Potential of Graphene-Functionalized Titanium Surfaces for Dental Implantology: Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Search Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbrevations
ALP | Alkaline Phosphatase |
BIC | Bone-to-Implant Contact |
BMPs | bone morphogenetic proteins |
BMSCs | Bone Marrow Mesenchymal Stem Cells |
COL1A1 | Collagen type 1-α1 |
DEX | Dexamethasone |
DEX-GO-Ti | Dexamethasone loaded on GO coupled with bioactive titanate on Ti implants |
DEX-rGO-Ti | Dexamethasone loaded on rGO coupled with bioactive titanate on Ti implants |
GD-PMMA | Graphene-doped polymethylmethacrylate |
GO | Graphene Oxide |
GO/CS/HA-Ti | Titanium coated by graphene oxide/chitosan/hydroxyapatite |
GZNC | Graphene Nanocomposite/Zinc Oxide |
HA | Hydroxyapatite |
HBD | Human beta defensins |
hDPSC | human dental pulp stem cell |
HGFs | Human Gingival Fibroblasts |
hMSCs | human Mesenchymal Stem Cells |
IGF | insulin-like growth factors |
MBC | Minimum Bactericidal Concentration |
MIC | Minimal Inhibitory Concentration |
PDGF | platelet-derived growth factor |
PDLSC | Periodontal ligament stem cells |
PMMA | Polymethylmethacrylate |
rBMSC | rat Bone Mesenchymal Stem Cells |
rGO | reduced graphene oxide |
RUNX2 | Runt-related transcription factor 2 |
SLA | Sandblasted, Large grit, Acid-etched |
TPS | Titanium plasma-sprayed |
References
- Esposito, M.; Coulthard, P.; Thomsen, P.; Worthington, H.V. The Role of Implant Surface Modifications, Shape and Material on the Success of Osseointegrated Dental Implants. A Cochrane Systematic Review. Eur. J. Prosthodont. Restor. Dent. 2005, 13, 15–31. [Google Scholar] [PubMed]
- Pellegrini, G.; Francetti, L.; Barbaro, B.; Del Fabbro, M. Novel Surfaces and Osseointegration in Implant Dentistry. J. Investig. Clin. Dent. 2018, 9, e12349. [Google Scholar] [CrossRef]
- Elias, C.N.; Rocha, F.A.; Nascimento, A.L.; Coelho, P.G. Influence of Implant Shape, Surface Morphology, Surgical Technique and Bone Quality on the Primary Stability of Dental Implants. J. Mech. Behav. Biomed. Mater. 2012, 16, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Sennerby, L. State of the Art in Oral Implants. J. Clin. Periodontol. 1991, 18, 474–481. [Google Scholar] [CrossRef]
- Kligman, S.; Ren, Z.; Chung, C.-H.; Perillo, M.A.; Chang, Y.-C.; Koo, H.; Zheng, Z.; Li, C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021, 10, 1641. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.A.; Thomsen, P.; Palmquist, A. Osseointegration and Current Interpretations of the Bone-Implant Interface. Acta Biomater. 2019, 84, 1–15. [Google Scholar] [CrossRef]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed. Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef] [Green Version]
- Contaldo, M.; De Rosa, A.; Nucci, L.; Ballini, A.; Malacrinò, D.; La Noce, M.; Inchingolo, F.; Xhajanka, E.; Ferati, K.; Bexheti-Ferati, A.; et al. Titanium Functionalized with Polylysine Homopolymers: In Vitro Enhancement of Cells Growth. Materials 2021, 14, 3735. [Google Scholar] [CrossRef]
- Coelho, P.G.; Jimbo, R.; Tovar, N.; Bonfante, E.A. Osseointegration: Hierarchical Designing Encompassing the Macrometer, Micrometer, and Nanometer Length Scales. Dent. Mater. 2015, 31, 37–52. [Google Scholar] [CrossRef]
- Brånemark, P.I.; Adell, R.; Breine, U.; Hansson, B.O.; Lindström, J.; Ohlsson, A. Intra-Osseous Anchorage of Dental Prostheses. I. Experimental Studies. Scand. J. Plast. Reconstr. Surg. 1969, 3, 81–100. [Google Scholar] [CrossRef]
