Spiro-OMeTAD/MoO3/Au | 14.79 | 1.31 | 0.792 | 15.39 | [107] | |
Cl | FTO/Cl-SnO2/Perovskite/Spiro-OMeTAD/Au | 24.25 | 1.07 | 0.73 | 18.94 | [108] | |
NH4Cl | ITO/NH4Cl-L-SnO2/NH4Cl-H-SnO2/Perovskite/PEAI/Spiro-OMeTAD/Au | 23.60 | 1.208 | 0.762 | 21.75 | [109] | |
GQDs | ITO/GQDs-SnO2/MAFAPbI3Cl3-x/Spiro-OMeTAD/Ag | 24.40 | 1.11 | 0.78 | 21.10 | [110] | |
ZnO | Co | PET/ITO/Co-ZnO/MAPbI3/Spiro-OMeTAD/Au | 14.30 | 1.04 | 0.47 | 7.00 | [128] |
Mg | FTO/Mg-ZnO/MAPbI3/Spiro-OMeTAD/Ag | 25.06 | 0.83 | 0.65 | 13.52 | [130] | |
rGO/Ag | FTO/rGO/Ag-ZnO/MAPbI3/Spiro-OMeTAD/Au | 17.82 | 0.90 | 0.72 | 11.03 | [131] | |
PbS | ITO/PbS-ZnO/MAPbI3/Spiro-OMeTAD/Ag | 22.8 | 1.14 | 0.79 | 20.53 | [132] |
3. Perovskite Layer
3.1. Spin Coating
3.2. Blade Coating
3.3. Vapor Deposition
4. Hole Transport Layer (HTL)
5. Electrode
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.-J.; Wilberforce, T.; Olabi, A.G. Environmental impacts of solar energy systems: A review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, T.; Loo, Y.-L. Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Adv. Mater. 2022, 34, 2105849. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Ma, L.; Zhang, B.; Fang, T.; Li, X.; Song, J. All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells. J. Mater. Chem. A 2021, 9, 18947–18973. [Google Scholar] [CrossRef]
- Xiang, W.; Tress, W. Review on Recent Progress of All-Inorganic Metal Halide Perovskites and Solar Cells. Adv. Mater. 2019, 31, 1902851. [Google Scholar] [CrossRef]
- Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J.; et al. The Main Progress of Perovskite Solar Cells in 2020-2021. Nano-Micro Lett. 2021, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Z.; Xie, L.; Wang, S.; Yang, C.; Fang, C.; Hao, F. Recent Advances and Perspectives of Photostability for Halide Perovskite Solar Cells. Adv. Opt. Mater. 2022, 10, 2101822. [Google Scholar] [CrossRef]
- Roy, P.; Ghosh, A.; Barclay, F.; Khare, A.; Cuce, E. Perovskite Solar Cells: A Review of the Recent Advances. Coatings 2022, 12, 1089. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023. [Google Scholar] [CrossRef]
- Borriello, I.; Cantele, G.; Ninno, D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 2008, 77, 235214. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W. Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chem. Rev. 2020, 120, 9835–9950. [Google Scholar] [CrossRef]
- Kieslich, G.; Sun, S.; Cheetham, A.K. Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog. Chem. Sci. 2014, 5, 4712–4715. [Google Scholar] [CrossRef]
- Kim, H.-S.; Im, S.H.; Park, N.-G. Organolead Halide Perovskite: New Horizons in Solar Cell Research. J. Phys. Chem. C 2014, 118, 5615–5625. [Google Scholar] [CrossRef]
- Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. NH2CH=NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chem. Mater. 2014, 26, 1485–1491. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Fu, W.F.; Yan, J.L.; Chen, J.H.; Yang, W.T.; Chen, H.Z. Low-bandgap mixed tin-lead iodide perovskite with large grains for high performance solar cells. J. Mater. Chem. A 2018, 6, 13090–13095. [Google Scholar] [CrossRef]
- Li, Y.; Sun, W.; Yan, W.; Ye, S.; Rao, H.; Peng, H.; Zhao, Z.; Bian, Z.; Liu, Z.; Zhou, H.; et al. 50% Sn-Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6%. Adv. Energy Mater. 2016, 6, 1601353. [Google Scholar] [CrossRef]
- Sahli, F.; Werner, J.; Kamino, B.A.; Braeuninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Leon, J.J.D.; Sacchetto, D.; et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 2018, 17, 820–826. [Google Scholar] [CrossRef]
- Jaysankar, M.; Filipic, M.; Zielinski, B.; Schmager, R.; Song, W.; Qiu, W.; Paetzold, U.W.; Aernouts, T.; Debucquoy, M.; Gehlhaar, R.; et al. Perovskite-silicon tandem solar modules with optimised light harvesting. Energy Environ. Sci. 2018, 11, 1489–1498. [Google Scholar] [CrossRef]
- Heo, J.H.; Im, S.H. CH3NH3PbBr3-CH3NH3PbI3 Perovskite-Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage. Adv. Mater. 2016, 28, 5121–5125. [Google Scholar] [CrossRef] [PubMed]
- Jost, M.; Kegelmann, L.; Korte, L.; Albrecht, S. Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Adv. Energy Mater. 2020, 10, 1904102. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, M.; Li, N.; Xu, Y.; Ling, X.; Wang, Y.; Zhou, S.; Li, F.; Yang, F.; Ji, K.; et al. Realizing solution-processed monolithic PbS QDs/perovskite tandem solar cells with high UV stability. J. Mater. Chem. A 2018, 6, 24693–24701. [Google Scholar] [CrossRef]
- Meng, L.; You, J.; Guo, T.-F.; Yang, Y. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Acc. Chem. Res. 2016, 49, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Na, H.; Jung, E.H.; Yang, T.-Y.; Lee, Y.G.; Kim, G.; Shin, H.-W.; Seok, S.I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689. [Google Scholar] [CrossRef]
- Wu, W.-Q.; Chen, D.; Caruso, R.A.; Cheng, Y.-B. Recent progress in hybrid perovskite solar cells based on n-type materials. J. Mater. Chem. A 2017, 5, 10092–10109. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jin, H.J.; Jung, H.R.; Kim, J.; Nguyen, B.P.; Kim, J.; Jo, W. Reduced extrinsic recombination process in anatase and rutile TiO2 epitaxial thin films for efficient electron transport layers. Sci. Rep. 2021, 11, 6810. [Google Scholar] [CrossRef]
- Maniarasu, S.; Karthikeyan, V.; Korukonda, T.B.; Pradhan, S.C.; Soman, S.; Ramasamy, E.; Veerappan, G. Ambient processed perovskite sensitized porous TiO2 nanorods for highly efficient and stable perovskite solar cells. J. Alloys Compod. 2021, 884, 161061. [Google Scholar] [CrossRef]
- Singh, M.; Chiang, C.-H.; Boopathi, K.M.; Hanmandlu, C.; Li, G.; Wu, C.-G.; Lin, H.-C.; Chu, C.-W. A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules. J. Mater. Chem. A 2018, 6, 7114–7122. [Google Scholar] [CrossRef]
- Sun, J.; Pascoe, A.R.; Meyer, S.; Wu, Q.; Della Gaspera, E.; Raga, S.R.; Zhang, T.; Nattestad, A.; Bach, U.; Cheng, Y.-B.; et al. Ultrasonic spray deposition of TiO2 electron transport layers for reproducible and high efficiency hybrid perovskite solar cells. Sol. Energy 2019, 188, 697–705. [Google Scholar] [CrossRef]
- Lewis, A.; Troughton, J.R.; Smith, B.; McGettrick, J.; Dunlop, T.; De Rossi, F.; Pockett, A.; Spence, M.; Carnie, M.J.; Watson, T.M.; et al. In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light. Sol. Energy Mater. Sol. Cells 2020, 209, 110448. [Google Scholar] [CrossRef]
- Chen, D.; Su, A.; Li, X.; Pang, S.; Zhu, W.; Xi, H.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier. Sol. Energy 2019, 188, 239–246. [Google Scholar] [CrossRef]
- Shahiduzzaman, M.; Sakuma, T.; Kaneko, T.; Tomita, K.; Isomura, M.; Taima, T.; Umezu, S.; Iwamori, S. Oblique Electrostatic Inkjet-Deposited TiO2 Electron Transport Layers for Efficient Planar Perovskite Solar Cells. Sci. Rep. 2019, 9, 19494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffiere, M.; Ali, K.; Fares, E.; Samara, A.; Shetty, A.R.; Al Hassan, O.; Belaidi, A. Inkjet-Printed Compact TiO2 Electron Transport Layer for Perovskite Solar Cells. Energy Technol. 2020, 8, 2000330. [Google Scholar] [CrossRef]
- Huckaba, A.J.; Garcia-Benito, I.; Kanda, H.; Shibayama, N.; Oveisi, E.; Nazeeruddin, M.K. Inkjet-Printed TiO2/Fullerene Composite Films for Planar Perovskite Solar Cells. Helv. Chim. Acta 2020, 103, e2000044. [Google Scholar] [CrossRef]
- Liu, B.; Sun, G.; Sun, Q.; Lv, Y.; Huang, M.; Qi, B. Low-temperature fabrication of perovskite solar cells using modified TiO2 electron transport layer. Mater. Sci. Semicon. Proc. 2022, 138, 106303. [Google Scholar] [CrossRef]
