Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Pretreatment
2.2. Processing Route
2.3. Characterizations and Examinations
3. Results and Discussion
3.1. Phase Composition of LDH/MAO Film
3.2. Surface Morphologies of the As-Prepared Samples
3.3. Surface Wettability
3.4. Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Predoi, D.; Ciobanu, S.C.; Iconaru, S.L.; Predoi, M.V. Influence of the Biological Medium on the Properties of Magnesium Doped Hydroxyapatite Composite Coatings. Coatings 2023, 13, 409. [Google Scholar] [CrossRef]
- Xin, T.Z.; Zhao, Y.H.; Mahjoub, R.; Jiang, J.X.; Yadav, A.; Nomoto, K.; Niu, R.M. Ultrahigh Specific Strength in a Magnesium Alloy Strengthened by Spinodal Decomposition. Sci. Adv. 2021, 23, 1–9. [Google Scholar] [CrossRef]
- Emelyanenko, K.A.; Chulkova, E.V.; Semiletov, A.M.; Domantovsky, A.G.; Palacheva, V.V.; Emelyanenko, A.M.; Boinovich, L.B. The Potential of the Superhydrophobic State to Protect Magnesium Alloy against Corrosion. Coatings 2022, 12, 74. [Google Scholar] [CrossRef]
- Cao, F.Y.; Shi, Z.M.; Song, G.L.; Liu, M.; Dargusch, M.S.; Atrensa, A. Stress Corrosion Cracking of Several Solution Heat-Treated Mg–X Alloys. Corros. Sci. 2015, 96, 121–132. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, D.K.; Wu, R.Z.; Chen, X.B.; Peng, Q.M.; Jin, L. What Is Going on in Magnesium Alloys. J. Mater. Sci. Technol. 2018, 34, 245–247. [Google Scholar] [CrossRef]
- Vladimirov, B.V.; Krit, B.L.; Lyudin, V.B.; Morozova, N.V.; Rossiiskaya, A.D.; Suminov, I.V.; Epel’feld, A.V. Microarc Oxidation of Magnesium Alloys: A Review. Surf. Eng. Appl. Electrochem. 2014, 50, 195–232. [Google Scholar] [CrossRef]
- Askarnia, R.; Fardi, S.R.; Sobhani, M.; Staji, H.; Aghamohammadi, H. Effect of Graphene Oxide on Properties of AZ91 Magnesium Alloys Coating Developed by Micro-Arc Oxidation Process. J. Alloys Compd. 2022, 892, 162106. [Google Scholar] [CrossRef]
- Chen, X.B.; Yang, H.Y.; Abbott, T.B.; Easton, M.A.; Birbilis, N. Corrosion Protection of Magnesium and Its Alloys by Metal Phosphate Conversion Coatings. Surf. Eng. 2014, 30, 871–879. [Google Scholar] [CrossRef]
- Dong, Q.S.; Ba, Z.X.; Jia, Y.Q.; Chen, Y.J.; Lv, X.Y.; Zhang, X.B.; Wang, Z.Z. Effect of Solution Concentration on Sealing Treatment of Mg-Al Hydrotalcite Film on AZ91D Mg Alloy. J. Magnes. Alloys 2017, 5, 320–325. [Google Scholar] [CrossRef]
- Gu, C.D.; Yan, W.; Zhang, J.L.; Tu, J.P. Corrosion Resistance of AZ31B Magnesium Alloy with a Conversion Coating Produced from a Choline Chloride-Urea Based Deep Eutectic Solvent. Corros. Sci. 2016, 106, 108–116. [Google Scholar] [CrossRef]
- Cui, L.Y.; Liu, H.P.; Zhang, W.L.; Han, Z.Z.; Deng, M.X.; Zeng, R.C. Corrosion Resistance of a Superhydrophobic Micro-Arc Oxidation Coating on Mg-4Li-1Ca Alloy. J. Mater. Sci. Technol. 2017, 33, 1263–1271. [Google Scholar] [CrossRef]
- Zhang, W.X.; Jiang, Z.H.; Li, G.Y.; Jiang, Q.; Lian, J.S. Electroless Ni–Sn–P Coating on AZ91D Magnesium Alloy and Its Corrosion Resistance. Surf. Coat. Technol. 2008, 202, 2570–2576. [Google Scholar] [CrossRef]
- Bakkar, A.; Neubert, V. Electrodeposition onto Magnesium in Air and Water Stable Ionic Liquids: From Corrosion to Successful Plating. Electrochem. Commun. 2008, 9, 2428–2435. [Google Scholar] [CrossRef]
- Istrate, B.; Mareci, D.; Munteanu, C.; Stanciu, S.; Luca, D.; Crimu, C.I.; Kamel, E. In vitro electrochemical properties of biodegradable ZrO2-CaO coated MgCa alloy using atmospheric plasma spraying. J. Optoelectron. Adv. Mater. 2015, 17, 1186–1192. [Google Scholar]