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated Implants in the Treatment of the Edentulous Jaw. Experience from a 10-Year Period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977, 16, 1–132. [Google Scholar] [PubMed]
- Fanali, S.; Tumedei, M.; Pignatelli, P.; Inchingolo, F.; Pennacchietti, P.; Pace, G.; Piattelli, A. Implant Primary Stability with an Osteocondensation Drilling Protocol in Different Density Polyurethane Blocks. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Johansson, C. Osteoinduction, Osteoconduction and Osseointegration. Eur. Spine J. 2001, 10 (Suppl 2), S96–S101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborn, J.F. Dynamic Aspects of the Implant-Bone Interface. Materials and Systems in Dental Implants; Hanser: Munich, Germany, 1980; pp. 111–123. [Google Scholar]
- Comuzzi, L.; Tumedei, M.; Romasco, T.; Petrini, M.; Afrashtehfar, K.I.; Inchingolo, F.; Piattelli, A.; Di Pietro, N. Insertion Torque, Removal Torque, and Resonance Frequency Analysis Values of Ultrashort, Short, and Standard Dental Implants: An In Vitro Study on Polyurethane Foam Sheets. J. Funct. Biomater. 2023, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, D.; Liang, Y.; Yin, H.; Zhang, S.; Jiang, T.; Wang, Y.; Zhou, Y. A New Implant with Solid Core and Porous Surface: The Biocompatability with Bone. J. Biomed. Mater. Res. A 2014, 102, 2395–2407. [Google Scholar] [CrossRef]
- Kaewmanee, R.; Wang, F.; Pan, Y.; Mei, S.; Meesane, J.; Li, F.; Wu, Z.; Wei, J. Microporous Surface Containing Flower-like Molybdenum Disulfide Submicro-Spheres of Sulfonated Polyimide with Antibacterial Effect and Promoting Bone Regeneration and Osteointegration. Biomater. Sci. 2022, 10, 4243–4256. [Google Scholar] [CrossRef]
- Nasatzky, E.; Gultchin, J.; Schwartz, Z. The role of surface roughness in promoting osteointegration. Refuat Hapeh Vehashinayim (1993) 2003, 20, 8–19, 98. [Google Scholar]
- Park, J.H.; Olivares-Navarrete, R.; Wasilewski, C.E.; Boyan, B.D.; Tannenbaum, R.; Schwartz, Z. Use of Polyelectrolyte Thin Films to Modulate Osteoblast Response to Microstructured Titanium Surfaces. Biomaterials 2012, 33, 5267–5277. [Google Scholar] [CrossRef] [Green Version]
- Olivares-Navarrete, R.; Rodil, S.E.; Hyzy, S.L.; Dunn, G.R.; Almaguer-Flores, A.; Schwartz, Z.; Boyan, B.D. Role of Integrin Subunits in Mesenchymal Stem Cell Differentiation and Osteoblast Maturation on Graphitic Carbon-Coated Microstructured Surfaces. Biomaterials 2015, 51, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Raszewski, Z.; Chojnacka, K.; Mikulewicz, M. Preparation and Characterization of Acrylic Resins with Bioactive Glasses. Sci. Rep. 2022, 12, 16624. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Coelho, P.G.; Kang, B.-S.; Sul, Y.-T.; Albrektsson, T. Classification of Osseointegrated Implant Surfaces: Materials, Chemistry and Topography. Trends Biotechnol. 2010, 28, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Brunette, D.M. The Effects of Implant Surface Topography on the Behavior of Cells. Int. J. Oral Maxillofac. Implants 1988, 3, 231–246. [Google Scholar] [PubMed]