- Noori, L.; Hoseinpour, V.; Shariatinia, Z. Optimization of TiO2 paste concentration employed as electron transport layers in fully ambient air processed perovskite solar cells with a low-cost architecture. Ceram. Int. 2022, 48, 320–336. [Google Scholar] [CrossRef]
- Supraja, S.; Dileep, K.R.; Chundi, N.; Ramasamy, E.; Shanmugasundaram, S.; Veerappan, G. Influence of bi-phasic TiO2 as a low-temperature curable electron transport layer for efficient perovskite solar cells. Sol. Energy 2022, 247, 308–314. [Google Scholar] [CrossRef]
- Ma, S.; Ahn, J.; Oh, Y.; Kwon, H.-C.; Lee, E.; Kim, K.; Yun, S.-C.; Moon, J. Facile Sol Gel-Derived Craterlike Dual-Functioning TiO2 Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 14649–14658. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, W.; Li, H.; Li, D.; Liu, Z.; Wang, D.; Liu, S. Oxidation, reduction, and inert gases plasma-modified defects in TiO2 as electron transport layer for planar perovskite solar cells. J. CO2 Util. 2019, 32, 46–52. [Google Scholar] [CrossRef]
- Ranjan, S.; Ranjan, R.; Tyagi, A.; Rana, K.S.; Soni, A.; Kodali, H.K.; Dalal, V.; Singh, A.; Garg, A.; Nalwa, K.S.; et al. Low-Temperature Microwave Processed TiO2 as an Electron Transport Layer for Enhanced Performance and Atmospheric Stability in Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 2679–2696. [Google Scholar] [CrossRef]
- Wang, L.; Miao, Q.; Sun, Z.; Zhang, H.; Liu, Z.; Wang, G.; Zhang, S. In Situ Electron Transport Layers by a Carboxyl Ionic Liquid-Assisted Microwave Technique for a 20.1% Perovskite Solar Cell. ACS Appl. Energy Mater. 2021, 4, 12112–12120. [Google Scholar] [CrossRef]
- Jarwal, D.K.; Kumar, A.; Mishra, A.K.; Ratan, S.; Kumar, C.; Upadhyay, D.; Mukherjee, B.; Jit, S. Efficiency Improvement of TiO2 Nanorods Electron Transport Layer Based Perovskite Solar Cells by Solvothermal Etching. IEEE J. Photovolt. 2019, 9, 1699–1707. [Google Scholar] [CrossRef]
- Shahvaranfard, F.; Altomare, M.; Hou, Y.; Hejazi, S.; Meng, W.; Osuagwu, B.; Li, N.; Brabec, C.J.; Schmuki, P. Engineering of the Electron Transport Layer/Perovskite Interface in Solar Cells Designed on TiO2 Rutile Nanorods. Adv. Funct. Mater. 2020, 30, 1909738. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zhong, J.; Ji, C.; Zhao, J.; Li, D.; Zhao, R.; Jiang, Y.; Fang, S.; Liang, T.; Li, H.; et al. Fabricating an optimal rutile TiO2 electron transport layer by delicately tuning TiCl4 precursor solution for high performance perovskite solar cells. Nano Energy 2020, 68, 104336. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Landova, L.; Conrad, B.; Holovsky, J. Concentration-Dependent Impact of Alkali Li Metal Doped Mesoporous TiO2 Electron Transport Layer on the Performance of CH3NH3PbI3 Perovskite Solar Cells. J. Phys. Chem. C 2019, 123, 19376–19384. [Google Scholar] [CrossRef]
- Arshad, Z.; Khoja, A.H.; Shakir, S.; Afzal, A.; Mujtaba, M.A.; Soudagar, M.E.M.; Fayaz, H.; Saleel, C.A.; Farukh, S.; Saeed, M. Magnesium doped TiO2 as an efficient electron transport layer in perovskite solar cells. Case Stud. Therm. Eng. 2021, 26, 101101. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Zhang, Y.; Tsamis, C. Low temperature Zn-doped TiO2 as electron transport layer for 19% efficient planar perovskite solar cells. Appl. Surf. Sci. 2019, 471, 28–35. [Google Scholar] [CrossRef]
- Lv, Y.; Tong, H.; Cai, W.; Zhang, Z.; Chen, H.; Zhou, X. Boosting the efficiency of commercial available carbon-based perovskite solar cells using Zinc-doped TiO2 nanorod arrays as electron transport layer. J. Alloys Compod. 2021, 851, 156785. [Google Scholar] [CrossRef]
- Ren, W.; Liu, Y.; Wu, Y.; Sun, Q.; Cui, Y.; Hao, Y. Interface modification of an electron transport layer using europium acetate for enhancing the performance of P3HT-based inorganic perovskite solar cells. Phys. Chem. Chem. Phys. 2021, 23, 23818–23826. [Google Scholar] [CrossRef]
- Sanehira, Y.; Shibayama, N.; Numata, Y.; Ikegami, M.; Miyasaka, T. Low-Temperature Synthesized Nb-Doped TiO2 Electron Transport Layer Enabling High-Efficiency Perovskite Solar Cells by Band Alignment Tuning. ACS Appl. Mater. Interfaces 2020, 12, 15175–15182. [Google Scholar] [CrossRef]
- Jin, J.; Li, H.; Bi, W.; Chen, C.; Zhang, B.; Xu, L.; Dong, B.; Song, H.; Dai, Q. Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO2 electron transport layer, ultraviolet conversion layer CsPbBr3 and the encapsulation layer Al2O3. Sol. Energy 2020, 198, 187–193. [Google Scholar] [CrossRef]
- Xu, R.; Li, Y.; Feng, S.; Wang, J.; Zhang, J.; Zhang, X.; Bian, C.; Fu, W.; Li, Z.; Yang, H. Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer. J. Mater. Sci. 2020, 55, 5681–5689. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Javed, H.M.A.; Javed, S.; Bashir, A.; Usman, M.; Akram, A.; Ahmad, M.I.; Ali, U.; Shahid, M.; Rizwan, M.; et al. Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells. Surf. Interfaces 2021, 25, 101299. [Google Scholar] [CrossRef]
- Sandhu, S.; Saharan, C.; Buruga, S.K.; Kumar, S.A.; Rana, P.S.; Nagajyothi, P.C.; Mane, S.D. Micro structurally engineered hysteresis-free high efficiency perovskite solar cell using Zr-doped TiO2 electron transport layer. Ceram. Int. 2021, 47, 14665–14672. [Google Scholar] [CrossRef]
- Chen, K.-T.; Hsu, C.-H.; Jiang, S.-C.; Liang, L.-S.; Gao, P.; Qiu, Y.; Wu, W.-Y.; Zhang, S.; Zhu, W.-Z.; Lien, S.-Y. Effect of Annealing Temperature on Tantalum-Doped TiO2 as Electron Transport Layer in Perovskite Solar Cells. IEEE Trans. Electron Devices 2022, 69, 1149–1154. [Google Scholar] [CrossRef]
- Culu, A.; Kaya, I.C.; Sonmezoglu, S. Spray-Pyrolyzed Tantalium-Doped TiO2 Compact Electron Transport Layer for UV-Photostable Planar Perovskite Solar Cells Exceeding 20% Efficiency. ACS Appl. Energy Mater. 2022, 5, 3454–3462. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kermanpur, A.; Atapour, M.; Adhami, S.; Heidari, R.H.; Khorshidi, E.; Irannejad, N.; Rezaie, B. Performance enhancement of mesoscopic perovskite solar cells with GQDs-doped TiO2 electron transport layer. Sol. Energy Mater. Sol. Cells 2020, 208, 110407. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, B.; Liu, X.; Han, J.; Ye, H.; Tu, Y.; Chen, C.; Shi, T.; Tang, Z.; Liao, G. 15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO2/SnO2 bilayer as the electron transport layer. J. Mater. Chem. A 2018, 6, 7409–7419. [Google Scholar] [CrossRef]
- Mali, S.S.; Patil, J.V.; Arandiyan, H.; Hong, C.K. Reduced methylammonium triple-cation Rb0.05(FAPbI3)0.95(MAPbBr3)0.05 perovskite solar cells based on a TiO2/SnO2 bilayer electron transport layer approaching a stabilized 21% efficiency: The role of antisolvents. J. Mater. Chem. A 2019, 7, 17516–17528. [Google Scholar] [CrossRef]
- Xie, H.; Yin, X.; Liu, J.; Guo, Y.; Chen, P.; Que, W.; Wang, G.; Gao, B. Low temperature solution-derived TiO2-SnO2 bilayered electron transport layer for high performance perovskite solar cells. Appl. Surf. Sci. 2019, 464, 700–707. [Google Scholar] [CrossRef]
- Mohammadbeigi, A.; Mozaffari, S.; Ghorashi, S.M.B. Yolk-shell SnO2@TiO2 nanospheres as electron transport layer in mesoscopic perovskite solar cell. J. Sol-Gel Sci. Technol. 2020, 94, 731–742. [Google Scholar] [CrossRef]
- Li, N.; Yan, J.; Ai, Y.; Jiang, E.; Lin, L.; Shou, C.; Yan, B.; Sheng, J.; Ye, J. A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells. Sci. China Mater. 2020, 63, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.H.; Kan, C.W.; Wu, C.G. Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO2 and SnO2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 23606–23615. [Google Scholar] [CrossRef] [PubMed]