- Song, G.L.; Unocic, K.A.; Meyer, H., III; Cakmak, E.; Brady, M.P.; Gannon, P.E.; Himmer, P.; Andrews, Q. The Corrosion and Passivity of Sputtered Mg-Ti Alloys. Corros. Sci. 2016, 104, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to Plasma Electrolytic Oxidation—An Overview of the Process and Applications. Coatings 2020, 10, 628. [Google Scholar] [CrossRef]
- Song, X.H.; Lu, J.H.; Yin, X.J.; Jiang, J.P.; Wang, J. The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy. J. Magnes. Alloys 2012, 1, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.R.; Zhao, M.C.; Tan, L.L.; Zhao, Y.C.; Xie, B.; Yin, D.F.; Yang, K.; Atrens, A. Corrosion Behavior of a Self-Sealing Coating Containing CeO2 Particles on Pure Mg Produced by Micro-Arc Oxidation. Surf. Coat. Technol. 2020, 386, 125456. [Google Scholar] [CrossRef]
- Atapour, M.; Blawert, C.; Zheludkevich, M.L. The Wear Characteristics of CeO2 Containing Nanocomposite Coating Made by Aluminate-Based PEO on AM 50 Magnesium Alloy. Surf. Coat. Technol. 2019, 357, 626–637. [Google Scholar] [CrossRef]
- Razzaq, A.; Ali, S.; Asif, M.; In, S. Layered Double Hydroxide (LDH) Based Photocatalysts: An Outstanding Strategy for Efficient Photocatalytic CO2 Conversion. Catalysts 2020, 10, 1185. [Google Scholar] [CrossRef]
- Boumeriame, H.; Da Silva, E.S.; Cherevan, A.S.; Chafik, T.; Faria, J.L.; Eder, D. Layered Double Hydroxide (LDH)-Based Materials: A Mini-Review on Strategies to Improve the Performance for Photocatalytic Water Splitting. J. Energy Chem. 2022, 64, 406–431. [Google Scholar] [CrossRef]
- Ishizaki, T.; Chiba, S.; Watanabe, K.; Hikaru, S. Corrosion Resistance of Mg-Al Layered Double Hydroxide Container-Containing Magnesium Hydroxide Films Formed Directly on Magnesium Alloy by Chemical-Free Steam Coating. J. Mater. Chem. A 2013, 1, 8968–8977. [Google Scholar] [CrossRef]
- Ishizaki, T.; Kamiyama, N.; Watanabe, K.; Serizawa, A. Corrosion Resistance of Mg(OH)2/Mg-Al Layered Double Hydroxide Composite Film Formed Directly on Combustion-Resistant Magnesium Alloy AMCa602 by Steam Coating. Corros. Sci. 2015, 92, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Kamiyama, N.; Panomsuwan, G.; Yamamoto, E.; Sudare, T.; Saito, N.; Ishizaki, T. Effect of Treatment Time in the Mg(OH)2/Mg-Al LDH Composite Film Formed on Mg Alloy AZ31 by Steam Coating on the Corrosion Resistance. Surf. Coat. Technol. 2015, 286, 172–177. [Google Scholar] [CrossRef]
- Dou, B.J.; Wang, Y.Q.; Zhang, T.; Liu, B.; Shao, Y.W.; Meng, G.Z.; Wang, F.H. Growth Behaviors of Layered Double Hydroxide on Microarc Oxidation Film and Anti-Corrosion Performances of the Composite Film. J. Electrochem. Soc. 2016, 163, C917. [Google Scholar] [CrossRef]
- Kuznetsov, B.; Serdechnova, M.; Tedim, J.; Starykevich, M.; Kallip, S.; Oliveira, M.P.; Hack, T.; Nixon, S.; Ferreira, M.G.S.; Zheludkevich, M.L. Sealing of Tartaric Sulfuric (TSA) Anodized AA2024 with Nanostructured LDH Layers. RSC Adv. 2016, 6, 13942–13952. [Google Scholar] [CrossRef] [Green Version]
- Yeganeh, M.; Mohammadi, N. Superhydrophobic Surface of Mg Alloys: A Review. J. Magnes. Alloys 2018, 6, 59–70. [Google Scholar] [CrossRef]
- Zhou, M.; Pang, X.; Wei, L.; Gao, K. Insitu Grown Superhydrophobic Zn-Al Layered Double Hydroxides Films on Magnesium Alloy to Improve Corrosion Properties. Appl. Surf. Sci. 2015, 337, 172–177. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, J.M.; Bai, L.J.; Zhang, G.J. Effects of Al3+ concentration in hydrothermal solution on the microstructural and corrosion resistance properties of fabricated MgO ceramic layer on AZ31 magnesium alloy. Mater. Corros. 2020, 72, 620–632. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, J.M.; Bai, L.J.; Zhang, G.J. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro Arc Oxidization Ceramic Layer on AZ31 Mg-alloy. Chin. J. Mater. Res. 2020, 34, 183–190. [Google Scholar]