- Rovensky, Y.A.; Slavnaja, I.L.; Vasiliev, J.M. Behaviour of Fibroblast-like Cells on Grooved Surfaces. Exp. Cell Res. 1971, 65, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Cervino, G.; Fiorillo, L.; Iannello, G.; Santonocito, D.; Risitano, G.; Cicciù, M. Sandblasted and Acid Etched Titanium Dental Implant Surfaces Systematic Review and Confocal Microscopy Evaluation. Materials 2019, 12, 1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.C.; Pilliar, R.M.; Metson, J.B.; McIntyre, N.S. Dental Implant Materials. II. Preparative Procedures and Surface Spectroscopic Studies. J. Biomed. Mater. Res. 1991, 25, 1069–1084. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Stenberg, T. Prospective 10-Year Cohort Study Based on a Randomized Controlled Trial (RCT) on Implant-Supported Full-Arch Maxillary Prostheses. Part 1: Sandblasted and Acid-Etched Implants and Mucosal Tissue. Clin. Implant Dent. Relat. Res. 2012, 14, 808–815. [Google Scholar] [CrossRef]
- Schroeder, A.; van der Zypen, E.; Stich, H.; Sutter, F. The Reactions of Bone, Connective Tissue, and Epithelium to Endosteal Implants with Titanium-Sprayed Surfaces. J. Maxillofac. Surg. 1981, 9, 15–25. [Google Scholar] [CrossRef]
- Schliephake, H.; Scharnweber, D.; Dard, M.; Sewing, A.; Aref, A.; Roessler, S. Functionalization of Dental Implant Surfaces Using Adhesion Molecules. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 73B, 88–96. [Google Scholar] [CrossRef]
- Wisniewska, L.M.; Dohan Ehrenfest, D.M.; Galindo-Moreno, P.; Segovia, J.D.; Inchingolo, F.; Wang, H.-L.; Fernandes-Cruz, M. Molecular, Cellular and Pharmaceutical Aspects of Biomaterials in Dentistry and Oral and Maxillofacial Surgery. An Internationalization of Higher Education and Research Perspective. Curr. Pharm. Biotechnol. 2017, 18, 10–18. [Google Scholar] [CrossRef]
- Bessho, K.; Carnes, D.L.; Cavin, R.; Chen, H.Y.; Ong, J.L. BMP Stimulation of Bone Response Adjacent to Titanium Implants in Vivo. Clin. Oral Implants Res. 1999, 10, 212–218. [Google Scholar] [CrossRef]
- Wikesjö, U.M.E.; Sorensen, R.G.; Kinoshita, A.; Wozney, J.M. RhBMP-2/AlphaBSM Induces Significant Vertical Alveolar Ridge Augmentation and Dental Implant Osseointegration. Clin. Implant Dent. Relat. Res. 2002, 4, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Tatakis, D.N.; Koh, A.; Jin, L.; Wozney, J.M.; Rohrer, M.D.; Wikesjö, U.M.E. Peri-Implant Bone Regeneration Using Recombinant Human Bone Morphogenetic Protein-2 in a Canine Model: A Dose-Response Study. J. Periodontal. Res. 2002, 37, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Simonpieri, A.; Del Corso, M.; Vervelle, A.; Jimbo, R.; Inchingolo, F.; Sammartino, G.; Dohan Ehrenfest, D.M. Current Knowledge and Perspectives for the Use of Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) in Oral and Maxillofacial Surgery Part 2: Bone Graft, Implant and Reconstructive Surgery. Curr. Pharm. Biotechnol. 2012, 13, 1231–1256. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Avantario, P.; Azzollini, D.; Buongiorno, S.; Viapiano, F.; Campanelli, M.; Ciocia, A.M.; De Leonardis, N.; et al. Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022, 14, 3519. [Google Scholar] [CrossRef] [PubMed]
- Warnke, P.H.; Voss, E.; Russo, P.A.J.; Stephens, S.; Kleine, M.; Terheyden, H.; Liu, Q. Antimicrobial Peptide Coating of Dental Implants: Biocompatibility Assessment of Recombinant Human Beta Defensin-2 for Human Cells. Int. J. Oral Maxillofac. Implants 2013, 28, 982–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yifat, M.; Hila, E.; Avraham, H.; Inchingolo, F.; Mortellaro, C.; Peleg, O.; Mijiritsky, E. Histologic and Radiographic Characteristics of Bone Filler Under Bisphosphonates. J. Craniofacial Surg. 2019, 30, 1085. [Google Scholar] [CrossRef]
- Peter, B.; Pioletti, D.P.; Laïb, S.; Bujoli, B.; Pilet, P.; Janvier, P.; Guicheux, J.; Zambelli, P.-Y.; Bouler, J.-M.; Gauthier, O. Calcium Phosphate Drug Delivery System: Influence of Local Zoledronate Release on Bone Implant Osteointegration. Bone 2005, 36, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshinari, M.; Oda, Y.; Ueki, H.; Yokose, S. Immobilization of Bisphosphonates on Surface Modified Titanium. Biomaterials 2001, 22, 709–715. [Google Scholar] [CrossRef]