- Koech, R.K.; Ichwani, R.; Oyewole, D.; Kigozi, M.; Amune, D.; Sanni, D.M.; Adeniji, S.; Oyewole, K.; Bello, A.; Ntsoenzok, E.; et al. Tin Oxide Modified Titanium Dioxide as Electron Transport Layer in Formamidinium-Rich Perovskite Solar Cells. Energies 2021, 14, 7870. [Google Scholar] [CrossRef]
- Ko, Y.; Kim, T.; Lee, C.; Lee, C.; Yun, Y.J.; Jun, Y. Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23%. Energy Environ. Mater. 2022, 0, 1–12. [Google Scholar] [CrossRef]
- Paik, M.J.; Yoo, J.W.; Park, J.; Noh, E.; Kim, H.; Ji, S.-G.; Kim, Y.Y.; Il Seok, S. SnO2-TiO2 Hybrid Electron Transport Layer for Efficient and Flexible Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 1864–1870. [Google Scholar] [CrossRef]
- Zhou, J.; Lyu, M.; Zhu, J.; Li, G.; Li, Y.; Jin, S.; Song, J.; Niu, H.; Xu, J.; Zhou, R. SnO2 Quantum Dot-Modified Mesoporous TiO2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 3052–3063. [Google Scholar] [CrossRef]
- Wang, D.; Ni, J.; Guan, J.; Zhou, X.; Zhang, S.; Zhang, Y.; Huang, Q.; Cai, H.; Li, J.; Zhang, J. Thin Film of TiO2-ZnO Binary Mixed Nanoparticles as Electron Transport Layers in Low-Temperature Processed Perovskite Solar Cells. Nano 2020, 15, 2050036. [Google Scholar] [CrossRef]
- Yue, M.; Su, J.; Zhao, P.; Lin, Z.H.; Zhang, J.C.; Chang, J.J.; Hao, Y. Optimizing the Performance of CsPbI3-Based Perovskite Solar Cells via Doping a ZnO Electron Transport Layer Coupled with Interface Engineering. Nano-Micro Lett. 2019, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.Y.; Yang, M.F.; Zhang, Y.H.; Du, J.Y.; Han, D.L.; Yang, L.L.; Fan, L.; Sui, Y.R.; Sun, Y.F.; Meng, X.W.; et al. Constructing m-TiO2/a-WOx hybrid electron transport layer to boost interfacial charge transfer for efficient perovskite solar cells. Chem. Eng. J. 2020, 402, 126303. [Google Scholar] [CrossRef]
- You, Y.; Tian, W.; Min, L.; Cao, F.; Deng, K.; Li, L. TiO2/WO3 Bilayer as Electron Transport Layer for Efficient Planar Perovskite Solar Cell with Efficiency Exceeding 20%. Adv. Mater. Interfaces 2020, 7, 1901406. [Google Scholar] [CrossRef]
- Dadashbeik, M.; Fathi, D.; Eskandari, M. Design and simulation of perovskite solar cells based on graphene and TiO2/graphene nanocomposite as electron transport layer. Sol. Energy 2020, 207, 917–924. [Google Scholar] [CrossRef]
- Mohseni, H.R.; Dehghanipour, M.; Dehghan, N.; Tamaddon, F.; Ahmadi, M.; Sabet, M.; Behjat, A. Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Sol. Energy 2021, 213, 59–66. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Ren, X.G.; Zhu, H.L.; Huang, Z.F.; Ye, F.; Ouyang, D.; Cheah, K.W.; Jen, A.K.Y.; Choy, W.C.H. Thick TiO2-Based Top Electron Transport Layer on Perovskite for Highly Efficient and Stable Solar Cells. ACS Energy Lett. 2018, 3, 2891–2898. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Wu, T.; Wu, J.; Lan, Z. High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers. Sol. Energy 2019, 181, 293–300. [Google Scholar] [CrossRef]
- Cao, T.; Chen, K.; Chen, Q.; Zhou, Y.; Chen, N.; Li, Y. Fullerene Derivative-Modified SnO2 Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21%. ACS Appl. Mater. Interfaces 2019, 11, 33825–33834. [Google Scholar] [CrossRef]
- Liang, J.; Chen, Z.; Yang, G.; Wang, H.; Ye, F.; Tao, C.; Fang, G. Achieving High Open-Circuit Voltage on Planar Perovskite Solar Cells via Chlorine-Doped Tin Oxide Electron Transport Layers. ACS Appl. Mater. Interfaces 2019, 11, 23152–23159. [Google Scholar] [CrossRef]
- Jiang, E.; Ai, Y.; Yan, J.; Li, N.; Lin, L.; Wang, Z.; Shou, C.; Yan, B.; Zeng, Y.; Sheng, J.; et al. Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 36727–36734. [Google Scholar] [CrossRef]
- Wang, J.; Datta, K.; Weijtens, C.H.L.; Wienk, M.M.; Janssen, R.A.J. Insights into Fullerene Passivation of SnO2 Electron Transport Layers in Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905883. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Zhang, J.; Lin, K.; Qiu, L.; Li, J.; Dong, Y.; Wang, J.; Xia, D.; Fan, R.; Yang, Y. Enhanced Charge Transport and Interface Passivation in Efficient Perovskite Solar Cells Using Sulfur-Doped Graphite Carbon Nitride-Modified SnO2-Based Electron Transport Layers. Sol. RRL 2021, 5, 2100058. [Google Scholar] [CrossRef]
- Liu, C.; Su, H.; Xie, K.; Wang, H.; Zhai, P.; Chang, N.; Zhang, S.; Ban, Q.; Guo, M.; Zhang, J.; et al. Highly Enhanced Efficiency of Planar Perovskite Solar Cells by an Electron Transport Layer Using Phytic Acid-Complexed SnO2 Colloids. Sol. RRL 2021, 5, 2100067. [Google Scholar] [CrossRef]
- Lin, Z.C.; Zhang, W.Q.; Cai, Q.B.; Xu, X.N.; Dong, H.Y.; Mu, C.; Zhang, J.P. Precursor Engineering of the Electron Transport Layer for Application in High-Performance Perovskite Solar Cells. Adv. Sci. 2021, 8, 2102845. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, Z.; Behrouznejad, F.; Hatamvand, M.; Zhang, X.; Wang, Y.; Liu, F.; Wang, H.; Liu, K.; Dong, H.; et al. Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer. J. Energy Chem. 2022, 67, 1–7. [Google Scholar] [CrossRef]
- Liu, C.; Guo, M.; Su, H.; Zhai, P.; Xie, K.; Liu, Z.; Zhang, J.; Liu, L.; Fu, H. Highly improved efficiency and stability of planar perovskite solar cells via bifunctional phytic acid dipotassium anchored SnO2 electron transport layer. Appl. Surf. Sci. 2022, 588, 152943. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, X.; Li, X.; Zhang, P. Polymer-Regulated SnO2 Composites Electron Transport Layer for High-Efficiency n-i-p Perovskite Solar Cells. Sol. RRL 2022, 6, 2200092. [Google Scholar] [CrossRef]
- Xu, Z.; Ng, C.H.; Zhou, X.; Li, X.; Zhang, P.; Teo, S.H. Polymer-complexed SnO2 electron transport layer for high-efficiency n-i-p perovskite solar cells. Nanoscale 2022, 14, 12090–12098. [Google Scholar] [CrossRef]
- Zong, B.; Deng, J.; Sun, Q.; Zhang, Z.; Meng, X.; Shen, B.; Kang, B.; Silva, S.R.P.; Lu, G. Facile Surface Engineering of Composite Electron Transport Layer for Highly Efficient Perovskite Solar Cells with a Fill Factor Exceeding 81%. Adv. Mater. Interfaces 2022, 9, 2102331. [Google Scholar] [CrossRef]
- Zong, B.; Sun, Q.; Deng, J.; Meng, X.; Zhang, Z.; Kang, B.; Silva, S.R.P.; Lu, G. Multi-cation hybrid stannic oxide electron transport layer for high-efficiency perovskite solar cells. J. Colloid Interface Sci. 2022, 614, 415–424. [Google Scholar] [CrossRef]
- Gu, L.; Wang, C.; Mo, W.; Zeng, H.; Shou, C.; Yang, S.; Wen, F. High efficiency perovskite solar cells via NaCl modified tin oxide electron transport layer. Org. Electron. 2023, 113, 106677. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, X.; Liu, J.; Chen, W.; Wen, S.; Que, M.; Xie, H.; Yang, Y.; Que, W.; Gao, B. Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Org. Electron. 2019, 65, 207–214. [Google Scholar] [CrossRef]
- Bai, G.; Wu, Z.; Li, J.; Bu, T.; Li, W.; Li, W.; Huang, F.; Zhang, Q.; Cheng, Y.-B.; Zhong, J. High performance perovskite sub-module with sputtered SnO2 electron transport layer. Sol. Energy 2019, 183, 306–314. [Google Scholar] [CrossRef]
- Kam, M.; Zhu, Y.; Zhang, D.; Gu, L.; Chen, J.; Fan, Z. Efficient Mixed-Cation Mixed-Halide Perovskite Solar Cells by All-Vacuum Sequential Deposition Using Metal Oxide Electron Transport Layer. Sol. RRL 2019, 3, 1900050. [Google Scholar] [CrossRef]