- Wang, Z.W.; Wu, T.Z. Modeling pressure stability and contact angle hysteresis of superlyophobic surfaces based on local contact line. J. Phys. Chem. C 2015, 119, 12916–12922. [Google Scholar] [CrossRef]
- Wu, L.; Wu, J.H.; Zhang, Z.Y.; Zhang, C.; Zhang, Y.X. Corrosion resistance of fatty acid and fluoroalkylsilane-modified hydrophobic Mg-A1 LDH films on anodized magnesium alloy. Appl. Surf. Sci. 2019, 487, 569–580. [Google Scholar] [CrossRef]
- Duan, H.P.; Yan, C.W.; Wang, F.H. Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D. Electrochim. Acta 2007, 52, 3785–3793. [Google Scholar] [CrossRef]
- Ma, R.Z.; Jiang, M.H.; Xu, Z. Introduction to Functional Materials Science; Metallurgical Industry Press: Beijing, China, 2006. [Google Scholar]
- Yao, Z.P.; Xia, Q.X.; Chang, L.M.; Li, C.N.; Jiang, Z.H. Structure and Properties of Compound Coatings on Mg Alloys by Micro-Arc Oxidation/Hydrothermal Treatment. J. Alloys Compd. 2015, 633, 435–442. [Google Scholar] [CrossRef]
- Luo, D.; Liu, Y.; Yin, X.M.; Wang, H.Y.; Han, Z.W.; Ren, L.Q. Corrosion Inhibition of Hydrophobic Coatings Fabricated by Micro-Arc Oxidation on an Extruded Mg-5Sn-1Zn Alloy Substrate. J. Alloys Compd. 2018, 731, 731–738. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, A.T.; Wu, L.; Zhang, Z.Y.; Liao, H.X.; Long, Y.; Li, L.J.; Atrens, A.; Pan, F.S. In-Situ Grown Super-or Hydrophobic Mg-Al Layered Double Hydroxides Films on the Anodized Magnesium Alloy to Improve Corrosion Properties. Surf. Coat. Technol. 2019, 366, 238–247. [Google Scholar] [CrossRef]
Samples | Ecorr/V | Icorr/A·cm−2 | Rp/Ω·cm2 | Pi/mm·y−1 |
---|---|---|---|---|
AZ31 | −1.5794 | 2.78 × 10−4 | 93.91 | 6.35 |
MAO coating | −1.4049 | 4.02 × 10−6 | 6479.9 | 0.09 |
LDH/MAO | −1.1595 | 5.70 × 10−8 | 4.5764 × 105 | 1.30 × 10−3 |
OTES-LDH/MAO | −0.7042 | 4.12 × 10−10 | 6.3296 × 107 | 9.41 × 10−6 |
Sample | Bare AZ31 | MAO | LDH/MAO | OTES-LDH/MAO |
---|---|---|---|---|
Rs/Ω·cm2 | 21.89 | 23.85 | 31.72 | 36.76 |
CPELDH/Ω−1·cm−2·s−n | —— | —— | 2.875 × 10−10 | 1.767 × 10−10 |
nLDH | —— | —— | 0.9286 | 0.9517 |
RLDH/Ω·cm2 | —— | —— | 9.088 × 105 | 2.803 × 106 |
CPEMAO/Ω−1·cm−2·s−n | —— | 1.052 × 10−6 | 2.468 × 10−9 | 1.019 × 10−8 |
nMAO | —— | 0.6743 | 1 | 0.5264 |
RMAO/Ω·cm2 | —— | 1.614 × 104 | 7.996 × 105 | 2.495 × 107 |
CPEdl/Ω−1·cm−2·s−n | 8.069 × 10−6 | 4.866 × 10−5 | 1.02 × 10−7 | 4.553 × 10−8 |
ndl | 0.9793 | 1 | 0.6257 | 0.9015 |
Rct/Ω·cm2 | 68 | 1.57 × 104 | 4.611 × 106 | 4.493 × 107 |
RL/Ω·cm2 | 208.8 | —— | —— | —— |
L/H·cm−2 | 91.07 | —— | —— | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Liu, J.; Liu, G.; Xie, Y.; Duan, Z. Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy. Coatings 2023, 13, 643. https://doi.org/10.3390/coatings13030643
Liu D, Liu J, Liu G, Xie Y, Duan Z. Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy. Coatings. 2023; 13(3):643. https://doi.org/10.3390/coatings13030643
Chicago/Turabian StyleLiu, Dongjie, Jing Liu, Guangyu Liu, Yuntao Xie, and Zongfan Duan. 2023. "Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy" Coatings 13, no. 3: 643. https://doi.org/10.3390/coatings13030643
APA StyleLiu, D., Liu, J., Liu, G., Xie, Y., & Duan, Z. (2023). Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy. Coatings, 13(3), 643. https://doi.org/10.3390/coatings13030643