- Kajiwara, H.; Yamaza, T.; Yoshinari, M.; Goto, T.; Iyama, S.; Atsuta, I.; Kido, M.A.; Tanaka, T. The Bisphosphonate Pamidronate on the Surface of Titanium Stimulates Bone Formation around Tibial Implants in Rats. Biomaterials 2005, 26, 581–587. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Xie, Y.; Li, H.; Ding, C.; Zheng, X.; Li, K. Effects of Graphene Plates’ Adoption on the Microstructure, Mechanical Properties, and in Vivo Biocompatibility of Calcium Silicate Coating. Int. J. Nanomed. 2015, 10, 3855–3863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poot, M.; van der Zant, H.S.J. Nanomechanical Properties of Few-Layer Graphene Membranes. Appl. Phys. Lett. 2008, 92, 063111. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.-R.; Kim, Y.; Lim, K.T.; Seonwoo, H.; Park, S.; Cho, S.-P.; Hong, B.H.; Choung, P.-H.; Chung, T.D.; et al. Graphene-Incorporated Chitosan Substrata for Adhesion and Differentiation of Human Mesenchymal Stem Cells. J. Mater. Chem. B 2013, 1, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.C.; Lee, J.H.; Jin, L.; Kim, M.J.; Kim, Y.-J.; Hyun, J.K.; Jung, T.-G.; Hong, S.W.; Han, D.-W. Stimulated Myoblast Differentiation on Graphene Oxide-Impregnated PLGA-Collagen Hybrid Fibre Matrices. J. Nanobiotechnol. 2015, 13, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Park, J.; Sim, S.H.; Sung, M.G.; Kim, K.S.; Hong, B.H.; Hong, S. Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene. Adv. Mater. 2011, 23, H263–H267. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls against Bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Gao, Z.; Fang, L. Toxicology of Graphene Oxide Nanosheets Against Paecilomyces Catenlannulatus. Bull. Environ. Contam. Toxicol. 2015, 95, 25–30. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Han, H. Evaluation of Antibacterial Effects of Carbon Nanomaterials against Copper-Resistant Ralstonia Solanacearum. Coll. Surf. B Biointerfaces 2013, 103, 136–142. [Google Scholar] [CrossRef]
- Hu, C.; Wang, L.-L.; Lin, Y.-Q.; Liang, H.-M.; Zhou, S.-Y.; Zheng, F.; Feng, X.-L.; Rui, Y.-Y.; Shao, L.-Q. Nanoparticles for the Treatment of Oral Biofilms: Current State, Mechanisms, Influencing Factors, and Prospects. Adv. Healthc. Mater. 2019, 8, e1901301. [Google Scholar] [CrossRef]
- He, J.; Zhu, X.; Qi, Z.; Wang, C.; Mao, X.; Zhu, C.; He, Z.; Li, M.; Tang, Z. Killing Dental Pathogens Using Antibacterial Graphene Oxide. ACS Appl. Mater. Interfaces 2015, 7, 5605–5611. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, R.; Hosseinpour Nader, A.; Salehi-Vaziri, A. The Effects of Bimodal Action of Photodynamic and Photothermal Therapy on Antimicrobial and Shear Bond Strength Properties of Orthodontic Composite Containing Nano-Graphene Oxide. Photodiagn. Photodyn. Ther. 2021, 36, 102589. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Y.; Li, M.; Liu, Q.; Jia, Z.J.; Xu, X.C.; Cheng, Y.; Zheng, Y.F. Electrophoretic Deposition of Graphene Oxide Reinforced Chitosan-Hydroxyapatite Nanocomposite Coatings on Ti Substrate. J. Mater. Sci. Mater. Med. 2016, 27, 48. [Google Scholar] [CrossRef] [PubMed]
- Vera-González, N.; Shukla, A. Advances in Biomaterials for the Prevention and Disruption of Candida Biofilms. Front. Microbiol. 2020, 11, 538602. [Google Scholar] [CrossRef]