- Kam, M.; Zhang, Q.P.; Zhang, D.Q.; Fan, Z.Y. Room-Temperature Sputtered SnO2 as Robust Electron Transport Layer for Air-Stable and Efficient Perovskite Solar Cells on Rigid and Flexible Substrates. Sci. Rep. 2019, 9, 6963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, L.; Liu, Z.; Ono, L.K.; Jiang, Y.; Son, D.-Y.; Hawash, Z.; He, S.; Qi, Y. Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer. Adv. Funct. Mater. 2019, 29, 1806779. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Ni, J.; Zhou, X.; Liu, Y.; Yin, J.; Wang, J.; Wang, D.; Zhang, Y.; Li, J.; Cai, H.; et al. High-Performance Electron Transport Layer via Ultrasonic Spray Deposition for Commercialized Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 11570–11580. [Google Scholar] [CrossRef]
- Kumar, N.; Lee, H.B.; Sahani, R.; Tyagi, B.; Cho, S.; Lee, J.-S.; Kang, J.-W. Room-Temperature Spray Deposition of Large-Area SnO2 Electron Transport Layer for High Performance, Stable FAPbI(3)-Based Perovskite Solar Cells. Small Methods 2022, 6, 2101127. [Google Scholar] [CrossRef] [PubMed]
- Erdenebileg, E.; Wang, H.; Li, J.; Singh, N.; Dewi, H.A.; Tiwari, N.; Mathews, N.; Mhaisalkar, S.; Bruno, A. Low-Temperature Atomic Layer Deposited Electron Transport Layers for Co-Evaporated Perovskite Solar Cells. Sol. RRL 2022, 6, 2100842. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Zhou, X.; Gao, J.; Chen, W.; Wang, X.; Xu, B. Hydrothermally Treated SnO2 as the Electron Transport Layer in High-Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3%. Adv. Funct. Mater. 2019, 29, 1807604. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Liu, S.; Chu, Y.; Ye, T.; Qiu, C.; Qiu, Z.; Wang, X.; Wang, Y.; Su, Y.; et al. Oxygen Vacancy Management for High-Temperature Mesoporous SnO2 Electron Transport Layers in Printable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202202012. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, W.; Xiao, Z.; Zhang, H.; Li, Z.; Zhuang, J.; Pen, C.; Huang, Y. Negligible hysteresis planar perovskite solar cells using Ga-doped SnO2 nanocrystal as electron transport layers. Org. Electron. 2019, 71, 98–105. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Q.; Guo, R.; Wu, Z.; Li, Y.; Duan, Y.; Shen, Y.; Zhang, W.; Shao, G. Sputtered Ga-Doped SnOx Electron Transport Layer for Large-Area All-Inorganic Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 54904–54915. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, X.; Li, C.; Lu, H.; Weng, Z.; Pan, Y.; Chen, W.; Hang, X.-C.; Sun, Z.; Zhan, Y. Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells. Appl. Phys. Lett. 2019, 115, 143903. [Google Scholar] [CrossRef]
- Song, J.; Xu, X.; Wu, J.; Lan, Z. Low-temperature solution-processing high quality Nb-doped SnO2 nanocrystals-based electron transport layers for efficient planar perovskite solar cells. Funct. Mater. Lett. 2019, 12, 1850091. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.X.; Zhao, Y.; Zhang, Y.S.; Deng, Q.R.; Shen, Y.L.; Zhang, W.; Shao, G.S. Significant performance enhancement of all-inorganic CsPbBr3 perovskite solar cells enabled by Nb-doped SnO2 as effective electron transport layer. Energy Environ. Mater. 2021, 4, 671–680. [Google Scholar] [CrossRef]
- Ye, H.; Liu, Z.; Liu, X.; Sun, B.; Tan, X.; Tu, Y.; Shi, T.; Tang, Z.; Liao, G. 17.78% efficient low-temperature carbon-based planar perovskite solar cells using Zn-doped SnO2 electron transport layer. Appl. Surf. Sci. 2019, 478, 417–425. [Google Scholar] [CrossRef]
- Qiang, Y.; Xie, Y.; Qi, Y.; Wei, P.; Shi, H.; Geng, C.; Liu, H. Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer. Sol. Energy 2020, 201, 523–529. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, J.; Li, X.; Cheng, B.; Yu, J.; Ho, W. Low-Temperature-Processed Zr/F Co-Doped SnO2 Electron Transport Layer for High-Efficiency Planar Perovskite Solar Cells. Sol. RRL 2020, 4, 2000090. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, H.; Chen, S.-C.; Zheng, Q. KF-Doped SnO2 as an electron transport layer for efficient inorganic CsPbI2Br perovskite solar cells with enhanced open-circuit voltages. J. Mater. Chem. C 2021, 9, 4240–4247. [Google Scholar] [CrossRef]
- Wu, J.-B.; Zhen, C.; Liu, G. Photo-assisted Cl doping of SnO2 electron transport layer for hysteresis-less perovskite solar cells with enhanced efficiency. Rare Met. 2022, 41, 361–367. [Google Scholar] [CrossRef]
- Ye, J.; Li, Y.; Medjahed, A.A.; Pouget, S.; Aldakov, D.; Liu, Y.; Reiss, P. Doped Bilayer Tin(IV) Oxide Electron Transport Layer for High Open-Circuit Voltage Planar Perovskite Solar Cells with Reduced Hysteresis. Small 2021, 17, 2005671. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Zhang, C.; Zhang, H.; Dong, H.; Chen, D.; Zhu, W.; Xi, H.; Chang, J.; Lin, Z.; Zhang, J.; et al. Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers. Appl. Surf. Sci. 2020, 507, 145099. [Google Scholar] [CrossRef]
- Mohamadkhani, F.; Javadpour, S.; Taghavinia, N. Improvement of planar perovskite solar cells by using solution processed SnO2/CdS as electron transport layer. Sol. Energy 2019, 191, 647–653. [Google Scholar] [CrossRef]
- Yang, L.; Dall’Agnese, Y.; Hantanasirisakul, K.; Shuck, C.E.; Maleski, K.; Alhabeb, M.; Chen, G.; Gao, Y.; Sanehira, Y.; Jena, A.K.; et al. SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 2019, 7, 5635–5642. [Google Scholar] [CrossRef]
- Noh, Y.W.; Jin, I.S.; Kim, K.S.; Park, S.H.; Jung, J.W. Reduced energy loss in SnO2/ZnO bilayer electron transport layer-based perovskite solar cells for achieving high efficiencies in outdoor/indoor environments. J. Mater. Chem. A 2020, 8, 17163–17173. [Google Scholar] [CrossRef]
- Khan, U.; Iqbal, T.; Khan, M.; Wu, R. SnO2/ZnO as double electron transport layer for halide perovskite solar cells. Sol. Energy 2021, 223, 346–350. [Google Scholar] [CrossRef]
- He, R.Q.; Nie, S.Q.; Huang, X.F.; Wu, Y.Z.; Chen, R.H.; Yin, J.; Wu, B.H.; Li, J.; Zheng, N.F. Scalable Preparation of High-Performance ZnO-SnO2 Cascaded Electron Transport Layer for Efficient Perovskite Solar Modules. Sol. RRL 2022, 6, 2100639. [Google Scholar] [CrossRef]
- Luo, X.; Gao, Y.; Zhu, P.; Han, Q.; Lin, R.; Gao, H.; Wang, Y.; Zhu, J.; Li, S.; Tan, H. Record Photocurrent Density over 26 mA cm(-2) in Planar Perovskite Solar Cells Enabled by Antireflective Cascaded Electron Transport Layer. Sol. RRL 2020, 4, 2000169. [Google Scholar] [CrossRef]
- Liu, B.-T.; Zhang, Y.-Z.; Zuo, Y.-Y.; Rachmawati, D. Passivation and energy-level change of the SnO2 electron transport layer by reactive titania for perovskite solar cells. J. Alloys Compod. 2022, 929, 167349. [Google Scholar] [CrossRef]
- Tang, H.; Cao, Q.; He, Z.; Wang, S.; Han, J.; Li, T.; Gao, B.; Yang, J.; Deng, D.; Li, X. SnO2-Carbon Nanotubes Hybrid Electron Transport Layer for Efficient and Hysteresis-Free Planar Perovskite Solar Cells. Sol. RRL 2020, 4, 1900415. [Google Scholar] [CrossRef]
- Zhu, P.; Gu, S.; Luo, X.; Gao, Y.; Li, S.; Zhu, J.; Tan, H. Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO2-KCl Composite Electron Transport Layer. Adv. Energy Mater. 2020, 10, 1903083. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, R.; Zhu, J.; Jiang, P.; Wan, L.; Niu, H.; Hu, L.; Yang, X.; Xu, J.; Xu, B. Colloidal SnO2-Assisted CdS Electron Transport Layer Enables Efficient Electron Extraction for Planar Perovskite Solar Cells. Sol. RRL 2021, 5, 2100494. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, L.; Huang, J.; Miao, X.; Sun, L.; Hua, Y.; Wang, Y. Amino-capped zinc oxide modified tin oxide electron transport layer for efficient perovskite solar cells. Cell Rep. Phys. Sci. 2021, 2, 100590. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, C.H.; Du, T.; Morbidoni, M.; Lin, C.-T.; Xu, S.; Durrant, J.R.; McLachlan, M.A. ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells. Sci. Bull. 2018, 63, 343–348. [Google Scholar] [CrossRef]
- Zhang, J.; Morbidoni, M.; Huang, K.; Feng, S.; McLachlan, M.A. Environmentally friendly, aqueous processed ZnO as an efficient electron transport layer for low temperature processed metal-halide perovskite photovoltaics. Inorg. Chem. Front. 2018, 5, 84–89. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H.; Li, D.; Liu, Z.; Wang, D.; Liu, S. Comprehensive investigation of sputtered and spin-coated zinc oxide electron transport layers for highly efficient and stable planar perovskite solar cells. J. Power Sources 2019, 427, 223–230. [Google Scholar] [CrossRef]
- Yang, Z.; Fan, Q.; Shen, T.; Jin, J.; Deng, W.; Xin, J.; Huang, X.; Wang, X.; Li, J. Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells. Sol. Energy 2020, 204, 223–230. [Google Scholar] [CrossRef]
- Eswaramoorthy, N.; Rajaram, K. Planar perovskite solar cells: Plasmonic nanoparticles-modified ZnO as an electron transport layer for enhancing the device performance and stability at ambient conditions. Int. J. Energy Res. 2022, 46, 10724–10740. [Google Scholar] [CrossRef]
- Adnan, M.; Usman, M.; Ali, S.; Javed, S.; Islam, M.; Akram, M.A. Aluminum Doping Effects on Interface Depletion Width of Low Temperature Processed ZnO Electron Transport Layer-Based Perovskite Solar Cells. Front. Chem. 2022, 9, 795291. [Google Scholar] [CrossRef]
- Bouhjar, F.; Derbali, L.; Mari, B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer. Nano Res. 2020, 13, 2546–2555. [Google Scholar] [CrossRef]
- Ierides, I.; Ligorio, G.; McLachlan, M.A.; Guo, K.; List-Kratochvil, E.J.W.; Cacialli, F. Inverted organic photovoltaics with a solution-processed Mg-doped ZnO electron transport layer annealed at 150 degrees C. Sustain. Energy Fuels 2022, 6, 2835–2845. [Google Scholar] [CrossRef]
- Arshad, Z.; Wageh, S.; Maiyalagan, T.; Ali, M.; Arshad, U.; Noor ul, a.; Qadir, M.B.; Mateen, F.; Al-Sehemi, A.G. Enhanced charge transport characteristics in zinc oxide nanofibers via Mg2+ doping for electron transport layer in perovskite solar cells and antibacterial textiles. Ceram. Int. 2022, 48, 24363–24371. [Google Scholar] [CrossRef]
- Bagha, G.; Mersagh, M.R.; Naffakh-Moosavy, H.; Matin, L.F. The role of rGO sheet and Ag dopant in reducing ZnO electron transport layer recombination in planar perovskite solar cells. Ceram. Int. 2021, 47, 16111–16123. [Google Scholar] [CrossRef]
- Pang, Z.; Yang, S.; Sun, Y.; He, L.; Wang, F.; Fan, L.; Chi, S.; Sun, X.; Yang, L.; Yang, J. Hydrophobic PbS QDs layer decorated ZnO electron transport layer to boost photovoltaic performance of perovskite solar cells. Chem. Eng. J. 2022, 439, 135701. [Google Scholar] [CrossRef]
- Valsalakumar, S.; Roy, A.; Mallick, T.K.; Hinshelwood, J.; Sundaram, S. An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development. Energies 2023, 16, 190. [Google Scholar] [CrossRef]
- Im, J.-H.; Kim, H.-S.; Park, N.-G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2014, 2, 081510. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Liu, F.; Tang, Z.Q.; Li, Y.L. Scalable Blade Coating: A Technique Accelerating the Commercialization of Perovskite-Based Photovoltaics. Energy Technol. 2021, 9, 2100204. [Google Scholar] [CrossRef]
- Jiang, Y.; He, S.; Qiu, L.; Zhao, Y.; Qi, Y. Perovskite solar cells by vapor deposition based and assisted methods. Appl. Phys. Rev. 2022, 9, 21305. [Google Scholar] [CrossRef]
- Roy, P.; Sinha, N.K.; Tiwari, S.; Khare, A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 2020, 198, 665–688. [Google Scholar] [CrossRef]
- Huang, F.; Li, M.; Siffalovic, P.; Cao, G.; Tian, J. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 2019, 12, 518–549. [Google Scholar] [CrossRef]
- Zuo, C.T.; Scully, A.D.; Gao, M. Drop-Casting Method to Screen Ruddlesden-Popper Perovskite Formulations for Use in Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 56217–56225. [Google Scholar] [CrossRef]
- Zuo, C.A.T.; Ding, L.M. Drop-Casting to Make Efficient Perovskite Solar Cells under High Humidity. Angew. Chem. 2021, 60, 11242–11246. [Google Scholar] [CrossRef]
- Kumar, A.; Shkir, M.; Somaily, H.H.; Singh, K.L.; Choudhary, B.C.; Tripathi, S.K. A simple, low-cost modified drop-casting method to develop high-quality CH3NH3PbI3 perovskite thin films. Phys. B 2022, 630, 413678. [Google Scholar] [CrossRef]
- Irshad, Z.; Adnan, M.; Lee, J.K. Simple preparation of highly efficient MAxFA1−xPbI3 perovskite films from an aqueous halide-free lead precursor by all dip-coating approach and application in high-performance perovskite solar cells. J. Mater. Sci. 2022, 57, 1936–1946. [Google Scholar] [CrossRef]
- Adnan, M.; Lee, J.K. Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor. RSC Adv. 2020, 10, 5454–5461. [Google Scholar] [CrossRef]
- Adnan, M.; Irshad, Z.; Lee, J.K. Facile all-dip-coating deposition of highly efficient (CH3)3NPbI3−xClx perovskite materials from aqueous non-halide lead precursor. RSC Adv. 2020, 10, 29010–29017. [Google Scholar] [CrossRef]
- Di Girolamo, D.; Dini, D. Electrodeposition as a Versatile Preparative Tool for Perovskite Photovoltaics: Aspects of Metallization and Selective Contacts/Active Layer Formation. Sol. RRL 2022, 6, 2100993. [Google Scholar] [CrossRef]
- Al Katrib, M.; Perrin, L.; Planes, E. A Way to Reach 10% Efficiency with Carbon-Based Electrodeposited Mixed Perovskite Solar Cells. Sol. RRL 2022, 6, 2200777. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Han, H.; Chao, L.; Hu, J.; Niu, T.; Dong, H.; Yang, S.; Xia, Y.; Chen, Y.; et al. Perovskite solar cells based on screen-printed thin films. Nature 2022, 612, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.T.; Scully, A.; Yak, D.; Tan, W.L.; Jiao, X.C.; McNeill, C.R.; Angmo, D.C.; Ding, L.M.; Gao, M. Self-Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Adv. Energy Mater. 2019, 9, 1803258. [Google Scholar] [CrossRef]
- Li, Z.H.; Li, P.W.; Chen, G.S.; Cheng, Y.J.; Pi, X.D.; Yu, X.G.; Yang, D.R.; Han, L.Y.; Zhang, Y.Q.; Song, Y.L. Ink Engineering of Inkjet Printing Perovskite. ACS Appl. Mater. Interfaces 2020, 12, 39082–39091. [Google Scholar] [CrossRef]
- Giuliano, G.; Bonasera, A.; Scopelliti, M.; Martino, D.C.; Fiore, T.; Pignataro, B. Boosting the Performance of One-Step Solution-Processed Perovskite Solar Cells Using a Natural Monoterpene Alcohol as a Green Solvent Additive. ACS Appl. Electron. Mater. 2021, 3, 1813–1825. [Google Scholar] [CrossRef]
- Kadhim, M.J.; Mohammed, M.K.A. Fabrication of efficient triple-cation perovskite solar cells employing ethyl acetate as an environmental-friendly solvent additive. Mater. Res. Bull. 2023, 158, 112047. [Google Scholar] [CrossRef]
- Cao, X.; Hao, L.; Liu, Z.; Su, G.; He, X.; Zeng, Q.; Wei, J. All green solvent engineering of organic-inorganic hybrid perovskite layer for high-performance solar cells. Chem. Eng. J. 2022, 437, 135458. [Google Scholar] [CrossRef]
- Zhu, Z.; Shang, J.; Tang, G.; Wang, Z.; Cui, X.; Jin, J.; Zhou, Y.; Zhang, X.; Zhang, D.; Liu, X.; et al. Vertical distribution of PbI2 nanosheets for robust air-processed perovskite solar cells. Chem. Eng. J. 2023, 454, 140163. [Google Scholar] [CrossRef]
- Taylor, A.D.; Sun, Q.; Goetz, K.P.; An, Q.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 2021, 12, 1878. [Google Scholar] [CrossRef]
- Sin, J.; Kim, H.; Kim, M.; Kim, M.; Shin, J.; Hong, J.; Yang, J. Anti-solvent treatment time approach to high efficiency perovskite solar cells with temperature of coating environmental. Sol. Energy Mater. Sol. Cells 2023, 250, 112054. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Xi, X.; Yang, G.; Hu, L.; Zhu, B.; He, Y.; Liu, Y.; Qian, H.; Zhang, S.; et al. Annealing Engineering in the Growth of Perovskite Grains. Crystals 2022, 12, 894. [Google Scholar] [CrossRef]