- Palmieri, V.; Bugli, F.; Cacaci, M.; Perini, G.; Maio, F.D.; Delogu, G.; Torelli, R.; Conti, C.; Sanguinetti, M.; Spirito, M.D.; et al. Graphene Oxide Coatings Prevent Candida Albicans Biofilm Formation with a Controlled Release of Curcumin-Loaded Nanocomposites. Nanomedicine 2018, 13, 2867–2879. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Parker, S.; Chiniforush, N.; Bahador, A. Photoexcitation Triggering via Semiconductor Graphene Quantum Dots by Photochemical Doping with Curcumin versus Perio-Pathogens Mixed Biofilms. Photodiagn. Photodyn. Ther. 2019, 28, 125–131. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kulshrestha, S.; Khan, S.; Meena, R.; Singh, B.R.; Khan, A.U. A Graphene/Zinc Oxide Nanocomposite Film Protects Dental Implant Surfaces against Cariogenic Streptococcus Mutans. Biofouling 2014, 30, 1281–1294. [Google Scholar] [CrossRef]
- Ren, N.; Li, J.; Qiu, J.; Yan, M.; Liu, H.; Ji, D.; Huang, J.; Yu, J.; Liu, H. Growth and Accelerated Differentiation of Mesenchymal Stem Cells on Graphene-Oxide-Coated Titanate with Dexamethasone on Surface of Titanium Implants. Dent. Mater. 2017, 33, 525–535. [Google Scholar] [CrossRef]
- Dubey, N.; Ellepola, K.; Decroix, F.E.D.; Morin, J.L.P.; Castro Neto, A.H.; Seneviratne, C.J.; Rosa, V. Graphene onto Medical Grade Titanium: An Atom-Thick Multimodal Coating That Promotes Osteoblast Maturation and Inhibits Biofilm Formation from Distinct Species. Nanotoxicology 2018, 12, 274–289. [Google Scholar] [CrossRef]
- Suo, L.; Jiang, N.; Wang, Y.; Wang, P.; Chen, J.; Pei, X.; Wang, J.; Wan, Q. The Enhancement of Osseointegration Using a Graphene Oxide/Chitosan/Hydroxyapatite Composite Coating on Titanium Fabricated by Electrophoretic Deposition. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 635–645. [Google Scholar] [CrossRef]
- Rho, K.; Park, C.; Alam, K.; Kim, D.; Ji, M.-K.; Lim, H.-P.; Cho, H. Biological Effects of Plasma-Based Graphene Oxide Deposition on Titanium. J. Nanomater. 2019, 2019, e9124989. [Google Scholar] [CrossRef]
- Agarwalla, S.V.; Ellepola, K.; Silikas, N.; Castro Neto, A.; Seneviratne, C.J.; Rosa, V. Persistent Inhibition of Candida Albicans Biofilm and Hyphae Growth on Titanium by Graphene Nanocoating. Dent. Mater. 2021, 37, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Z. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int. J. Nanomed. 2020, 15, 4659–4676. [Google Scholar] [CrossRef] [PubMed]
- Agarwalla, S.V.; Ellepola, K.; da Costa, M.C.F.; Fechine, G.J.M.; Morin, J.L.P.; Castro Neto, A.H.; Seneviratne, C.J.; Rosa, V. Hydrophobicity of Graphene as a Driving Force for Inhibiting Biofilm Formation of Pathogenic Bacteria and Fungi. Dent. Mater. 2019, 35, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S.; Jeong, S.J.; Lee, S.H.; Kim, B.; Hong, S.W.; Lee, J.H.; Han, D.-W. Reduced Graphene Oxide Coating Enhances Osteogenic Differentiation of Human Mesenchymal Stem Cells on Ti Surfaces. Biomater. Res. 2021, 25, 4. [Google Scholar] [CrossRef]
- Lorusso, F.; Inchingolo, F.; Greco Lucchina, A.; Scogna, G.; Scarano, A. Graphene-Doped Poly(Methyl-Methacrylate) as an Enhanced Biopolymer for Medical Device and Dental Implant. J. Biol. Regul. Homeost. Agents 2021, 35, 195–204. [Google Scholar] [CrossRef]
- Cao, X.; Wu, K.; Wang, C.; Guo, Y.; Lu, R.; Wang, X.; Chen, S. Graphene Oxide Loaded on TiO2-Nanotube-Modified Ti Regulates the Behavior of Human Gingival Fibroblasts. Int. J. Mol. Sci. 2022, 23, 8723. [Google Scholar] [CrossRef]