- Xu, W.J.; Daunis, T.B.; Piper, R.T.; Hsu, J.W.P. Effects of Photonic Curing Processing Conditions on MAPbI(3) Film Properties and Solar Cell Performance. ACS Appl. Energy Mater. 2020, 3, 8636–8645. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, T.T.; Wang, F.F.; Liu, Y.; Liu, S.Z.; Wang, J.A.; Cheng, Z.C.; Chang, Q.; Yang, R.; Huang, W.C.; et al. Rapid Microwave-Annealing Process of Hybrid Perovskites to Eliminate Miscellaneous Phase for High Performance Photovoltaics. Adv. Sci. 2020, 7, 2000480. [Google Scholar] [CrossRef]
- Serafini, P.; Boix, P.P.; Barea, E.M.; Edvinson, T.; Sanchez, S.; Mora-Sero, I. Photonic Processing of MAPbI3 Films by Flash Annealing and Rapid Growth for High-Performance Perovskite Solar Cells. Sol. RRL 2022, 6, 2200641. [Google Scholar] [CrossRef]
- Turgut, S.B.; Gultekin, B. Improving power conversion efficiency by Light-Assisted annealing of triple cation perovskite layer in solar cell applications. Sol. Energy 2022, 234, 1–8. [Google Scholar] [CrossRef]
- Li, S.N.; Ren, H.; Yan, Y. Boosting efficiency of planar heterojunction perovskite solar cells to 21.2% by a facile two-step deposition strategy. Appl. Surf. Sci. 2019, 484, 1191–1197. [Google Scholar] [CrossRef]
- Li, S.N.; Ma, R.X.; Zhao, X.; Guo, J.H.; Zhang, Y.C.; Wang, C.C.; Ren, H.; Yan, Y. Enhanced photovoltaic performance and stability of planar perovskite solar cells by introducing dithizone. Sol. Energy Mater. Sol. Cells 2020, 206, 110290. [Google Scholar] [CrossRef]
- Luan, F.; Li, H.; Gong, S.; Chen, X.; Shou, C.; Wu, Z.; Xie, H.; Yang, S. Precursor engineering for efficient and stable perovskite solar cells. Nanotechnology 2023, 34, 055402. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Gu, W.-M.; Xu, Y.; Jiang, K.-J.; Yu, G.; Zhang, Q.-W.; Gao, C.-Y.; Liu, C.-M.; Fan, X.-H.; Yang, L.-M.; et al. Anion-exchange assisted sequential deposition for stable and efficient FAPbI3-based perovskite solar cells. Chem. Eng. J. 2023, 452, 139326. [Google Scholar] [CrossRef]
- Bi, J.; Chang, J.; Lei, M.; Zhang, W.; Meng, F.; Wang, G. Thiourea-Assisted Facile Fabrication of High-Quality CsPbBr3 Perovskite Films for High-Performance Solar Cells. ACS Appl. Mater. Interfaces 2023, 14, 48888–48896. [Google Scholar] [CrossRef] [PubMed]
- Zhi, L.L.; Li, Y.Q.; Cao, X.B.; Li, Y.H.; Cui, X.; Ci, L.J.; Wei, J.Q. Dissolution and recrystallization of perovskite induced by N-methyl-2-pyrrolidone in a closed steam annealing method. J. Energy Chem. 2019, 30, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Yu, Z.; Li, W.; Lei, B.; Zi, W.; Xiao, Z.; Zhao, Z.; Zong, P.-A. A modified two-step sequential spin-coating method for perovskite solar cells using CsI containing organic salts in mixed ethanol/methanol solvent. Sol. Energy Mater. Sol. Cells 2023, 250, 112107. [Google Scholar] [CrossRef]
- Chang, C.C.; Zou, X.P.; Cheng, J.; Ling, T.; Yao, Y.J.; Chen, D. Influence of Solution Deposition Process on Modulating Majority Charge Carrier Type and Quality of Perovskite Thin Films for Solar Cells. Materials 2019, 12, 2494. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, M.; Cai, W.; Cai, R.; Shi, Y.; Bian, J. Root cause for the difference in photovoltaic parameters of perovskite solar cells prepared by one- and two-step processes. Appl. Phys. Lett. 2022, 121, 263902. [Google Scholar] [CrossRef]
- Fong, P.W.K.; Li, G. The Challenge of Ambient Air-Processed Organometallic Halide Perovskite: Technology Transfer from Spin Coating to Meniscus Blade Coating of Perovskite Thin Films. Front. Mater. 2021, 8, 635224. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, J.M.; Wang, X.Z.; Gao, J.S.; Kong, W.G.; Cheng, C.; Xu, B.M. Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization. J. Energy Chem. 2019, 38, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Lai, C.H.; Chu, W.C.; Chan, S.H.; Suryanarayanan, V. Thermal assisted blade coating methylammonium lead iodide films with non-toxic solvent precursors for efficient perovskite solar cells and sub-module. Sol. Energy 2020, 204, 337–345. [Google Scholar] [CrossRef]
- Yu, Z.; Tao, J.; Shen, J.; Jia, Z.; Zhong, H.; Yin, S.; Liu, X.; Liu, M.; Fu, G.; Yang, S.; et al. Back-Contact Ionic Compound Engineering Boosting the Efficiency and Stability of Blade-Coated Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 34040–34048. [Google Scholar] [CrossRef]
- Zendehdel, M.; Nia, N.Y.; Paci, B.; Generosi, A.; Di Carlo, A. Zero-Waste Scalable Blade-Spin Coating as Universal Approach for Layer-by-Layer Deposition of 3D/2D Perovskite Films in High-Efficiency Perovskite Solar Modules. Sol. RRL 2022, 6, 2100637. [Google Scholar] [CrossRef]
- Vijayan, A.; Johansson, M.B.; Svanstrom, S.; Cappel, U.B.; Rensmo, H.; Boschloo, G. Simple Method for Efficient Slot-Die Coating of MAPbI(3) Perovskite Thin Films in Ambient Air Conditions. ACS Appl. Energy Mater. 2020, 3, 4331–4337. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Guan, C.K.; Lee, P.H.; Huang, H.C.; Li, C.F.; Huang, Y.C.; Su, W.F. Toward All Slot-Die Fabricated High Efficiency Large Area Perovskite Solar Cell Using Rapid Near Infrared Heating in Ambient Air. Adv. Energy Mater. 2020, 10, 2001567. [Google Scholar] [CrossRef]
- Bernard, S.; Jutteau, S.; Mejaouri, S.; Cacovich, S.; Zimmermann, I.; Yaiche, A.; Gbegnon, S.; Loisnard, D.; Collin, S.; Duchatelet, A.; et al. One-Step Slot-Die Coating Deposition of Wide-Bandgap Perovskite Absorber for Highly Efficient Solar Cells. Sol. RRL 2021, 5, 2100391. [Google Scholar] [CrossRef]
- Bisconti, F.; Giuri, A.; Marra, G.; Savoini, A.; Fumo, P.; Marrazzo, R.; Zanardi, S.; Corso, G.; Po, R.; Biagini, P.; et al. Polymer-Assisted Single-Step Slot-Die Coating of Flexible Perovskite Solar Cells at Mild Temperature from Dimethyl Sulfoxide. ChemPlusChem 2021, 86, 1442–1450. [Google Scholar] [CrossRef]
- Li, J.; Dagar, J.; Shargaieva, O.; Flatken, M.A.; Kobler, H.; Fenske, M.; Schultz, C.; Stegemann, B.; Just, J.; Tobbens, D.M.; et al. 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks. Adv. Energy Mater. 2021, 11, 2003460. [Google Scholar] [CrossRef]
- Vaynzof, Y. The Future of Perovskite Photovoltaics-Thermal Evaporation or Solution Processing? Adv. Energy Mater. 2020, 10, 2003073. [Google Scholar] [CrossRef]
- Choi, Y.; Koo, D.; Jeong, M.; Jeong, G.; Lee, J.; Lee, B.; Choi, K.J.; Yang, C.; Park, H. Toward All-Vacuum-Processable Perovskite Solar Cells with High Efficiency, Stability, and Scalability Enabled by Fluorinated Spiro-OMeTAD through Thermal Evaporation. Sol. RRL 2021, 5, 2100415. [Google Scholar] [CrossRef]
- Becker, P.; Márquez, J.A.; Just, J.; Al-Ashouri, A.; Hages, C.; Hempel, H.; Jošt, M.; Albrecht, S.; Frahm, R.; Unold, T. Low Temperature Synthesis of Stable γ-CsPbI3 Perovskite Layers for Solar Cells Obtained by High Throughput Experimentation. Adv. Energy Mater. 2019, 9, 1900555. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lin, D.X.; Chen, Z.P.; Li, Z.; Wang, J.M.; Chen, J.; Gong, L.; Xu, J.B.; Chen, K.; Liu, P.Y.; et al. Structural Regulation for Highly Efficient and Stable Perovskite Solar Cells via Mixed-Vapor Deposition. ACS Appl. Energy Mater. 2020, 3, 6544–6551. [Google Scholar] [CrossRef]
- Lohmann, K.B.; Patel, J.B.; Rothmann, M.U.; Xia, C.Q.; Oliver, R.D.J.; Herz, L.M.; Snaith, H.J.; Johnston, M.B. Control over Crystal Size in Vapor Deposited Metal-Halide Perovskite Films. ACS Energy Lett. 2020, 5, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.B.; He, S.S.; Liu, Z.H.; Ono, L.K.; Son, D.Y.; Liu, Y.Q.; Tong, G.Q.; Qi, Y.B. Rapid hybrid chemical vapor deposition for efficient and hysteresis-free perovskite solar modules with an operation lifetime exceeding 800 hours. J. Mater. Chem. A 2020, 8, 23404–23412. [Google Scholar] [CrossRef]
- Qiu, L.; He, S.; Jiang, Y.; Qi, Y. Metal halide perovskite solar cells by modified chemical vapor deposition. J. Mater. Chem. A 2021, 9, 22759–22780. [Google Scholar] [CrossRef]
- Tumen-Ulzii, G.; Matsushima, T.; Adachi, C. Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy Fuels 2021, 35, 18915–18927. [Google Scholar] [CrossRef]
- Shen, Y.; Deng, K.; Li, L. Spiro-OMeTAD-Based Hole Transport Layer Engineering toward Stable Perovskite Solar Cells. Small Methods 2022, 6, 2200757. [Google Scholar] [CrossRef]
- Niu, X.X.; Li, N.X.; Zhu, C.; Liu, L.; Zhao, Y.Z.; Ge, Y.; Chen, Y.H.; Xu, Z.Q.; Lu, Y.; Sui, M.L.; et al. Temporal and spatial pinhole constraints in small-molecule hole transport layers for stable and efficient perovskite photovoltaics. J. Mater. Chem. A 2019, 7, 7338–7346. [Google Scholar] [CrossRef]
- Zhou, X.S.; Qiu, L.L.; Fan, R.Q.; Wang, A.N.; Ye, H.X.; Tian, C.H.; Hao, S.; Yang, Y.L. Metal-Organic Framework-Derived N-Rich Porous Carbon as an Auxiliary Additive of Hole Transport Layers for Highly Efficient and Long-Term Stable Perovskite Solar Cells. Sol. RRL 2020, 4, 1900380. [Google Scholar] [CrossRef]
- Du, Q.; Shen, Z.T.; Chen, C.; Li, F.M.; Jin, M.Q.; Li, H.L.; Dong, C.; Zheng, J.H.; Ji, M.X.; Wang, M.T. Spiro-OMeTAD:Sb2S3 Hole Transport Layer with Triple Functions of Overcoming Lithium Salt Aggregation, Long-Term High Conductivity, and Defect Passivation for Perovskite Solar Cells. Sol. RRL 2021, 5, 2100622. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, J.; Lin, K.; Qiu, L.; Li, J.; Dong, Y.; Xia, D.; Yang, Y. Redox engineering of spiro-OMeTAD based hole transport layer enabled by ultrathin Co(III)-grafted carbon nitride nanosheets for stable perovskite solar cells. Nano Energy 2022, 104, 107924. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Q.S.; Wang, M.H.; Ma, H.R.; Pei, M.Z.; Bian, J.M.; Shi, Y.T. Efficient Planar Perovskite Solar Cells with Carbon Quantum Dot-Modified spiro-MeOTAD as a Composite Hole Transport Layer. ACS Appl. Mater. Interfaces 2021, 13, 56265–56272. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.Q.; Yu, P.W.; Shen, W.Q.; Hu, S.F.; Akasaka, T.; Lu, X. Er@C-82 as a Bifunctional Additive to the Spiro-OMeTAD Hole Transport Layer for Improving Performance and Stability of Perovskite Solar Cells. Sol. RRL 2021, 5, 2100463. [Google Scholar] [CrossRef]
- Lou, Q.; Lou, G.; Guo, H.; Sun, T.; Wang, C.; Chai, G.; Chen, X.; Yang, G.; Guo, Y.; Zhou, H. Enhanced Efficiency and Stability of n-i-p Perovskite Solar Cells by Incorporation of Fluorinated Graphene in the Spiro-OMeTAD Hole Transport Layer. Adv. Energy Mater. 2022, 12, 2201344. [Google Scholar] [CrossRef]
- Zheng, J.; Li, F.; Chen, C.; Du, Q.; Jin, M.; Li, H.; Ji, M.; Shen, Z. Perovskite Solar Cells Employing a PbSO4(PbO)4 Quantum Dot-Doped Spiro-OMeTAD Hole Transport Layer with an Efficiency over 22%. ACS Appl. Mater. Interfaces 2022, 14, 2989–2999. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H.; Ye, F.; Chen, C.; Ke, W.; Zhang, W.; He, C.; Tai, Y.; Fang, G. Organic-inorganic hybrid hole transport layers with SnS doping boost the performance of perovskite solar cells. J. Energy Chem. 2022, 68, 637–645. [Google Scholar] [CrossRef]
- Han, W.; Ren, G.; Liu, J.; Li, Z.; Bao, H.; Liu, C.; Guo, W. Recent Progress of Inverted Perovskite Solar Cells with a Modified PEDOT:PSS Hole Transport Layer. ACS Appl. Mater. Interfaces 2020, 12, 49297–49322. [Google Scholar] [CrossRef]
- Elbohy, H.; Bahrami, B.; Mabrouk, S.; Reza, K.M.; Gurung, A.; Pathak, R.; Liang, M.; Qiao, Q.Q.; Zhu, K. Tuning Hole Transport Layer Using Urea for High-Performance Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1806740. [Google Scholar] [CrossRef]
- Yi, H.M.; Wang, D.; Duan, L.P.; Haque, F.; Xu, C.; Zhang, Y.; Conibeer, G.; Uddin, A. Solution-processed WO3 and water-free PEDOT: PSS composite for hole transport layer in conventional perovskite solar cell. Electrochim. Acta 2019, 319, 349–358. [Google Scholar] [CrossRef]
- Yang, X.; Lv, F.; Yao, Y.; Li, P.; Wu, B.; Xu, C.; Zhou, G. Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer. Nanomaterials 2022, 12, 3941. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Xu, C.Y.; Niu, L.B.; Elseman, A.M.; Wang, G.; Yan, D.; Yao, Y.Q.; Liao, L.; Zhou, G.D.; Song, Q.L. High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Appl. Mater. Interfaces 2019, 11, 22021–22027. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Obispo, C.; Ripolles, T.S.; Cortijo-Campos, S.; Alvarez, A.L.; Climent-Pascual, E.; de Andres, A.; Coya, C. Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT:PSS hole transport layer. Mater. Des. 2020, 191, 108237. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Li, J.-W.; Zhang, D.-Y.; Yang, G.-J.; Yu, J.-S. Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer. Chin. Phys. B 2022, 31, 087802. [Google Scholar] [CrossRef]
- Xu, L.; Chen, X.; Jin, J.; Liu, W.; Dong, B.; Bai, X.; Song, H.; Reiss, P. Inverted perovskite solar cells employing doped NiO hole transport layers: A review. Nano Energy 2019, 63, 103860. [Google Scholar] [CrossRef]
- Lee, P.H.; Li, B.T.; Lee, C.F.; Huang, Z.H.; Huang, Y.C.; Su, W.F. High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process. Sol. Energy Mater. Sol. Cells 2020, 208, 110352. [Google Scholar] [CrossRef]
- Chen, M.J.; Qiao, H.W.; Zhou, Z.R.; Ge, B.; He, J.J.; Yang, S.; Hou, Y.; Yang, H.G. Homogeneous doping of entire perovskite solar cells via alkali cation diffusion from the hole transport layer. J. Mater. Chem. A 2021, 9, 9266–9271. [Google Scholar] [CrossRef]
- Choi, F.P.G.; Alishah, H.M.; Gunes, S. Cerium and zinc co-doped nickel oxide hole transport layers for gamma-butyrolactone based ambient air fabrication of CH(3)NH(3)PbI3 perovskite solar cells. Appl. Surf. Sci. 2021, 563, 150249. [Google Scholar] [CrossRef]
- Syafiq, U.; Ataollahi, N.; Scardi, P. Progress in CZTS as hole transport layer in perovskite solar cell. Sol. Energy 2020, 196, 399–408. [Google Scholar] [CrossRef]
- Cheng, N.; Liu, Z.; Li, W.; Yu, Z.; Lei, B.; Zi, W.; Xiao, Z.; Sun, S.; Zhao, Z.; Zong, P.-A. Cu2ZnGeS4 as a novel hole transport material for carbon-based perovskite solar cells with power conversion efficiency above 18%. Chem. Eng. J. 2023, 454, 140146. [Google Scholar] [CrossRef]
- Liang, J.-W.; Firdaus, Y.; Azmi, R.; Faber, H.; Kaltsas, D.; Kang, C.H.; Nugraha, M.I.; Yengel, E.; Ng, T.K.; De Wolf, S.; et al. Cl2-Doped CuSCN Hole Transport Layer for Organic and Perovskite Solar Cells with Improved Stability. ACS Energy Lett. 2022, 7, 3139–3148. [Google Scholar] [CrossRef]
- Kim, G.; Kwon, N.; Lee, D.; Kim, M.; Kim, M.; Lee, Y.; Kim, W.; Hyeon, D.; Kim, B.; Jeong, M.S.; et al. Methylammonium Compensation Effects in MAPbI(3) Perovskite Solar Cells for High-Quality Inorganic CuSCN Hole Transport Layers. ACS Appl. Mater. Interfaces 2022, 14, 5203–5210. [Google Scholar] [CrossRef] [PubMed]
- Perumbalathodi, N.; Su, T.-S.; Wei, T.-C. Antisolvent Treatment on Wet Solution-Processed CuSCN Hole Transport Layer Enables Efficient and Stable Perovskite Solar Cells. Adv. Mater. Interfaces 2022, 9, 2201191. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhu, S.; Gao, C.; Gao, C.X.; Liu, X.Z. Low Temperature Producing Copper-Doped Gallium Oxide as Hole Transport Layers of Perovskite Solar Cells Enhanced by Impurity Levels. Sol. RRL 2022, 6, 2100861. [Google Scholar] [CrossRef]