- Shin, Y.C.; Bae, J.-H.; Lee, J.H.; Raja, I.S.; Kang, M.S.; Kim, B.; Hong, S.W.; Huh, J.-B.; Han, D.-W. Enhanced Osseointegration of Dental Implants with Reduced Graphene Oxide Coating. Biomater. Res. 2022, 26, 11. [Google Scholar] [CrossRef]
- Kwak, J.M.; Kim, J.; Lee, C.-S.; Park, I.-S.; Lee, M.; Min, D.-H.; Yeo, I.-S.L. Graphene Oxide as a Biocompatible and Osteoinductive Agent to Promote Implant Osseointegration in a Rabbit Tibia Model. Adv. Mater. Interfaces 2022, 9, 2201116. [Google Scholar] [CrossRef]
- Baheti, W.; Lv, S.; Mila, M.L.; Amantai, D.; Sun, H.; He, H. Graphene/Hydroxyapatite Coating Deposit on Titanium Alloys for Implant Application. J. Appl. Biomater. Funct. Mater. 2023, 21, 22808000221148104. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tan, D.; Chen, X.; Liao, J.; Wu, L. Research on Graphene and Its Derivatives in Oral Disease Treatment. Int. J. Mol. Sci. 2022, 23, 4737. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, K.; Sarkar, K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomater. Sci. Eng. 2018, 4, 2653–2703. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; et al. Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Yan, Z.; Duan, Y.; Zhang, J.; Liu, B. Improvement of the Mechanical, Tribological and Antibacterial Properties of Glass Ionomer Cements by Fluorinated Graphene. Dent. Mater. 2018, 34, e115–e127. [Google Scholar] [CrossRef]
- Alshahrani, A.; Bin-Shuwaish, M.S.; Al-Hamdan, R.S.; Almohareb, T.; Maawadh, A.M.; Al Deeb, M.; Alhenaki, A.M.; Abduljabbar, T.; Vohra, F. Graphene Oxide Nano-Filler Based Experimental Dentine Adhesive. A SEM / EDX, Micro-Raman and Microtensile Bond Strength Analysis. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020966936. [Google Scholar] [CrossRef]
- Zhao, L.; Chu, P.K.; Zhang, Y.; Wu, Z. Antibacterial Coatings on Titanium Implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91B, 470–480. [Google Scholar] [CrossRef]
- Scarano, A.; Orsini, T.; Di Carlo, F.; Valbonetti, L.; Lorusso, F. Graphene-Doped Poly (Methyl-Methacrylate) (Pmma) Implants: A Micro-CT and Histomorphometrical Study in Rabbits. Int. J. Mol. Sci. 2021, 22, 1441. [Google Scholar] [CrossRef]
Authors | Type of Study | Materials and Methods | Conclusions |
---|---|---|---|
Kulshrestha, S. et al., 2014 [59] | In vitro study | S. mutans MTCC 497 on plates of Graphene Nanocomposite/Zinc Oxide (GZNC) | - GZNC has antibacterial action against S. mutans - GZNC treatment inhibits biofilm production - GZNC as an implant coating reduces cytotoxicity |
Ren, N. et al., 2017 [60] | In vitro study | Graphene oxide (GO) sheets produced by the modified Hummer’s technique were combined with bioactive titanate on titanium implants (GO-Ti) before reduction (rGO-Ti). Cell proliferation of rat bone mesenchymal stem cells (rBMSCs) on them was assessed by mRNA expression and alkaline phosphatase activity. | Results revealed that Dexamethasone loaded surface (DEXdex-GO-Ti) performed superbly in increasing cell proliferation. In RMBSCs on DEX-GO-Ti, osteogenic differentiation-related proteins, mRNA, and calcium were all highly expressed. |
Dubey, N. et al., 2018 [61] | In vitro study | - S. mutans and Enterococus faecalis on titanium plates coated with graphene - Culture of human osteoblastic cells in contact with graphene-coated titanium plates | - Graphene-coated titanium: 1. Is cytocompatible 2. Induced the maturation of human osteoblasts 3. Increased mineralized matrix deposition compared with titanium alone - GO was found to reduce the growth of Streptococcus Mutans and Enterococus Faecalis |