- Li, G.-R.; Gao, X.-P. Low-Cost Counter-Electrode Materials for Dye-Sensitized and Perovskite Solar Cells. Adv. Mater. 2020, 32, 1806478. [Google Scholar] [CrossRef]
- Lyu, B.; Yang, L.; Luo, Y.; Zhang, X.; Zhang, J. Counter electrodes for perovskite solar cells: Materials, interfaces and device stability. J. Mater. Chem. C 2022, 10, 10775–10798. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, X.; Ma, J.; Guo, J.; Ma, T.; Wu, M. Recent Progresses in Carbon Counter Electrode Materials for Perovskite Solar Cells and Modules. ChemElectroChem 2021, 8, 4396–4411. [Google Scholar] [CrossRef]
- Lee, J.W.; Jeon, I.; Lin, H.S.; Seo, S.; Han, T.H.; Anisimov, A.; Kauppinen, E.I.; Matsuo, Y.; Maruyama, S.; Yang, Y. Vapor-Assisted Ex-Situ Doping of Carbon Nanotube toward Efficient and Stable Perovskite Solar Cells. Nano Lett. 2019, 19, 2223–2230. [Google Scholar] [CrossRef]
- Hughes, D.; Meroni, S.M.P.; Barbe, J.; Raptis, D.; Lee, H.K.H.; Heasman, K.C.; Lang, F.; Watson, T.M.; Tsoi, W.C. Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode. Energy Technol. 2021, 9, 2100928. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, C.; Wang, X.; Guo, J.; Wu, M. Construction of multilevel network structured carbon nanofiber counter electrode and back interface engineering in all inorganic HTL-free perovskite solar cells. Colloids Surf. A 2022, 648, 129420. [Google Scholar] [CrossRef]
- Sepalage, G.A.; Weerasinghe, H.; Rai, N.; Duffy, N.W.; Raga, S.R.; Hora, Y.; Gao, M.; Vak, D.; Chesman, A.S.R.; Bach, U.; et al. Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Low-Cost Carbon Electrodes for Perovskite Solar Cells. Adv. Mater. Technol. 2022, 7, 2101148. [Google Scholar] [CrossRef]
- Guo, M.; Wei, C.Y.; Liu, C.C.; Zhang, K.; Su, H.J.; Xie, K.Y.; Zhai, P.; Zhang, J.; Liu, L. Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Mater. Des. 2021, 209, 109972. [Google Scholar] [CrossRef]
- Forgacs, D.; Wojciechowski, K.; Malinkiewicz, O. High-Efficient Low-Cost Photovoltaics: Recent Developments; Petrova-Koch, V., Hezel, R., Goetzberger, A., Eds.; Springer International Publishing: Cham, Germany, 2020; pp. 219–255. [Google Scholar] [CrossRef]
Preparation Methods | Device Configuration | Jsc (mA cm−2) | VOC (V) | FF | PCE (%) | Ref. |
---|---|---|---|---|---|---|
Drop casting | ITO/PEDOT:PSS/(C4A)2MA4Pb5I16/PC61BM/PEIE/Ag | 19.18 | 1.12 | 0.702 | 15.08 | [139] |
ITO/PEDOT:PSS/MAPbI3/PC61BM/BCP/Ag | 22.76 | 1.08 | 0.756 | 18.57 | [140] | |
Dip coating | FTO/TiO2/ZnO/MAxFA1-xPbI3/Spiro-OMeTAD/Ag | 21.20 | 0.99 | 0.670 | 14.10 | [142] |
FTO/TiO2/ZnO/MAPbI3/Spiro-OMeTAD/MoO3/Ag | 20.33 | 0.95 | 0.630 | 12.17 | [143] | |
FTO/TiO2/ZnO/MAPbI3-XClX/Spiro-OMeTAD/MoO3/Ag | 21.31 | 1.04 | 0.690 | 15.29 | [144] | |
Screen printing | FTO/TiO2/Perovskite/Spiro-OMeTAD/MoO3/Ag | 23.12 | 1.14 | 0.779 | 20.52 | [147] |
Inkjet printing | ITO/PEDOT:PSS/(BA)2(MA)3Pb4I13/PC61BM/PEIE/Ag | 18.80 | 1.14 | 0.695 | 14.90 | [148] |
FTO/TiO2/C60/Cs0.05MA0.14FA0.81PbI2.55Br0.45/Spiro-OMeTAD/Au | 23.48 | 1.108 | 0.762 | 19.60 | [149] | |
Spin coating | FTO/TiO2/MAPbI3-XClX/Spiro-OMeTAD/MoO3/Ag | 23.00 | 1.059 | 0.721 | 17.50 | [150] |
FTO/TiO2/Cs(MAFA)Pb(IBr)3/Spiro-OMeTAD/Au | 22.16 | 1.054 | 0.798 | 18.63 | [151] | |
FTO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/Spiro-OMeTAD/Au | 24.69 | 1.09 | 0.748 | 20.13 | [152] | |
FTO/SnO2/MA0.6FA0.4PbI3/PCBM/Au | 23.78 | 1.12 | 0.795 | 21.18 | [153] | |
ITO/PTAA/Cs0.05FA0.80MA0.15PbI2.55Br0.45/PCBM/C60/BCP/Ag | 23.81 | 1.16 | 0.785 | 21.59 | [158] | |
FTO/c-TiO2/m-TiO2/MAPbI3/Spiro-OMeTAD/Au | 23.90 | 1.08 | 0.75 | 19.50 | [159] | |
ITO/SnO2/Perovskite/Spiro-OMeTAD/Au | 23.60 | 1.14 | 0.771 | 20.66 | [162] | |
ITO/SnO2/FAPbI3/Spiro-OMeTAD/Ag | 25.73 | 1.15 | 0.798 | 23.65 | [164] | |
FTO/TiO2/CsPbBr3/C | 8.81 | 1.38 | 0.75 | 9.11 | [165] | |
FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au | 22.68 | 1.00 | 0.70 | 16.78 | [166] | |
FTO/SnO2/FA1-xCsxPbI3/Spiro-OMeTAD/Ag | 24.12 | 1.142 | 0.769 | 21.17 | [167] | |
Blade coating | FTO/NiOx/MAPbI3/PCBM/BCP/Ag | 20.93 | 1.113 | 0.688 | 15.34 | [171] |
FTO/TiO2/MAPbI3/Spiro-OMeTAD/Ag | 21.94 | 1.05 | 0.762 | 17.55 | [172] | |
FTO/c-TiO2/m-TiO2/3D/2D Perovskite/PTAA/Au | 22.66 | 1.088 | 0.793 | 19.55 | [174] | |
FTO/c-TiO2/m-TiO2/Cs0.17FA0.83Pb(I0.83Br0.17)3/Spiro-OMeTAD/Au | 20.30 | 1.15 | 0.755 | 17.60 | [177] | |
ITO/SAM/MAPbI3/C60/BCP/Cu | 23.67 | 1.138 | 0.773 | 20.80 | [179] | |
Vapor deposition | ITO/Spiro-mF/MAPbI3/PC61BM/ZnO/Ag | 21.90 | 1.07 | 0.79 | 18.50 | [181] |
ITO/PTAA/CsPbI3/C60/BCP/Cu | 17.80 | 0.96 | 0.73 | 12.50 | [182] | |
FTO/TiO2/C60/(PEA)2(MA)n-1PbnI3n/Spiro-OMeTAD/Au | 23.75 | 1.08 | 0.704 | 18.08 | [183] | |
FTO/C60/MAPbI3/Spiro-OMeTAD/Au | 21.70 | 1.08 | 0.778 | 18.30 | [184] | |
ITO/SnO2/Cs0.1FA0.9PbI3/Spiro-OMeTAD/Au | 22.30 | 0.99 | 0.702 | 15.50 | [185] |
HTL | Device Configuration | Jsc (mA cm−2) | VOC (V) | FF | PCE (%) | Ref. | |
---|---|---|---|---|---|---|---|
Spiro-OMeTAD | P4VP | ITO/PEDOT:PSS/Perovskite/Spiro-OMeTAD:P4VP/Au | 23.49 | 1.129 | 0.787 | 20.84 | [189] |
NPC | FTO/c-TiO2/Cs0.05FA0.81MA0.14PbI2.55Br0.45/Spiro-OMeTAD:NPC/Au | 23.51 | 1.06 | 0.76 | 18.51 | [190] | |
Sb2S3 | ITO/SnO2-KCl/CsFAMA/Spiro-OMeTAD:Sb2S3/Au | 24.75 | 1.132 | 0.79 | 22.13 | [191] | |
Co(III)-CN | FTO/TiO2/Cs0.05MA0.1FA0.85Pb(I0.97Br0.03)3/Spiro-OMeTAD:CoCN2/Au | 25.43 | 1.138 | 0.795 | 23.01 | [192] | |
CQDs | FTO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/CQDs/Spiro-OMeTAD/Ag | 24.18 | 1.064 | 0.799 | 17.92 | [193] | |
PbSO4(PbO)4 QDs | ITO/SnO2/CsFAMA/PbSO4(PbO)4-Spiro-OMeTAD/Au | 24.80 | 1.142 | 0.80 | 22.66 | [196] | |
SnS | ITO/SnO2/Perovskite/SnS- Spiro-OMeTAD/Au | 24.01 | 1.17 | 0.807 | 22.59 | [197] | |
PEDOT:PSS | Urea | ITO/PEDOT:PSS/MAPbI3/PCBM/Rhodamine/Ag | 22.57 | 1.03 | 0.809 | 18.80 | [199] |
WO3 | ITO/SnO2/FA0.4MA0.6PbI2.8Br0.2/WO3/PEDOT:PSS/MoO3/Ag | 22.69 | 1.03 | 0.648 | 15.10 | [200] | |
Diluted | ITO/D-PEDOT:PSS/MAPbI3−xClx/C60/BCP/Ag | 20.56 | 1.08 | 0.804 | 17.85 | [201] | |
Citrate | ITO/SC-PEDOT:PSS/MAPbI3−xClx/PCBM/BCP/Ag | 21.62 | 1.134 | 0.750 | 18.39 | [202] | |
NiO | Co | FTO/NIR-4 Co:NiOx/MAPbI3/PCBM/PEI/Ag | 20.46 | 1.09 | 0.798 | 17.77 | [206] |
Rb | FTO/Rb-NiOx/MAPbI3/PCBM/BCP/Ag | 23.35 | 1.133 | 0.824 | 21.80 | [207] | |
Zn-Ce | ITO/NiOx:ZnCe/MAPbI3/PCBM/BCP/Ag | 22.30 | 1.03 | 0.63 | 14.47 | [208] | |
Cu2ZnGeS4 | FTO/SnO2/MAPbI3/Cu2ZnGeS4/C | 23.10 | 1.082 | 0.721 | 18.02 | [210] | |
CuSCN | FTO/c-TiO2/MAPbI3/CuSCN/Au | 23.77 | 0.981 | 0.724 | 16.89 | [212] | |
Ga2O3:Cu | FTO/Ga2O3:Cu/Cs0.175FA0.75MA0.075Pb(I0.88Br0.12)3/PCBM/C60/BCP/Ag | 22.90 | 1.12 | 0.76 | 19.5 | [214] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, M.; Li, F.; Yang, Z. Recent Progress in Perovskite Solar Cells: Status and Future. Coatings 2023, 13, 644. https://doi.org/10.3390/coatings13030644
Chen Y, Zhang M, Li F, Yang Z. Recent Progress in Perovskite Solar Cells: Status and Future. Coatings. 2023; 13(3):644. https://doi.org/10.3390/coatings13030644
Chicago/Turabian StyleChen, Ying, Man Zhang, Fuqiang Li, and Zhenyuan Yang. 2023. "Recent Progress in Perovskite Solar Cells: Status and Future" Coatings 13, no. 3: 644. https://doi.org/10.3390/coatings13030644
APA StyleChen, Y., Zhang, M., Li, F., & Yang, Z. (2023). Recent Progress in Perovskite Solar Cells: Status and Future. Coatings, 13(3), 644. https://doi.org/10.3390/coatings13030644