Suo, L. et al., 2018 [62] | In vitro and in vivo study | Groups created for in vitro and in vivo evaluation: A. HA-Ti: Titanium + Hydroxyapatite (HA). B. GO/HA-Ti: group A coated with GO. C. CS/HA-Ti: group A coated with chitosan (CS) D. GO/CS/HA-Ti: group D coated by GO | Graphene oxide/chitosan/hydroxyapatite (GO/CS/HA)-coated titanium increases BMSC cell adhesion, proliferation, and differentiation in vitro. In addition, it demonstrated superior osseointegration during in vivo animal tests (rat tibia) |
Rho, K. et al., 2019 [63] | In vitro study | Graphene-coated titanium with non-thermal atmospheric pressure plasma treatment | - Argon plasma treatment improves biocompatibility of titanium - Graphene oxide deposition by nonthermal plasma at atmospheric pressure enhances cell differentiation into osteoblasts, ensuring bone growth around the implant |
Agarwalla, S.V. et al., 2021 [64] | In vitro study | Growth of C. albicans on graphene-coated grade 4 titanium plates was monitored for seven days. Uncoated titanium was the Control. | Graphene coating on titanium surface inhibits C. albicans biofilm formation due to its hydrophobic properties |
Li, Q. and Wang, Z. 2020 [65] | In vitro and in vivo study | Evaluation of the behavior of rBMSC on acid-etched titanium SLA surfaces (control group) and on graphene-coated acid-etched titanium SLA surfaces. In addition, osteogenesis was evaluated in vivo (in rat femur). | The coating of GO: - Made the SLA surface more hydrophilic and capable of protein adsorption - Promoted adhesion, cell proliferation and osteogenic differentiation of BMSCs (activation of FAK/P38 pathway)High bone regeneration capacity was observed around GO-modified implants placed in rat femurs |
Agarwalla, S.V. et al., 2019 [66] | In vitro study | Streptococcus mutans, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans biofilm development was assessed after 24 h on graphene coating titanium surfaces | For all species, titanium surfaces transferred two times with graphene (TiGD) offered superior quality while reducing the development of biofilm. The production of biofilms was shown to be reduced in correlation with enhanced hydrophobicity of graphene sheets. |
Kang, M.S. et al., 2021 [67] | In vitro study | Atomic force microscopy (AFM), water contact angle, and Raman spectroscopy were used to analyze the physicochemical properties of rGO-coated Ti substrates. hMSCs were also cultivated on rGO-Ti, and their cellular characteristics, such as growth and osteogenic differentiation, were assessed. | By applying rGO evenly to Ti substrates the surface roughness and contact angle of Ti substrates could be reduced. After 7 days of incubation, rGO-Ti substrates greatly enhanced cell proliferation. |
Lorusso, F. et al., 2021 [68] | In vivo study | Graphene-doped poly methyl methacrylate (PMMA) was compared to PMMA to determine water sorption, water solubility, and tolerance in rabbits using pyrogen test. | The levels of water sorption and solubility were very low in all of the testing samples. After the treatment, unaged graphene-doped PMMA specimens shown a stability in their physical and optical characteristics. Animal tests on the graphene-doped PMMA failed to produce pyrogens, an intradermal and systemic irritant. |
Cao, X. et al., 2022 [69] | In vitro study | Anodic oxidation was used to prepare electrodeposition-loaded TiO2 and GO nanotubes. Pure titanium disks was used as the control group and GO-coated titanium surface was used as the experimental group. | GO can modulate the cellular behavior of HGF on titanium surfaces. It also activates the MAPK signaling pathway to regulate HGF adhesion, spreading and migration, possibly by promoting TGF-β1 expression to promote HGF proliferation. |
Shin, Y.C. et al., 2022 [70] | In vitro and in vivo study | Acid-etched SLA Ti (ST) implants were modified with rhBMP-2 and rGO. In vitro cell behaviors, in vivo osseointegration activity were evaluated among different groups, including ST (control), rhBMP-2-immobilized ST (BI-ST), rhBMP-2-treated ST (BT-ST) and rGO-coated ST (R-ST). | The titanium surface coated with rGO - Has high biocompatibility and superior ability to absorb exogenous proteins - Promotes cell growth and osteogenic differentiation without any osteogenic factors - Accelerates osseointegration and dental tissue regeneration in vivo |
Kwak, J.M. et al., 2022 [71] | In vitro and in vivo study | In vitro, BMSCs and Human Gingival Fibroblasts (HGFs) were seeded onto titanium discs, the surfaces of which had been treated in four different ways (SLA and/or GO). In vivo, a rabbit tibia model is used to observe the effects of the four surface treatments on the osseointegration of titanium implants. | GO coating of implant surfaces promote cell adhesion, proliferation, osteogenic differentiation and osseointegration. - Expression of ALP, RUNX2 and COL1A1 in titanium disc cells increased after ALS treatment and GO coating - Cell proliferation on GO-coated titanium discs was 25% higher than on non-GO-coated titanium discs - In the rabbit tibia study, it was seen that the GO-coated titanium implant had the highest BIC |
Baheti, W. et al., 2023 [72] | In vitro study | Modified Ti implant surfaces were coated with GO, HA, HA-2%GO, and HA-5%GO by electrophoresis deposition and compared with uncoated Ti. Biological characteristics and osteogenic efficacy of in vitro-cultured rBMSCs. | The Ti surface’s roughness and hydrophilicity were enhanced by the HA-GO nanocomposite coating. Cell adhesion and diffusion were improved on HA-GO-modified Ti surfaces compared to untreated Ti or Ti modified by HA or GO alone. Moreover, on surfaces treated with HA-GO, the proliferation and osteogenic differentiation of BMSCs in vitro were enhanced. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inchingolo, A.M.; Malcangi, G.; Inchingolo, A.D.; Mancini, A.; Palmieri, G.; Di Pede, C.; Piras, F.; Inchingolo, F.; Dipalma, G.; Patano, A. Potential of Graphene-Functionalized Titanium Surfaces for Dental Implantology: Systematic Review. Coatings 2023, 13, 725. https://doi.org/10.3390/coatings13040725
Inchingolo AM, Malcangi G, Inchingolo AD, Mancini A, Palmieri G, Di Pede C, Piras F, Inchingolo F, Dipalma G, Patano A. Potential of Graphene-Functionalized Titanium Surfaces for Dental Implantology: Systematic Review. Coatings. 2023; 13(4):725. https://doi.org/10.3390/coatings13040725
Chicago/Turabian StyleInchingolo, Angelo Michele, Giuseppina Malcangi, Alessio Danilo Inchingolo, Antonio Mancini, Giulia Palmieri, Chiara Di Pede, Fabio Piras, Francesco Inchingolo, Gianna Dipalma, and Assunta Patano. 2023. "Potential of Graphene-Functionalized Titanium Surfaces for Dental Implantology: Systematic Review" Coatings 13, no. 4: 725. https://doi.org/10.3390/coatings13040725
APA StyleInchingolo, A. M., Malcangi, G., Inchingolo, A. D., Mancini, A., Palmieri, G., Di Pede, C., Piras, F., Inchingolo, F., Dipalma, G., & Patano, A. (2023). Potential of Graphene-Functionalized Titanium Surfaces for Dental Implantology: Systematic Review. Coatings, 13(4), 725. https://doi.org/10.3390/coatings13040725